pPO-g F‘CIMMIHQ

USING PHP TO BUILD
DYNAMIC WEB SITES

SECOND EDITION
=

Master PHP 4—the Open source Wab
scriphing hmuldim:rugh

D

Contains expert coverage of syniax,
functions, design, and debugging

D

Leverage the omazing performance
of the new Zend enginel

)

650+ realworld code examples

D

CD-ROM indudes the source code, Elu:.
i

averything you'll need 1o run PH
imphmenh;ﬂimu on Windows® and
LInJIX®

LEON ATKINSON

Foreword by Andi Gutmans

Core PHP Programming

[y =

PHP

() e '|l" LFy R I'HI'I. |

Core PHP Programming Using PHP to Build
Dynamic Web Sites

Leon Atkinson

Publisher: Prentice Hall PTR
Second Edition August 03, 2000
ISBN: 0-13-089398-6, 800 pages

Master PHP 4 — the open source Web scripting breakthrough!

Contains expert coverage of syntax, functions, design, and
debugging!

Leverage the amazing performance of the new Zend engine!
650+ real-world code examples!

CD-ROM includes source code, plus everything you’ll need to
run PHP 4 implementations on Windows and UNIX!

This is the experienced developer’s guide to PHP. Master PHP
4, the open source, high-performance, cross-platform solution
for server-side scripting!

Core PHP Programming, Second Edition is the #1 practical
guide to PHP 4 for Web developers. With the guidance of top
PHP developer Leon Atkinson, you’ll learn everything you’ll
need to build robust, fast Web applications — and deploy them
on leading Web servers, from Apache to Microsoft Internet
Information Server.

Atkinson covers PHP syntax, the key building blocks of PHP
scripts, and every PHP function, including /O, data, and math
functions, time, date, configuration, database, graphics, and
network functions. He presents PHP at work in sample code
that demonstrates sorting, searching, parsing, string evaluation,
and more. You’ll even find detailed, real-world insights into
PHP 4 program design and debugging!

Core PHP Programming delivers:

IT-SC book

Core PHP Programming

Thorough, easy-to-understand coverage of PHP syntax and
functions

Step-by-step guidance for PHP database integration

Design and optimization techniques for —maximum
performance and extensibility

Practical debugging solutions

Companion CD-ROM includes PHP 4 source code and
Windows binaries plus all the code examples from the book!

Distribution

]
(2
aTES Good book 7 Downloading
Reading
by
il -
e e
Mo - :fa
Fast
g Metwotk?

IT-SC book 2

Core PHP Programming

CORE PHP Programming Using PHP to Build Dynamic Web Sites

Library of Congress Cataloging-in-Publication Date Atkinson, Leon.

Core PHP programming : using PHP to build dynamic Web sites / Leon Atkinson.--2nd
ed.

p. cm.

Includes bibliographical references and index.

1. PHP (Computer program language) 2. Web sites--Design. 1. Title.
QA76.73.P22A85 2000

005.2'762--dc21

00-034019

IT-SC book 3

Core PHP Programming

Credits
Editorial/Production Supervision:
Jan H. Schwartz
Acquisitions Editor:
Mark Taub
Editorial Assistant:
Sarah Hand
Marketing Manager:
Kate Hargett
Manufacturing Manager:
Alexis Heydt
Cover Design:

Talar Agasyan

Cover Design Director:
Jerry Votta

Art Director:

Gail Cocker-Bogusz
Series Interior Design:

Meg VanArsdale

IT-SC book

Core PHP Programming

© 2001 Prentice Hall PTR

All rights reserved. No part of this book may be reproduced, in any form or by any
means, without permission in writing from the publisher.

All product names mentioned herein are the trademarks or registered trademarks of their
respective owners.

Printed in the United States of America
10987654321

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Pearson Education Asia Pte. Ltd.

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

IT-SC book 5

Core PHP Programming

FOF@WONIA ...ttt ettt e aeeaeana 16
P I ACE ..ot 18
ACKNOWIEAGMENTES ... 20
Part I: PROGRAMMING WITH PHP.......ccoooiiiiceeeeeeee e 21
Chapter 1. AN INTRODUCTION TO PHPocooiiieeeeeeeeee 22
The Origins Of PHPc.oooiieeeeeee e 22
What Makes PHP Better than Its Alternatives ... 24
Interfaces to External Systems ..o 25
How PHP Works with the Web Server..........ccooooiieieee, 26
Hardware and Software Requirements...........c.cccooveveeieciecececeeeeen, 26
Installation on Apache for UNIX ... 27
Installation on IIS for Windows NT ... 29
EItiNG SCrIPLS......oeeeeeeeeeeeeeeeeeee e 30
AlLGOFIENIMS ..o 30
What @ PHP Script LOOKS LiKeccoooiieeeeeeeeeeeeeeeeeeeeeeeeeee 31
Saving Data for Later ... 33
Receiving User INPUL.........oooe e 35
Choosing between Alternatives ... 38
RePEating COE.........cooiiieeeeee et 39
CONCIUSION ...ttt enes 40
Chapter 2. VARIABLES, OPERATORS, AND EXPRESSIONS 41
TAENTIFIEIS ...t 41
DaAta TYPES ..ottt 41
Variable Creation and SCOPE.........coov oo, 45
Assigning Values to Variables...........ccooooioieeeeeeeeeeeeee 49
REtrieVING VAlUES ..o 51
Fre@ing MEMIOKY ...ttt e 52
CONSEANES ..ot 52
OPEIALOIS. ...ttt ettt 53
Logical and Relational Operators ..o, 54
BItWiSE OPEratiorsS.... oo 55
Miscellaneous OPerators........oiiieiceececeeeeee e 56
ASSIGNMENT OPEIraAtOrS......ocveeeieeeeeeeeeee e 59
EXPIESSIONS. ...ttt 60
Chapter 3. CONTROL STATEMENTScoooiieeeeeeeeeeeeee e, 63
TrU€ @NA FAlSE ... 63
The if Statement ... 63
THE 2 OPEIATON ..ottt 64
The switch Statement. ..., 68
L O 0D S ettt ettt e ta e eareereeeans 70
The while Statement ... 70
The break Statement ..., 73

IT-SC book 6

Core PHP Programming

The continue StAtEMENTo 73
The do...while Statement ... 76
The for Statement. ... 76
The foreach Statement ..., 79
exit, die, @NA LeLUTN oo 79
Evaluation of Boolean EXPreSSioNnsS..........c.cocoovvveieieieeeeeeeeeeeeeeeeee, 80
Chapter 4. FUNCTIONSoo et 81
Declaring @ FUNCHION ..o 81
The return Statement. ..., 82
Scope and the global Statement ... 83
ATGUIMEBNTES ..ottt ettt et ae e eae e eaneeree e 83
RECUISION ...ttt beeaeeae s 86
Dynamic FUNCLION CallS..........c.ooiiieeeeeeeeeeeeeeeeeeeeeeee e 89
Chapter 5. ARRAYS ...t 90
Single-DIimensional ArTQYS ... 90
INAEXING AFTQYS....o oottt ae et 91
INIEIAlIZING AFTQYS ..o 93
MUltidimenSIioNal AFFQYS ... 94
CaSEING AITQYS ..ottt et ss e b saeenas 95
Referencing Arrays Inside StriNgS ..., 98
Chapter 6. CLASSES AND OBIECTS ... 100
DefiNiNg @ ClaSSo oo 101
Creating @n ODJeCE..........o e 105
Accessing Properties and Methods..........ccocoooieieieiciceeeeeeeeee 105
Chapter 7. I/O AND DISK ACCESS........ooeeeeeeeeeeeeeeeeeeeeeeeeen 109
HTTP CONNECLIONS ... 109
WHItiNg t0 the BrOWSENovieeeeeeeeeeeeeeeeeeeeee e 111
OUEPUL BUFFEIING ..o, 112
Environment Variables ... 112
Getting INput from FOrMS........oovoiieeeeeeeeeeeeeeeeee e, 113
COOKIBS ...ttt ettt eaeeaeeaeas 115
FIle UPIO@AS ...t 115
PUT Method ReqQUESTS..........ociieeiicceeeeeeeeee e 117
Reading and Writing to File@S.........cooviiieieeeeeeeeeeeeeeeee e 117
SESSIONS ...ttt ettt et b et e eaeeaeas 119
The include and require FUNCLIONS ..o, 121
Part II: FUNCTIONAL REFERENCEc.ccooooiiiieeeeeeeeeeeeeeeeeee 123
Chapter 8. I/O FUNCTIONSoo e 123
Sending Text to the BroWSEr ..., 124
OUEPUL BUFFEIING ..o, 126
B et 127
Compressed File FUNCLIONS..........ccooiiiiiiceeeeeeeee e, 163
POSIX ..ottt ettt ettt ettt ettt enenes 168

IT-SC book 7

Core PHP Programming

DEeDUGGING ..o 173
SeSSION HAaNAIINGoooiiiiii e 195
Shell COMMANAS......c.oooieeeeeee e 198
HTTP HEAAEIS ... 200
NEEWOIK I/ O ..ot 202
BT P ettt ettt ettt ettt ens 207
Chapter 9. DATA FUNCTIONS ... 215
Data Types, Constants, and Variables...........ccccoooeeeciceciceee 215
AATTQY S ettt ettt ettt ettt et e et et et e et e aeeeaeeaaeeae s 221
o F= 1= a1 [OO 243
SEFINGS ettt ettt et ettt ettt 247
Encoding and DeCOding ..o 255
ENCIYPLION oot 277
Regular EXPreSSIONSot 282
Perl-Compatible Regular EXpressionsccccooveveeeeeceeceeceeeeeeeenne 285
Chapter 10. MATHEMATICAL FUNCTIONS........ccoooeeeeeeeeeeee 291
ComMMON MAth ... 291
RANAOM NUMDELIS ... 299
Arbitrary-Precision NUMDErS...........cccooioiiiieeeeeeeeeeeeeeeeeee e 302
Chapter 11. TIME, DATE, AND CONFIGURATION FUNCTIONS........... 305
TIiME @NA DAt ..o 305
Alternative Calendars ... 312
CoNFIGUIALION ..o 316
Chapter 12. IMAGE FUNCTIONS ... 323
ANAlYZING IMAGES ... 323
Creating JPEG, PNG, and WBMP Imagescccccooevveieivreeeecreeceere, 325
Chapter 13. DATABASE FUNCTIONS ..o 356
ABASE ...ttt 356
DBM-style Database Abstraction...........c.ccooooioiiiiiieeee 361
FHIEPIO oot 366
INFOIMIX oottt 368
INEEIBASE ...ttt 375
IS QL ettt ettt ettt e e ee et ettt ettt er e eeaeeae 380
(@51 = T GRS 406
(@] =T [T 417
POSEGIES ...ttt ettt eaeenas 436
SYDASE ...t 445
Chapter 14. MISCELLANEOUS FUNCTIONS ..o 454
APQCRE ...t 454
ASPEIL ... 459
COM ettt et ettt ettt te e et re e 460
GEEEXE. ettt 462
IMAP ettt ettt ettt 463
JAV @bt eae s 485

IT-SC book 8

Core PHP Programming

LDAP .ottt ettt ettt nens 486
SEMAPRNOIES ...ttt 498
Shar€d MEMIOKY ...t ettt 500
SINMP .ttt bttt s et se e 504
WDD X ...ttt ettt s e st s et et enennnas 507
XML oottt ettt ettt s et et b et et et nnns 510
Part IIT: ALGORITHMS ...t 520
Chapter 15. SORTING, SEARCHING, AND RANDOM NUMBERS 521
SOMEING ettt ettt ettt et 521
BUDDIE SOt ... 522
QUICKSOIT ..ttt eaeeaea 526
Built-In Sorting FUNCLIONS...........cooiiieeee e 528
Sorting with a Comparison FUNCLION...........c.ocociiiiiiiciicee, 537
SEANCRING ... 540
TNAEXING ettt 540
RaANAOM NUMDEIScooiii e 547
RaNdom Identifiers ... 548
ChooSiNg BannNer AdS..........oooeceeeeeeeeeeeeeeeee e 549
Chapter 16. PARSING AND STRING EVALUATION........ccooveiiireeeeee. 552
TOKENIZING .ot 552
RegUIAr EXPreSSIONSoo e 555
Defining Regular EXPreSSIiONSo 555
Using Regular Expressions in PHP Scripts.........ccocoooiiieeicce, 557
Chapter 17. DATABASE INTEGRATION.......c.coooviiieeieeeeeeeeeeee 568
Building HTML Tables from SQL QUErI€s........c.ccooeeeveeeeeeeeeeeeeeeene. 568
Tracking Visitors with Session Identifiers..........cccooeeeicieiiccee, 575
Storing Content in @ Database..........c.oooovoveeeeeceeeeeeeeeeeeee 579
Database AbStraction LayersS ... 583
Chapter 18. NETWORKco e 585
HTTP Authentication.............oooioieeeeeeeeee e 585
Controlling Browser Cache ..., 587
Setting DOCUMENT TYPE ..ot 589
Email with Attachments. ..., 590
Verifying an Email Address...........ooooeeeeeeeeeeeeeeeeeeeeeeeeeeee 594
Chapter 19. GENERATING GRAPHICS.........ccccooviiieieeeeeeeee 600
DYNamiC BULEONS ..o 600
Generating Graphs on the Fly ..., 605
Bar GrapRS. ... 606
PIE CRAITS ...t 609
Stretching Single-PiXel IMages.........ccooovoieececeeeeeeeeeeeeeeeeeeea 612
Part IV: SOFTWARE ENGINEERINGc.ccoooiiiieieieeeeeeeeceee 614
Chapter 20. INTEGRATION WITH HTML.....ccooovieieeeeeeeeee 615
Sprinkling PHP within an HTML Document...........cccooooieeveiecee, 615
Using PHP to Output All HTML......ooooiiieeeeeeeeeeeeeeee e, 619

IT-SC book 9

Core PHP Programming

Separating HTML from PHPocoioiieeeeeeeeeeeee 621
Creating <SELECT> FieldS ..o, 622
Passing Arrays iN FOrMSo.ooieeeeeeeeeeeeeeeee e 626
Chapter 21. DESIGN ..o 629
Writing Requirements Specifications...........ccocovoiiveecceeee 629
Writing Design DOCUMENTES ..o 633
USING CVS. ettt et 634
Modularization USiNG include. ..o 635
FrEEENEIGY ... 636
FASETEMIPIAEE ..o 638
MIAQANA ...ttt 639
AFTAANE ...ttt ettt a s 639
Preserving State and Providing Security........ccccoooovoiiecccceeeee 639
ClOAKING ..o 640
URLs Friendly to Search ENGINES ..o, 641
Running a Script Regularly ... 643
Chapter 22. EFFICIENCY AND DEBUGGINGccoooovieeeeeeceeeeee 644
Measuring PerfOrmMancCe ..o 644
Fetching Database Query Results..........ccccoiiieiiiciiiecee 646
When to Store Content in a Database ... 647
In-Line DebUGQINGc.coooviieiiiiceeeeeeee e 648
Remote DebUGQGING ... 648
Simulating HTTP CONNECLIONSoooooviieeceeeeeeeeeeeeeeeeeeeee e 649
Appendix A. BACKSLASH CODES..........cooooeeeeeeeeeeeeeeeeeeeeeee e 651
Appendix B. ASCII CODES..........o e 652
Appendix C. OPERATORS ... 656
APPENAIX D. PHP TAGS ...t 658
Appendix E. PHP COMPILE-TIME CONFIGURATION........ccccceeveveverrnnn. 660
Appendix F. INTERNET RESOURCES..........c.ooioieeceeeeeeeeeeeeee, 663
POIEAIS ..ot 663
SOFEWAT ...ttt ettt 663
JODS @Nd SEIVICES. ... 664
Appendix G. PHP STYLE GUIDE ..o, 665
COMMEBNTES ...ttt sttt sae b e 665
Function DeclarationsS ... 666
Compound StatemeENntS 666
NAMING .ottt ettt et e et eeae et e s aeebeesseeneenes 667
EXPIESSIONS ...t aes 669

IT-SC book 10

Core PHP Programming

Foreword
Preface

Acknowledgments

I:. PROGRAMMING WITH PHP

1. AN INTRODUCTION TO PHP
The Origins of PHP
What Makes PHP Better than Its Alternatives
Interfaces to External Systems
How PHP Works with the Web Server
Hardware and Software Reguirements
Installation on Apache for UNIX
Installation on IIS for Windows NT
Editing Scripts
Algorithms
What a PHP Script Looks Like
Saving Data for Later
Receiving User Input
Choosing between Alternatives
Repeating Code
Conclusion

2. VARIABLES, OPERATORS, AND EXPRESSIONS

Identifiers

Data Types

Variable Creation and Scope
Assigning Values to Variables
Retrieving Values

Freeing Memory

Constants

Operators

Logical and Relational Operators
Bitwise Operators
Miscellaneous Operators
Assignment Operators

Expressions

3. CONTROL STATEMENTS
True and False
The if Statement
The ? Operator
The switch Statement
Loops
The while Statement
The break Statement
The continue Statement
The do...while Statement
The for Statement
The foreach Statement
exit , die , and return

IT-SC book

11

Core PHP Programming

Evaluation of Boolean Expressions

4. FUNCTIONS
Declaring a Function
The return Statement
Scope and the global Statement
Arguments
Recursion
Dynamic Function Calls

5. ARRAYS
Single-Dimensional Arrays
Indexing Arrays
Initializing Arrays
Multidimensional Arrays
Casting Arrays
Referencing Arrays Inside Strings

6. CLASSES AND OBJECTS
Defining a Class
Creating an Object
Accessing Properties and Methods

7.1/0 AND DISK ACCESS
HTTP Connections
Writing to the Browser
Output Buffering
Environment Variables
Getting Input from Forms
Cookies
File Uploads
PUT Method Requests
Reading and Writing to Files
Sessions
The include and require Functions

II: FUNCTIONAL REFERENCE

8. I/O FUNCTIONS
Sending Text to the Browser
Output Buffering
Files
Compressed File Functions
POSIX
Debugging
Session Handling
Shell Commands
HTTP Headers
Network I/0
m

9. DATA FUNCTIONS
Data Types, Constants, and Variables

IT-SC book

Core PHP Programming

Arrays

Hashing

Strings

Encoding and Decoding

Encryption

Regular Expressions

Perl-Compatible Regular Expressions

10. MATHEMATICAL FUNCTIONS
Common Math
Random Numbers
Arbitrary-Precision Numbers

11. TIME, DATE, AND CONFIGURATION FUNCTIONS
Time and Date
Alternative Calendars

Configuration

12. IMAGE FUNCTIONS
Analyzing Images
Creating JPEG, PNG, and WBMP Images

13. DATABASE FUNCTIONS
dBase
DBM-style Database Abstraction
filePro
Informix
InterBase
S
DB
Oracle
Postgres
Sybase

O3
[@F

14. MISCELLANEOUS FUNCTIONS

Semaphores
Shared Memory

SNMP
WDDX
L

x

III: ALGORITHMS

15. SORTING, SEARCHING, AND RANDOM NUMBERS

Sorting
Bubble Sort

IT-SC book

13

Core PHP Programming

Quicksort

Built-In Sorting Functions

Sorting with a Comparison Function
Searching

Indexing

Random Numbers

Random Identifiers

Choosing Banner Ads

16. PARSING AND STRING EVALUATION
Tokenizing
Regular Expressions
Defining Regular Expressions
Using Regular Expressions in PHP Scripts

17. DATABASE INTEGRATION
Building HTML Tables from SQL Queries
Tracking Visitors with Session Identifiers
Storing Content in a Database
Database Abstraction Layers

18. NETWORK
HTTP Authentication
Controlling Browser Cache
Setting Document Type
Email with Attachments
Verifying an Email Address

19. GENERATING GRAPHICS
Dynamic Buttons
Generating Graphs on the Fly
Bar Graphs
Pie Charts
Stretching Single-Pixel Images

IV: SOFTWARE ENGINEERING

20. INTEGRATION WITH HTML
Sprinkling PHP within an HTML Document
Using PHP to Output All HTML
Separating HTML from PHP
Creating <SELECT> Fields
Passing Arrays in Forms

21. DESIGN
Writing Requirements Specifications
Writing Design Documents
Using CVS
Modularization Using include
FreeEnergy
FastTemplate

Midgard
Ariadne

IT-SC book

14

C

ore PHP Programming

Preserving State and Providing Security
Cloaking

URLs Friendly to Search Engines
Running a Script Regularly

22. EFFICIENCY AND DEBUGGING

Measuring Performance

Fetching Database Query Results
When to Store Content in a Database
In-Line Debugging

Remote Debugging

Simulating HTTP Connections

. BACKSLASH CODES

B

. ASCII CODES

C

. OPERATORS

D

E

. PHP TAGS

. PHP COMPILE-TIME CONFIGURATION

-n

. INTERNET RESOURCES

G

Portals
Software
Jobs and Services

. PHP STYLE GUIDE

Comments

Function Declarations
Compound Statements
Naming

Expressions

IT-SC book

15

Core PHP Programming

Foreword

For those of you new to PHP, let me begin with a brief recap. PHPstarted in late 1994 as
a quick Perl hack written by Rasmus Lerdorf. Over the next two to three years it evolved
into what we know today as PHP/FI 2.0. Zeev Suraski and lintroduced a new parser in
the summer of 1997 that led to PHP 3. At that time PHP syntax and semantics were
formalized, thereby establishing a foundation for growth.

Today, PHP3 has established itself as one of the most popular Web scripting languages
available. At the time of this Foreword, PHP has been installed on some 2 million Web
servers. Its salient features include:

Very short development times
Platform independence
Multiple database support

PHP has risen to an even higher level. Featuring the use of the "Zend Engine," PHP 4 is
much faster and more powerful in every respect. The new version supports multithreaded
Web server environments including an ISAPI module (Microsoft's IIS). Other features
include a new Web server abstraction layer, Java connectivity, and a much-improved
build process for better PHP configuration.

Where do we go from here? Today the major concern of entrants into the PHPcommunity
is application support. People know PHP functionality is good, but can it be backed up?
The answer is yes. Zend Technologies has arisen to give commercial backing for PHP,
thereby enabling undecided companies to take the plunge and benefit from superior open-
source software.

Leon's second edition of Core PHP Programming is also serving in a supportive role.
The second edition features:

Coverage of PHP 4's language changes and features, such as the improved include
function and the new NULL and Boolean types.

Coverage of most of PHP 4's extensions.
Tighter typesetting for readers looking for a functional reference.

Added screenshots and comments for new users interested in quickly learning PHP
functionality.

Commercial backing and reference materials will continue to drive PHP's gradual
acceptance as the standard in Web scripting.

IT-SC book 16

Core PHP Programming

Let me take this opportunity to thank everybody for bringing PHP to where it is today.
May we keep on working together to make it even better!

I hope this book will give novices a quick start to PHP and more experienced users a
handy reference manual.

Andi Gutmans

IT-SC book 17

Core PHP Programming

Preface

My first inkling that I might like to write a book about PHP was born out of the
frustration I felt with the original PHP manual. It was a single, large HTML file with all
the functions in alphabetical order. It was also on a Web server thousands of miles away
from me in Canada, so it was slow to show up in my browser, even across a TI
connection. It wasn't long before it was saved on my desktop. After struggling for several
months, it started to dawn on me that I could probably organize the information into a
more usable format. Around that time the next version of PHP began to take shape, and
with it a new manual was developed. It was organized around PHP's source code but was
less complete than the old PHP manual. I contributed descriptions for some of the
missing functions, but I still had the idea to write my own manual. In the spring of 1998
Prentice Hall gave me the opportunity to do so. It is an honor for my book to be among
Prentice Hall classics such as The C Programming Language by Brian Kernighan and
Dennis Ritchie.

This book assumes a certain familiarity with the Internet, the Web, and HTML
programming, but it starts with the most basic ideas of programming. It will introduce
you to concepts common to all programming languages and how they work in PHP. You
can expect this book to teach you how to create rich, dynamic Web sites. You can also
expect it to remain on your desk as a reference for how PHP works, or even as a recipe
book for solving common design problems.

This book is not for dummies, nor is it for complete idiots. That you are considering PHP
is a great indication of your intelligence, and I'd hate to insult it. Some of the ideas in this
book are hard to understand. If you don't quite get them the first time, I encourage you to
reread and experiment with the examples.

If you are uncomfortable writing HTML files, you may wish to develop this skill first.
Marty Hall's Core Web Programming provides an excellent introduction. Beyond HTML,
numerous other topics I touch on fall out of scope. Whenever I can, I suggest books and
Web sites that provide more information. There are even some aspects of PHP that range
too far from the focus on writing PHP scripts. An example is writing extensions for PHP
in C. This involves a healthy knowledge of C programming that I cannot provide here.
Related to this is compiling and installing PHP. I attempt to describe the process of
installing PHP, which can involve compiling the source code, but I can't attempt to
pursue all the different combinations of operating system, Web server, and extensions. If
you are comfortable running make files, you will find the information that comes with the
PHP source code more than adequate.

Along with the explanation text I've provided real-world examples. Nothing is more
frustrating than trying to adapt some contrived academic problem to the Web site you
must have working by the end of the week. Some of the examples are based on code from
live Web sites I have worked on since discovering PHP in 1997. Others are distilled from
the continual discussion being conducted on the PHP mailing lists.

IT-SC book 18

Core PHP Programming

This book is organized into four main sections: an introduction to programming; a
reference for all the functions in PHP; a survey of common programming problems; and
finally a guide for applying this knowledge to Web site development. The first section
deals with the issues involved with any programming language: what a PHP script looks
like; how to control execution; how to deal with data. The second section organizes the
functions by what they do and gives examples of their use. PHP offers many functions, so
this section is larger than the rest. The third section deals with solving common
programming problems such as sorting and generating graphics. The last section offers
advice about how to create a whole Web site with PHP.

I've chosen a few conventions for highlighting certain information, and I'm sure you will
find them obvious, but for the sake of clarity I'll spell them out. Whenever I use a
keyword such as the name of a script or a function, I place itin a monospace font. For
example, I may speak about the print func- tion. Another convention I've used is to
place email addresses and Web addresses inside angle brackets. Examples are the email
address by which youcan contact me, <corephp@Ileonatkinson.com/>, and my Web site,
<http://www.leonatkinson.com/>.

IT-SC book 19

Core PHP Programming

Acknowledgments

Writing a book requires dedication and sacrifice—mostly from one's family and friends.
There were many weekends when I had to stay home writing, and I'm grateful for the
patience everyone has shown me. This includes my wife, Vicky, my parents, Rhonda and
Leonard, and my grandmother, Afton. It also includes all my buddies who wanted me to
come out and play—especially the ones who wanted me to help out with engineering

gigs.

Once again, I've had a couple of phenomenal technical editors. Vicky read through every
word of the book, including the functional reference. The story gets fairly predictable in
those middle chapters, so I really appreciate her effort. Shannon "JJ" Behrens provided
valuable feedback, including catching some of my "hand-waving".

No PHP book is complete without thanks going out to the PHP developers. It might seem
like a cliché, but Rasmus Lerdorf really is a nice guy. Take the opportunity to hear him
speak if you have it. The contributions of Zeev Suraski and Andi Gutmans are
tremendous. I would like to thank Andi in particular for providing the foreword to this
book. There are too many people to thank individually, but one other person deserves
mention: Egon Schmid. Aside from improving PHP's online manual, he never fails to
answer every query about books on the mailing list with the URL to the books page on
the php.net site.

Working with Prentice Hall has been a pleasure. I've enjoyed the wisdom and guidance of
Mark Taub. The rest of the team were always professional.

Finally, let me thank all the people who bought the first edition of Core PHP
Programming, especially those who took the time to send me email. The response has
been overwhelmingly positive. I'm delighted to have introduced so many people to PHP.

IT-SC book 20

Core PHP Programming

Part I: PROGRAMMING WITH PHP

The first part of this book is a thorough discussion of PHP as a programming language.
You will be introduced to common concepts of computer science and how they are
implemented in PHP. No prior programming experience beyond the use of simple mark-
up languages is necessary. That is, you must be familiar with HTML. These chapters
focus on building a foundation of understanding rather than on how to solve specific
problems. If you have experience programming in a similar language, such as C or Perl,
you may choose to read Chapter 1 and skim the rest, saving it as a reference. In most
situations, PHP treats syntax much as these two languages do.

Chapter 1 is an introduction to PHP—how it began and what it looks like. It may be
sufficient for experienced programmers, since it moves quickly through PHP's key
features. If you are less experienced, I encourage you to treat this chapter as a first look.
Don't worry too much about exactly how the examples work. I explain the concepts in
depth in later chapters.

Chapter 2 introduces the concepts of variables, operators, and expressions. These are the
building blocks of a PHP script. Essentially, a computer stores and manipulates data.
Variables let you name values; operators and expressions let you manipulate them.

Chapter 3 examines the ways PHP allows you to control program execution. This
includes conditional branches and loops.

Chapter 4 deals with functions, how they are called, and how to define them. Functions
are packages of code that you can call upon repeatedly.

Chapter 5 is about arrays—collections of values that are identified by either numbers or
names. Arrays are a very powerful way to store information and retrieve it efficiently.

Chapter 6 is about classes, presenting an object-oriented approach to grouping functions
and data. Although not strictly an object-oriented language, PHP supports many features
found in OO languages like Java.

Chapter 7 deals with how PHP sends and receives data. Files, network connections, and
other means of communication are covered.

IT-SC book 21

Core PHP Programming

Chapter 1. AN INTRODUCTION TO PHP

This chapter will introduce you to PHP. You will learn how it came about, what it looks
like, and why it is the best server-side technology. You will also be exposed to the most
important features of the language.

PHP began as a simple macro replacement tool. Like a nice pair of shoes, it got you
where you needed to go, but you could go only so far. On the hyperspeed development
track of the Internet, PHP has become the equivalent of a 1960s muscle car. It's cheap, it's
fast, and there's plenty of room under the hood for you and your virtual wrench.

You probably don't need convincing that whether it's Internet, intranet, or extranet, the
Web is no longer about plain HTML files. Web pages are being replaced with Web
applications. The issue many Web engineers face is choosing among hundreds of
technologies.

This chapter will let you poke around the PHP engine, get your hands a little dirty, and
take it for a spin. There are lots of small examples you can try immediately. Like all the
examples in this book, you can easily adapt them to provide real solutions. Don't be
intimidated if you don't fully understand the PHP code at first. Later chapters will deal
with all the issues in detail.

This chapter talks about some things that you already know, like what a computer is, just
to make sure we're all on the same page. You may be a wizard with HTML, but not fully
appreciate the alien way computers are put together. Or you may find you learned all
these things in a high school computer class. If you get too bored with the basics, skip to
Chapter 2, "Variables, Operators, and Expressions."

The Origins of PHP

Wonderful things come from singular inspiration. PHP began life as a simple way to
track visitors to Rasmus Lerdorf's online resume. It also could embed SQL queries in
Web pages. But as often happens on the Web, admirers quickly asked for their own
copies. As a proponent of the Internet's ethic of sharing, as well as a generally agreeable
person, Rasmus unleashed upon an unsuspecting Web his Personal Home Page Tools
version 1.0.

"Unleashed upon himself" may be more accurate. PHP became very popular. A
consequence was a flood of suggestions. PHP 1.0 filtered input, replacing simple
commands for HTML. As its popularity grew, people wondered if it couldn't do more.
Loops, conditionals, rich data structures—all the conveniences of modern structured
programming seemed like a next logical step. Rasmus studied language parsers, read
about YACC and GNU Bison, and created PHP 2.0.

PHP 2.0 allowed developers to embed structured code inside HTML tags. PHP scripts
could parse data submitted by HTML forms, communicate with databases, and make

IT-SC book 22

Core PHP Programming

complex calculations on the fly. And it was very fast, because the freely available source
code compiled into the Apache Web server. A PHP script executed as part of the Web
server process and required no forking, often a criticism of Common Gateway Interface
(CGI) scripts.

PHP was a legitimate development solution and began to be used for commercial Web
sites. In 1996 Clear Ink created the SuperCuts site (www. supercuts.com) and used PHP
to created a custom experience for the Web surfer. In January of 1999 the PHP Web site
reported almost 100,000 Web servers were using PHP. By November that figure had
climbed higher than 350,000!

A community of developers grew up around PHP. Feature requests were balanced by bug
fixes and enhancements. Zeev Suraski and Andi Gutmans made a significant contribution
by writing a new parser. They observed that the parser in PHP 2.0 was the source of
many problems. Rasmus decided to begin work on PHP 3.0 and called for developers to
commit to its creation. Along with Zeev and Andi, three others lent their support: Stig
Bakken, Shane Caraveo, and Jim Winstead.

After seven months of developments, PHP version 3.0 was released on June 6, 1998.
Work began immediately on the next version. Originally a 3.1 version was planned, but
thanks to more revolutionary work by Zeev and Andi, work shifted to PHP 4.0, which
used the new Zend library.

On January 4, 1999, Zeev and Andi announced a new framework that promised to
increase dramatically the performance of PHP scripts. They named the new framework
Zend, cleverly combining letters from their names. Early tests showed script execution
times dropping by a factor of one hundred. In addition, new features for compiling scripts
into binary, optimization, and profiling were planned.

Work on Zend and PHP 4.0 continued in parallel with bug fixes and enhancement to PHP
3.0. During 1999, eight incremental versions were released, and on December 29, 1999,
PHP version 3.0.13 was announced. During the same year, Open Source projects written
in PHP flourished. Projects like Phorum tackled long-time Internet tasks such as hosting
online discussion. The PHPLib project provided a framework for handling user sessions
that inspired new code in PHP. FreeTrade, a project I lead, offered a toolkit for building
e-commerce sites.

Writing about PHP increased as well. More than twenty articles appeared on high-traffic
sites such as webmonkey.com and techweb.com. Sites dedicated to supporting PHP
developers were launched. The first two books about PHP were published in May 1999.
Egon Schmid, Christian Cartus, and Richard Blume wrote a book in German called PHP:
Dynamische Webauftritte professionell realisieren. Prentice Hall published the first
edition of my book, Core PHP Programming. Since then several other books have been
published and others planned.

PHP is not a shrink-wrapped product made by faceless drones or wizards in an ivory
tower. PHP started as a simple tool brought into the bazaar described by Eric Raymond in

IT-SC book 23

Core PHP Programming

his essay The Cathedral and the Bazaar
<http://www.tuxedo.org/~esr/writings/cathedral-bazaar/>.

Once it was there, anyone could make improvements, and many did. Their aim seems to
be to achieve solutions of direct, personal interest. If a client comes along that requires a
project use a database not supported by PHP, you simply write an extension. Then you
give it to the PHP project. Soon other people are fixing your bugs.

Yet, the vast majority of PHP users never write an extension. They happily find
everything they need in the contributed works of others. Those who've contributed
thousands of lines of code to PHP perhaps never consider themselves heroes. They don't
trumpet their accomplishments. But because each part of PHP came from a real person, I
would like to point them out. When appropriate, I'll note who added a particular
extension.

You can find an up-to-date list of credits on the PHP site
<http://www.php.net/version4/credits.php>.

What Makes PHP Better than Its Alternatives

The skeptics are asking themselves, "Why should I learn PHP?" The days of static Web
sites built with HTML files and a few CGI scripts are over: Today's sites must be
dynamic. All the stale company brochures littering the streets of the Internet will
transform into 24-hour virtual storefronts or be swept away. The toughest decision facing
the creator of a Web application is choosing from hundreds of technologies.

Perl has adapted well to being a CGI solution and it has been used to drive complex Web
technology like CyberCash and Excite's EWS search engine. Microsoft provides its
Active Server Pages with Internet Information Server. Middleware like Allaire's Cold
Fusion is yet another solution. ServerWatch.com lists hundreds of Web technologies,
some costing tens of thousands of dollars. Why should you choose PHP over any of these
alternatives?

The short answer is that PHP is better. It is faster to code and faster to execute. The same
PHP code runs unaltered on different Web servers and different operation systems.
Additionally, functionality that is standard with PHP is an add-on in other environments.
A more detailed argument follows.

PHP is free. Anyone may visit the PHP Web site <http: //www.php.net/> and
download the complete source code. Binaries are also available for Windows. The result
is easy entry into the experience. There is very little risk in trying PHP, and its license
allows the code to be used to develop works with no royalties. This is unlike products
such as Allaire's Cold Fusion or Everyware's Tango Enterprise that charge thousands of
dollars for the software to interpret and serve scripts. Even commercial giants like
Netscape and IBM now recognize the advantages of making source code available.

IT-SC book 24

Core PHP Programming

PHP runs on UNIX, Windows 98, Windows NT, and the Macintosh. PHP is designed to
integrate with the Apache Web Server. Apache, another free technology, is the most
popular Web server on the Internet and comes with source code for UNIX and Windows.
Commercial flavors of Apache like WebTen and Stronghold support PHP, too. But PHP
works with other Web servers, including Microsoft's Internet Information Server. Scripts
may be moved between server platforms without alteration. PHP supports ISAPI to allow
for the performance benefits of tightly coupling with Microsoft Web servers.

PHP is modifiable. PHP has been designed to allow for future extension of functionality.
PHP is coded in C and provides a well-defined Application Programming Interface
(API). Capable programmers may add new functionality easily. The rich set of functions
available in PHP are evidence that they often do. Even if you aren't interested in changing
the source code, it's comforting to know you can inspect it. Doing so may give you
greater confidence in PHP's robustness.

PHP was written for Web page creation. Perl, C, and Java are very good general
languages and are certainly capable of driving Web applications. The unfortunate
sacrifice these alternatives make is the ease of communication with the Web experience.
PHP applications may be rapidly and easily developed because the code is encapsulated
in the Web pages themselves.

Support for PHP is free and readily available. Queries to the PHP mailing list are often
answered within hours. A custom bug-tracking system on the PHP site shows each
problem along with its resolution. Numerous sites, such as phpbuilder.com and zend.com,
offer original content to PHP developers.

PHP is popular. Internet service providers find PHP to be an attractive way to allow their
customers to code Web applications without the risks exposed by CGlIs. Developers
worldwide offer PHP programming. Sites coded in PHP will have the option of moving
from one host to another as well as a choice of developers to add functionality.

Programming skills developed in other structured languages can be applied to PHP. PHP
takes inspiration from both Perl and C. Experienced Perl and C programmers learn PHP
very quickly. Likewise, programmers who learn PHP as a first language may apply their
knowledge toward not only Perl and C, but other C-like languages such as Java. This is
very different from learning to code in a visual editor such as Microsoft Visual InterDev.

Interfaces to External Systems

PHP is somewhat famous for interfacing with many different database systems, but it also
has support for other external systems. Support comes in the form of modules called
extensions. They either compile directly into PHP or are loaded dynamically. New
extensions are added to the PHP project regularly. The extensions expose groups of
functions for using these external systems. As I've said, some of these are databases. PHP
offers functions for talking natively with most popular database systems, as well as
providing access to ODBC drivers. Other extensions give you the ability to send
messages using a particular network protocol, such as LDAP or IMAP. These functions

IT-SC book 25

Core PHP Programming

are described in detail in Section Two, but you might find the highlights listed here
interesting. Because PHP developers are enthusiastic and industrious, you will
undoubtedly find more extensions have been added since I wrote this.

Aspell is a system for checking spelling. An extension provides support for numbers of
arbitrary precision. There is an extension for dealing with various calendar systems. An
extension provides support for DBM-style databases. You can read from filePro
databases. You can interact with Hyperwave. You can use the ICAP, IMAP, and LDAP
protocols. The Interbase and Informix databases are supported natively, as are mSQL,
Mysql, MS SQL, Sybase, Oracle, and Postgres. You can also parse XML or create
WDDX packets.

How PHP Works with the Web Server

The normal process a Web server goes through to deliver a page to a browser is as
follows. It all begins when a browser makes a request for a Web page. Based on the URL,
the browser resolves the address of the Web server, identifies the page it would like, and
gives any other information the Web server may need. Some of this information is about
the browser itself, like its name (Mozilla), its version (4.08), or the operating system
(Linux). Other information given the Web server could include text the user typed into
form fields.

If the request is for an HTML file, the Web server will simply find the file, tell the
browser to expect some HTML text, and then send the contents of the file. The browser
gets the contents and begins rendering the page based on the HTML code. If you have
been programming HTML for any length of time, this will be clear to you.

Hopefully you have also had some experience with CGI scripts. When a Web server gets
a request for a CGI, it can't just send the contents of the file. It must execute the script
first. The script will generate some HTML code, which then gets sent to the browser. As
far as the browser is concerned, it's just getting HTML. The Web server does a bunch of
work that it gets very little recognition for, but Web servers rarely get the respect they
deserve. The medium is definitely not the message.

When a PHP page is requested, it is processed exactly like a CGI, at least to the extent
that the script is not simply sent to the browser. It is first passed through the PHP engine,
which gives the Web server HTML text.

What happens when the user clicks the stop button before the page finishes downloading?
The Web server detects this situation and usually terminates the PHP script. It is possible
to force a script to finish despite an aborted connection. You may also allow the script to
terminate but execute special code first. The functions to allow this functionality are
listed in Chapter 8, "I/O Functions," and Chapter 11, "Time Date, and Configuration
Functions."

Hardware and Software Requirements

IT-SC book 26

Core PHP Programming

One great advantage of Open Source software is that it provides the opportunity for
adaptation to new environments. This is true of PHP. Although originally intended as a
module for the Apache Web server, PHP has since embraced the ISAPI standard, which
allows it to work equally well with Microsoft's Internet Information Server. With regard
to hardware requirements, I have personally witnessed PHP running on 100-MHz
Pentium machines running Slackware Linux and Windows NT, respectively.
Performance was fine for use as a personal development environment. A site expected to
receive thousands of requests a day would need faster hardware, of course. Although
more resources are needed when comparing a PHP-powered site to a flat HTML site, the
requirements are not dramatically different. Despite my example, you are not limited to
Intel hardware. PHP works equally well on PowerPC and Sparc CPUs.

When choosing an operating system, you have the general choice between Windows and
a UNIX-like OS. PHP will run on Windows 95 and 98, although these operating systems
aren't suited for high-traffic Web servers. It will also run on Windows NT and its
successor, Windows 2000. For UNIX operating systems, PHP works well with Linux and
Solaris, as well as others. If you have chosen a PPC-based system, such as a Macintosh,
you may choose LinuxPPC, a version of Linux. You may pursue the commercial
WebTen Web server that runs in the Macintosh OS. Chad Cunningham has contributed
patches for compiling PHP in Apple's OS X. In 1999 Brian Havard added support for
IBM's OS/2.

PHP still works best with the Apache Web server. But it now works very well with IIS. It
also compiles as a module for the fhttpd Web server. You can make PHP work with
almost any Web server using the CGI version, but I don't recommend this setup for
production Web sites. If you are using UNIX, I recommend compiling PHP as an Apache
module. If you are using Windows NT, pursue IIS.

Installation on Apache for UNIX

If you are using Linux, you can easily find an RPM for Apache and PHP, but this
installation may not include every PHP feature you want. I recommend this route as a
very quick start. You can always pursue compiling Apache and PHP from scratch later.
PHP will compile on most versions of UNIX-like operating systems, including Solaris
and Linux. If you have ever compiled software you've found on the Net, you will have
little trouble with this installation. If you don't have experience extracting files from a tar
archive and executing make files, you may wish to rely on your sysadmin or someone
else more experienced. You will need to have root privileges to completely install PHP.

The first step is to download the tar files and unpack them. The CDROM that
accompanies this book has recent versions of both PHP and Apache, but you may wish to
check online for the newest versions, <http://www.php.net/> and
<http://www.apache.org/>, respectively.

After unpacking the tar file, the first step is to configure Apache. This is done by running
the configure script inside the Apache directory:

IT-SC book 27

Core PHP Programming

./configure -prefix=/www

The script will examine your system and prepare a make file for Apache. The prefix
directive will cause a directory to be created in the root of your file system.

Next, configure and compile PHP:

./configure -with-apache=/usr/local/src/apache 1.3.9 -enable-track-vars
make
make install

This is done within the PHP directory. The -with-apache and -enable-track-vars
options are minimal. You might add -with-mysqgl if you have the MySQL database
installed. PHP can usually find the MySQL libraries on its own. Appendix E, "Compile-
Time Configuration" lists the compile-time configuration directives. Running make will
create the PHP library, and make install will prepare Apache for including the PHP
module. Notice that the call to configure includes a path to your Apache source code
directory. This can be a relative path, as you may have put the Apache source code
parallel to the PHP source code. However, do not make the mistake of using relative
paths for any of the other directives.

Next, you will need to reconfigure Apache and run make. Return to the Apache source
code directory and run configure again, this time with an option that tells Apache to
include the PHP module:

./configure -prefix=/www -activate-module=src/modules/php4/libphp4.a
make
make install

This will create a new make file and then run it. The new httpd binary will be installed in
the /www/bin directory, or wherever you specified the files should be installed.

To supply additional configuration options PHP uses a file called php.ini. This file
should reside in /usr/local/1ib, so copy it from the PHP source directory:

cp php.ini-dist /usr/local/lib/php.ini

It is not likely you will need to edit this file, but if you do, there are instructive comments
inside.

IT-SC book 28

Core PHP Programming

The last step is to associate a file extension with PHP. This is done by editing the
httpd.conf file. It can be found in Apache's conf directory, /www/conf/httpd.conf,
for example. Add the following line:

AddType application/x-httpd-php .php

This causes all files with the extension .php to be executed as PHP scripts. You may
choose another, such as phtml. You may also wish to insert index.php as a default
document. When the Apache server is started, it will process PHP scripts. The
documentation for Apache has hints for starting Apache automatically. If you have been
running Apache previously, you will need to restart it, not just use a kill -HUP
command.

Installation on IIS for Windows NT

The first step is to install PHP. You do not need to compile PHP for Windows. A binary
distribution is available on the Web site. Download the zip file and expand it wherever
you wish. I put mine in c: \php4. Next, copy the file php.ini-dist into your system root
directory, which is probably c:\winnt. Rename it php.ini. When PHP is invoked, it
looks first for php.ini in this directory. Although you don't need to, you may wish to
edit it to change configuration parameters, including automatically loading extensions.
Comments in the file explain the purpose of each configuration directive.

The next step is to make sure the required DLL files are in your path. One way is to copy
the two required files to your system directory, such as c:\winnt\system32.
Alternatively, you can click on the system icon in the control panel and add your PHP
directory to the system path.

You need to tell IIS that files ending with a particular extension, such as .php, should be
processed with PHP. IIS calls this process an ISAPI filter. Open the Management
Console that allows you to configure all aspects of IIS. One of the tabs for editing a Web
server allows you to edit ISAPI filters. Add one. You should call it PHP, and point to the
php4isapi.dll file, which should be with the rest of the files you installed with PHP.
This file is really small, but it loads the PHP core from another library, php4ts.dil.

Now that you've added the filter, you need to associate it with an extension. Look for the
home directory configuration button in the properties dialog. Add a new entry to the list
of application mappings. Choose .php for the extension, and find your php4isapi.dll
file again. Leave the text box labeled "method exclusions" blank, and check the script
engine checkbox.

The last step is to restart the Web server. Stopping it from the management console is not
sufficient. You must stop the service itself either from the command line with net stop
w3svc, or by using the services control panel. After stopping it, restart it.

IT-SC book 29

Core PHP Programming

Editing Scripts

PHP scripts are just text files, and you can edit and create them just as you would HTML
files. Certainly, you can telnet into your Web server and start creating files with vi. Or
you can create files with notepad and use £tp to upload them one by one. But these aren't
ideal experiences. One handy feature of newer editors is built-in FTP. These editors can
open files on a remote Web server as if they were on a local drive. A single click saves
them back to the remote Web server. Another feature you may enjoy is syntax
highlighting. This causes PHP keywords to be colored in order to help you read the code
faster.

Everyone has a favorite editor for PHP scripts. 1 use UltraEdit
<http://www.ultraedit.com/>. I know many Windows users prefer Macromedia's
Dreamweaver <http://www.macromedia.com/software/dreamweaver/> and Allaire's
HomeSite <http://www.allaire.com/products/homesite/> to edit PHP scripts. Quad
Systems offers a free package called phpWeave that allows Dreamweaver to build some
PHP scripts automatically <http://phpweave.quad-sys.com/>. The Macintosh users I
know prefer BBedit <http://www.barebones.com/products/bbedit/bbedit.html>.

On a UNIX operating system, you may prefer emacs or vi, of course. You might also
consider nEdit <ftp://ftp.fnal.gov/pub/nedit/>. A module for PHP is available in the
contrib directory. The topic of which editor is best appears frequently on the PHP mailing
list. Reading the archives can be amusing and informative <http://www.progressive-
comp.com/Lists/?|=php3-general>.

Algorithms

Whenever we interact with a computer, we are instructing it to perform some action.
When you drag an icon into the waste basket on your desktop, you are asking the
computer to remove the file from your hard disk. When you write an HTML file, you are
instructing the computer in the proper way to display some information. There are usually
many incremental steps to any process the computer performs. It may first clear the
screen with the color you specified in the body tag. Then it may begin writing some text
in a particular color and typeface. As you use a computer, you may not be entirely aware
of each tiny step it takes, but you are giving it a list of ordered instructions that you
expect it to follow.

Instructions for baking a cake are called a recipe. Instructions for making a movie are
called a screenplay. Instructions for a computer are called a program. Each of these is
written in its own language, a concrete realization of an abstract set of instructions.
Borrowing from mathematics, computer science calls the abstract instructions an
algorithm.

You may at this moment have in mind an algorithm that you'd like to implement. Perhaps
you wish to display information in a Web browser that changes frequently. Imagine
something simple, such as displaying today's date. You could edit a plain HTML file
once a day. You could even write out a set of instructions to help remind you of each

IT-SC book 30

Core PHP Programming

step. But you cannot perform the task with HTML alone. There's no tag that stands for
the current date.

PHP is a language that allows you to express algorithms for creating HTML files. With
PHP, you can write instructions for displaying the current date inside an HTML
document. You write your instructions in a file called a script. The language of the script
is PHP, a language that both you and the computer can understand.

What a PHP Script Looks Like

PHP exists as a tag inside an HTML file. Like all HTML tags, it begins with a less-than
symbol, or opening angle bracket (<) and ends with a greater than symbol, or closing
angle bracket (>). To distinguish it from other tags, the PHP tag has a question mark (?)
following the opening angle bracket and preceding the closing angle bracket. All text
outside the PHP tag is simply passed through to the browser. Text inside the tag is
expected to be PHP code and is parsed.

To accommodate XML and some picky editors such as Microsoft's Front Page, PHP
offers three other ways to mark code. Putting php after the opening question mark makes
PHP code friendly to XML parsers. Alternatively, you may use a script tag as if you were
writing JavaScript. Lastly, you can use tags that appear like ASP, using <% to start blocks
of code. Appendix D explains how these alternatives work. I use the simple <? and 2>
method for all my examples.

Listing 1.1 shows an ordinary HTML page with one remarkable difference: the PHP code
between the <? and the 2>. When this page is passed through the PHP module, it will
replace the PHP code with today's date. It might read something like, Friday May 1,
1999.

Listing 1.1 Printing Today's Date

IT-SC book 31

Core PHP Programming

3 Listing 1.1 - Microsoft Intemet Expl... |9 |=] B4

J File Edit View Favortes Tools H?*

Today's Date: Sunday May 07, 2000

gl*_ll*nl

@] Done |4 Intemet

<HTML>

<HEAD>

<TITLE>Listing 1.1l</TITLE>

< /HEAD>

<BODY=>

Today's Date: <? print(Date("1l F 4, Y")); ?=>
</BODY>

</HTML>

Whitespace, that is spaces, tabs, and carriage returns, is ignored by PHP. Used
judiciously, it can enhance the readability of your code. Listing 1.2 is functionally the
same as the previous example, though you may notice more easily that it contains PHP
code.

Listing 1.2 Reformatting for Readability

<HTML>
<HEAD>
<TITLE>Listing 1-2</TITLE>
</HEAD>
<BODY>
Today's Date:
<?
/%
** print today's date
*/
print (Date("1 ¥ d, Y"));
?>
</BODY>
</HTML>

You may also notice that in Listing 1.2 there is a line of code that begins with a slash
followed by an asterisk. This is a comment. Everything between the /* and the */ is

IT-SC book 32

Core PHP Programming

equivalent to whitespace. It is ignored. Comments can be used to document how your
code works. Even if you maintain your own code you will find comments necessary for
all but simple scripts.

In addition to the opening and closing comment statements, PHP provides two ways to
build a single-line comment. Double-slashes or a pound sign will cause everything after
them to the end of the line to be ignored by the parser.

After skipping over the whitespace and the comment in Listing 1.2, the PHP parser
encounters the first word: print. This is one of PHP's functions. A function collects code
into a unit you may invoke with its name. The print function sends text to the browser.
The contents of the parentheses will be evaluated, and if it produces output, print will
pass it along to the browser.

Where does the line end? Unlike BASIC and JavaScript, which use a line break to denote
the end of a line, PHP uses a semicolon. On this issue PHP takes inspiration from C.

The contents of the line between print and ; is a call to a function named date. The text
between the opening and closing parentheses is the parameter passed to date. The
parameter tells date in what form you want the date to appear. In this case we've used the
codes for the weekday name, the full month name, the day of the month, and the four-
digit year. The current date is formatted and passed back to the print function.

The string of characters beginning and ending with double quotes is called a string
constant or string literal. PHP knows that when quotes surround characters you intend
them to be treated as text. Without the quotes, PHP will assume you are naming a
function or some other part of the language itself. In other words, the first quote is telling
PHP to keep hands off until it finds another quote.

Notice that print is typed completely in lowercase letters, yet date has a leading
uppercase letter. I did this to illustrate that PHP takes a very lenient attitude toward the
names of its built-in functions. Print, PRINT, and PrInT are all valid calls to the same
function. However, for the sake of readability, it is customary to write PHP's built-in
functions using lowercase letters only.

Saving Data for Later
Often it is necessary to save information for later use. PHP, like most programming
languages, offers the concept of variables. Variables give a name to the information you

want to save and manipulate. Listing 1.3 expands on our example by using variables.

Listing 1.3 Assigning Values to Variables

IT-SC book 33

Core PHP Programming

3 Listing 1.3 - Microsoft Intemnet Explorer |9 [=] B3 I
J File Edt “iew Favoites Tools Help ‘

[
Today's Date:

Sunday May 07, 2000

Leon, you will be out 14 dollars this week.

o
&) Done ’_|_|Q Internet 7

<?
SYourName = "Leon";
$Today = date("1l F 4, Y");
SCostOfLunch = 3.50;
SDaysBuyingLunch = 4;
7>
<HTML>
<HEAD>
<TITLE>Listing 1-3</TITLE>
</HEAD>
<BODY>
Today's Date:
<?
/ *
** print today's date
*/
print("<H3>$Today</H3>\n");

/'ir
** print message about lunch cost
*/
print("S$YourName, yvou will be out ");
print ($CostOfLunch * $DaysBuyingLunch);
print(" dollars this week.
\n");

?>

</BODY>

</HTML>

The first block of PHP code puts values into some variables. The four variables are
YourName, Today, CostOfLunch, and DaysBuyingLunch. PHP knows they are variables
because they are preceded by a dollar sign ($). The first time you use a variable in a PHP

IT-SC book 34

Core PHP Programming

script, some memory is set aside to store the information you wish to save. You don't
need to tell PHP what kind of information you expect to be saved in the variable; PHP
can figure this out on its own.

The script first puts a character string into the variable YourName. As I noted earlier, PHP
knows it's textual data because I put quotes around it. Likewise I put today's date into a
variable named Today. In this case PHP knows to put text into the variable because the
date function returns text. This type of data is referred to as a string, which is shorthand
for character string. A character is a single letter, number, or any other mark you make by
typing a single key on your keyboard.

Notice that there is an equal sign (=) separating the variable and the value you put into it.
This is the assignment operator. Everything to its right is put into a variable named to its
left.

The third and fourth assignments are putting numerical data into variables. The value 3.5
is a floating-point, or fractional, number. PHP calls this type a double, showing some of
its C heritage. The value 4 in the next assignment is an integer, or whole number.

After printing some HTML code, another PHP code block is opened. First the script
prints today's date as a level-three header. Notice that the script passes some new types of
information to the print function. You can give string literals or string variables to
print and they will be sent to the browser.

When it comes to variables, PHP is not so lenient with case. Today and today are two
different variables. Since PHP doesn't require you to declare variables before you use
them, you can accidentally type today when you mean Today and no error will be
generated. If variables are unexpectedly empty, check your case.

The script next prints Leon, you will be out 14.00 dollars this week. The line
that prints the total has to calculate it with multiplication using the * operator.

Receiving User Input

Manipulating variables that you set within your script is somewhat interesting, but hardly
anything to rave about. Scripts become much more useful when they use input from the
user. When you call PHP from an HTML form, the form fields are turned into variables.
Listing 1.4 is a form that calls Listing 1.5, a further modification of our example script.

Listing 1.4 HTML Form for Lunch Information

IT-SC book 35

Core PHP Programming

/3 Listing 1.4 - Microsoft Internet Explorer

| Fie Edt View Favartes Tooks Help | @ |

Your Name: ILEDH
Cost of a Lunch: IE.?S

Diays Buying Lunch: |5
Compute

|@] Dore | |4 Intemet

N L

<HTML>

<HEAD>

<TITLE>Listing 1-4</TITLE>

< /HEAD>

<BODY>

<FORM ACTION="1-5.php" METHOD="post">

Your Name:

<INPUT TYPE="text" NAME="YourName">

Cost of a Lunch:

<INPUT TYPE="text" NAME="CostOfLunch">=

Days Buying Lunch:

<INPUT TYPE="text" NAME="DaysBuyingLunch">

<INPUT TYPE="submit" NAME="x" VALUE="Compute">
< /FORM>

</BODY>

</HTML>

Listing 1.4 is a standard HTML form. If you have dealt at all with CGls, it will look
familiar. There are three form fields that match up with the variables from our previous
example. Instead of simply putting data into the variables, we will provide a form and use
the information the user types. When the user presses the submit button, the script named
in the acTION attribute will receive the three form fields and PHP will convert them into
variables.

Listing 1.5 Computing the Cost of Lunch from a Form print

IT-SC book 36

Core PHP Programming

/3 Listing 1.5 - Microsoft Internet Explorer

J File Edit “iew Favoites Tools Help

Today's Date:
Sunday May 07, 2000
Leon, you will be out 42,75 dollars this week.

@] Done I_l_lﬂ Internet

(A

<?
$Today = date("1 F 4, Y");
7>
<HTML>
<HEAD>
<TITLE>Listing 1-5</TITLE>
< /HEAD>
<BODY>
Today's Date:
<?
’{*
** print today's date
*/
print({"<H3>$Today</H3>\n");
’{*
** print message about lunch cost
*f
print("S$YourName, you will be out ");
print($CostOfLunch * $DaysBuyingLunch);
print(" dollars this week.
\n");
P
</BODY>
</HTML=>

Notice that in the first segment of the PHP script, I have eliminated the lines setting the
variables, except for today's date. The rest of the script is unchanged. The script assumes
there will be data in the variables. Try experimenting with the scripts by entering
nonsense in the form fields.

One thing you should notice is that if you put words where the script expects numbers,
PHP seems to just assign them values of zero. The variables are set with a text string, and
when the script tries to treat it as a number, PHP does its best to convert the information.
Entering 10 Little Indians for the cost of lunch will be interpreted as 10.

IT-SC book 37

Core PHP Programming

Listing 1.6 Conditional Daily Message

<3 Listing 1.6 - Microsoft Internet Explorer |9 [=] B3

] File Edit WView Favoites Tools He ”ﬁ

E

Today is Sunday.

2] Done || 4 Intemet

<HTML>
<HEAD>
<TITLE>Listing 1-6</TITLE>
</HEAD>
<BODY>
<Hl=>
<?
/ ¥
** get today's day of the week
*/
$Today = date("1");

if ($Today == "Friday")
{
print ("Thank Goodness It's Friday!");

}

else

{
print("Today is S$Today.");
}
7>
</H1l>
</BODY>
< /HTML>

Choosing between Alternatives

PHP allows you to test conditions and execute certain code based on the result of the test.
The simplest form of this is the if statement. Listing 1.6 showshow you can customize the
content of a page based on the value of a variable.

The Today variable is set with the name of today's weekday. The if statement evaluates
the expression inside the parentheses as either true or false. The == operator compares the

IT-SC book 38

Core PHP Programming

left side to the right side. If Today contains the word Friday, the block of code
surrounded by curly braces ({ and }) is executed. In all other cases the block of code
associated with the e1se statement is executed.

Repeating Code

The last type of functionality in this brief introduction is looping. Looping allows you to
repeat the execution of code. Listing 1.7 is an example of a for loop. The for statement
expects three parameters separated by semicolons. The first parameter is executed once
before the loop begins. It usually initializes a variable. The second parameter makes a
test. This is usually a test against the variable named in the first parameter. The third
parameter is executed every time the end of the loop is reached.

The for loop in Listing 1.7 will execute three times. The initialization code sets the
variable count to be one. Then the testing code compares the value of count to three.
Since one is less than or equal to three, the code inside the loop executes. Notice that the
script prints the value of count. When you run this script you will find that count will
progress from one to three. The reason is that the third part of the for statement is adding
one to count each time through the loop. The ++ operator increments the variable
immediately to its left.

The first time through the loop count is one, not two. This is because theincrement of
count doesn't occur until we reach the closing curly brace. After the third time through
the loop, count will be incremented to four, but at that point four will not be less than or
equal to three, so the loop will end. Execution continues at the command following the
loop code block.

Listing 1.7 Today's Daily Affirmation

IT-SC book 39

Core PHP Programming

3 Listing 1.7 - Microsoft Internet Explorer
| Fle Edt View Favoites Iooks Help -

Today's Daily Affirmation

Eepeat three times:

1 I'm good enough, I'm smart enough, and, doggone it, people likke me!
2 I'm good enough, I'm smart enough, and, doggone it, people like me!
3 I'm good enough, I'm smart encugh, and, doggone 1t, people like me!

N

2] Done [e Intemet

<HTML >

<HEAD:>

<TITLE=Listing 1-7</TITLE=>

< /HEAD=>

<BODY>

<Hl>Today's Daily Affirmation</Hl=>
Repeat three times:«
»

<?

for(Scount = 1; Scount <= 3; Scount++])
{
print(*<B=>5count=/E> I'm good enough, ;*);
print(~"I'm smart enough, ~};
print({"and, doggone it, peocple like me!
'\n");
}

=
< /BODY>
< /HTML>

Conclusion

Hopefully this chapter has convinced you of the power of PHP. You have seen some of
the major features of the language and read arguments why PHP is better than its many
competitors. The rest of the book will look at PHP in more detail.

IT-SC book 40

Core PHP Programming

Chapter 2. VARIABLES, OPERATORS, AND
EXPRESSIONS

Everything in PHP is either an identifier or an operator. An identifier can be a function or
variable. An operator is usually one or two symbols that stand for some sort of data
manipulation like addition or multiplication. When identifiers and operators are
combined, they become an expression. This chapter introduces the concepts that form the
basis of all PHP code.

Identifiers

Identifiers give names to the abstract parts of PHP: functions, variables, and classes.
Some of them are created by PHP in the form of built-in functions or environment
variables. Others you create. Identifiers may be of any length and can consists of letters,
numbers, or underscores. The first character of an identifier must be either a letter or an
underscore. Table 2.1 contrasts acceptable identifiers with unacceptable ones.

Upper- and lowercase letters are recognized as different. That is, the variables UserName
and username are two distinct identifiers. The exception is built-in functions. As stated in
Chapter 1, "An Introduction to PHP," functions like print can be called as print if you
prefer.

Table 2.1. Acceptable and Unacceptable Identifiers

Acceptable Unacceptable
LastVisit Last!Visit
_password ~password
compute Mean compute-Mean
Lucky?7 TLucky

Variables, discussed in detail below, are always preceded by $. The side effect of this is
that a function and a variable can share a name. You may also create a variable with the
same name as a built-in function. Consider that this can be very confusing to anyone
reading your code, including you. You may never create a function with the same name
as a built-in function.

Data Types

PHP has three elemental types of data: integers, floating-point numbers, and strings of
text. Integers are sometimes referred to as whole or natural numbers; they contain no
decimal point. Floating-point numbers are sometimes called real numbers. They always
contain a decimal point, even when only a zero follows it. PHP refers to these as doubles,
which is short for double-precision floating-point numbers. Strings are collections of

IT-SC book 41

Core PHP Programming

textual data. String constants are always surrounded by double quotes (") or single quotes

(")

In addition to these, PHP has four aggregate data types that use the other three: arrays,
objects and booleans, and resources. An array is a collection of values associated with
indexes. Arrays are discussed in full in Chapter 5, "Arrays." Objects are similar to
arrays, but may also contain functions. They are discussed in Chapter 6, "Classes and
Objects." Boolean values are either true or false. Historically, PHP did not support a
separate type for booleans; instead zero and an empty string were understood to be false,
while any other value was considered to be a true value. With PHP 4, this changed. Now
data may be cast or set to be of boolean type. Resources are integers used to identify
system resources, such as open files or database connections.

As you write PHP code, you will usually be unaware of the distinction between types
because variables are multitype. You do not declare a variable to be a particular type.
You just assign it a value. PHP will remember what type of data you put into the variable.
When you retrieve data from the variable, they are returned with that same type.

There are two ways to override this behavior. The first way is to use the settype
function. This tells PHP that you want to start considering a variable to be a certain type.
The data associated with the variable will be converted to the new type. The alternative is
to use one of the type conversion functions or a cast. Consider Listing 2.1, which
contrasts settype, the type conversion functions, and casts.

Listing 2.1 Experimenting with Type Converstion

IT-SC book 42

Core PHP Programming

IT-SC book

43

Core PHP Programming

IT-SC bor

23 Listing 2.1 - Microsoft Intemnet ... |9 [=] B3

| Eile Edit View Favortes Took »

@] 0one | | 4D Intemet

Using settype
String: 60.5 degrees
Double: 60.5
Integer: 60

otring: 60

Using strval, intval, and doubleval

String: 60,5 degrees
Double: 60.5

Integer: 60

Ongmal: 60.5 degrees
Using casts

string: 60.5 degrees
Double: 60.5

Integer: 60

Ongmal: 60.5 degrees

=
/

<?

print ("Using settype
\n");
SAverageTemperature = "60.5 degrees";

print ("String:

shverageTemperature
\n");

settype($AverageTemperature, "double");

print ("Double:

ShverageTemperature
\n");

settype ($SAverageTemperature, "integer");

print ("Integer:

S$AverageTemperature
\n");

settype ($AverageTemperature, "string");

print ("String:

ShverageTemperature <BR=\n");

print ("Using strval, intwval, ");

print ("and doubleval
\n") ;
SAverageTemperature = "60.5 degrees";

print ("String:

")

print (strval (SAverageTemperature)) ;

print ("
\n")

print ("Double:

")

print (doubleval (SAverageTemperature)) ;

print ("
\n")

print ("Integer:

’

")

print (intval ($AverageTemperature)) ;

print ("<BR=\n")

print ("Original: ");
print (SAverageTemperature) ;

44

Core PHP Programming

When AverageTemperature is first used, PHP marks it internally as a string because it is
assigned the value of a string literal. Setting the type to be double causes the value to be
reevaluated. If you check the output, youwill notice that some information is lost as a
result. The text following the number is dropped off because it has no meaning in the
context of a floating-point number. Likewise, when the script sets the type to be integer,
the fractional part of the number is dropped. Even when we change the type back to
string, the previous information is gone.

In contrast to this, the use of the type conversion commands preserves the value of the
variable because it does the conversion on the fly. The data inside the variable are not
changed.

The settype function is described in full in Chapter 9, "Data Functions," as are the type
conversion functions intval, strval, and doubleval . Casts, identical in operation to
type conversion functions, take the form of preceding an expression with a datatype in
parentheses. Valid casts are (boolean), (integer), (string), (double), (array)
,and (object) . Arrays and objects are discussed in Chapters 5 and 6.

Another type of data sometimes discussed in this text is the bitfield. Rather than a data
type exactly, it is a way of viewing an integer. Instead of a single value, it is viewed as a
sequence of ones and zeroes. Bitfields are discussed later in this chapter in relation to
bitwise operators.

Variable Creation and Scope

Although you've seen variables in the previous pages, you may wonder what they are
exactly. Part of a computer is called RAM, or random access memory. This is a volatile
medium for storing information. That is, it all disappears when you shut off the machine.
The computer sees this memory as a long string of single characters, or bytes, each
numbered. In PHP, however, you cannot actually get to memory at this level. You must
use a variable. You provide a name, and PHP takes care of matching the name to physical
memory.

Listing 2.2 Experimenting with Scope

IT-SC book 45

Core PHP Programming

#J Listing 2.2 - Microsoft Int... 9 [=] B3

| Ele Edit View Favoites »

The city 15 Washington D.C..
The city 1s Sacramento.

The city 15 Salt Lake City.
The city 1s Washington D.C..

@[| [Intemet

<?

N

function printCity (SNameOfCity)

{
print ("The city is $NameOfCity.
\n"

}

function Californial()

{
Scapital = "Sacramento";
printCity($capital);

1

function Utah()

{
Scapital = "Salt Lake City";
printCity($capital);

}

function Nation()
{
global $capital;
printCity(Scapital);
}

Scapital = "Washington DC";

Nation();
Californial();
Utah();
Nation();

You do not need to let PHP know about a variable before you use it. Some languages like
C require you to declare every variable along with its type. This is because a specific
amount of memory needs to be set aside. But this is generally a problem associated with
compiled languages, not interpreted ones. The first time you use a variable in PHP, the
engine adds it to the list of variables it knows about and makes a best guess at what type
of data the variable holds.

The first place you use a variable establishes the scope—the range within the code in
which the variable may be seen. Every function you define has its own variable space.
That is, there are variables that exist just for that function, and they are invisible to all
other parts of your script. In addition there is a global scope for variables created outside
any function. In some programming languages global variables are visible inside
functions. This is not the case with PHP. When you create a function in PHP, you must

IT-SC book 46

Core PHP Programming

explicitly tell PHP you want a global variable to be present in the function. Listing 2.2
uses the metaphor of the United States to demonstrate.

The script sets up a function, printCity, that prints out the name of a city. It will be used
to show the contents of the variables named capital. Variables is plural because there
are actually three variables in the script named capital. One is global and the other two
are local to the california and utah functions.

When you run this script you will find that the cities are printed in the order Washington
DC, Sacramento, Salt Lake City, and Washington DC. Notice that even though we have
given capital a new value inside california, it is not the same variable we set to
Washington DC. The variables inside california and Utah exist within their own space
and are created and destroyed each time the functions are called.

It is important to remember that when you create a variable inside a function, it exists
only while that function is executing. Once execution finishes and control is passed back
the calling process, all the variable space for that function is cleaned up. Sometimes this
is not desirable; sometimes you want the function to remember the values of the variables
between calls. You could implement this by using global variables, but a more elegant
solution is to use the static command.

At the beginning of a function, before any other commands, you may declare a static
variable. The variable will then retain any value it holds, even after leaving the function.
You might wonder why you would ever need to do this. Suppose you'd like to build a
table where the rows alternate in background color. Listing 2.3 does just this.

Listing 2.3 Demonstrations of Static Variables

IT-SC book 47

Core PHP Programming

<} Listing 2.3 - Microsoft Internet Explorer

| Fle Edt VYiew Favotes Took Help

Row number 0
Eow number 1
Row number 2
Row number 3
Eow number 4
Eow number 5
Row number 6
Eow number 7
Eow number 8

Eow number 9

-

@] Done

B

|| [Intemet

<?

P>

function useColor()

{

}

ll,f*

** remember the last color we used
*/

static $ColorvValue;

/* choose the next color */
if ($ColorvValue == "#00FF00")

{
SColorValue = "#CCFFCC";

S$ColorValue = "#00FF0O0";

return($ColorValue);

print ("<TABLE WIDTH=\"300%">\n");
for(Scount=0; Scount < 10; Scount++)

{

}

.I'r*

** gat color for this row
*/

SRowColor = useColor();

.I'r*

** print out HTML for row

** get background color

*/

print ("<TR><TD BGCOLOR=\"SRowColor\"=>");
print ("Row number Scount</TD></TR>\n");

print ("</TABLE>\n") ;

IT-SC book

48

Core PHP Programming

Listing 2.3 will print out a table with 10 rows. Each row will alternate background colors
between an intense green and a lighter green. I have used this technique in a project
where I pulled data from a database and separated rows with alternating blue and green
lines. Instead of using background colors, I chose between single-pixel images that I
stretched to span the browser window.

There is another way a variable can appear in a function's variable space: as an argument.
Functions are described in detail in Chapter 4, "Functions," but by now you have noticed
functions with variables inside their parentheses. Take another look at Listing 2.2. The
printCity function takes an argument called nameOfCity. When the function is called,
the variable is set with the value passed in the function call. In all other respects the
variable is the same as other local variables.

Assigning Values to Variables

The equal sign (=) is used to set the value of a variable. This is called the assignment
operator. On the left side of the assignment operator is a variable that will receive a value.
On the right side is an expression, which could be a simple string constant or a complex
combination of operators, variables, and constants.

When you assign a value to a variable, its type will change to fit the type of data you put
into it. This is in contrast to C, which tries to convert values to fit the type of the variable.
Assigning an integer to a variable that previously held a string converts the variable to an
integer.

Table 2.2. Examples of Variables Assignments

String Constants Integer Constants Double Constants
SmyString = "leon"; SmyInteger = 1; SmyDouble = 123.456;
SmyString = "\n"; SmyInteger = -256; SmyDouble = -98.76eb5;

The simplest form of assignment is from a constant expression. This could be a number
or a string surrounded by quotes. Table 2.2 lists some examples.

By now you have probably noticed \n showing up in most of the examples. When a \
appears inside a string constant surrounded by double quotes, it has special meaning: Do
not print the next character. Instead the code stands for another character. This is so you
can override the special meaning of certain characters, or make certain characters more
visible. Strings surrounded by single quotes are treated literally. Any backslash codes are
ignored, except for escaping single quotes within the string. Table 2.3 lists some
backslash codes. The \n code stands for an end-of-line character.

Though it isn't strictly necessary, I use \n frequently. PHP allows you to create an entire
HTML page on a single line. This is acceptable to browsers, but it's very hard to debug

IT-SC book 49

Core PHP Programming

your PHP script. Put a linefeed where a linefeed would appear if you were coding the
page without PHP. You will spend less time picking through your output.

Related to backslash codes are embedded variables. You may write a variable inside a
string surrounded by double quotes, and its value will appear in its place. This even
works with arrays and objects. Listing 2.3 is an example of this technique. Notice that the
RowColor variable appears within a print statement between double quotes.

Table 2.3. Backslash Codes

Code Description
\" Double Quotes
AN\ Backslash Character
\n New Line
\r Carriage Return
\t Horizontal Tab
\x00 - \xFF Hex Characters

Borrowing from Perl, PHP also allows what are sometimes called "here docs". A special
operator allows you to specify your own string of characters that mean the end of a string.
This is helpful when you have large blocks of text that span multiple lines and contain
quotes. Backslash codes and variables are recognized inside the text block, just as they
are with string surrounded by double quotes. To mark an area of text, begin by using the
<<< operator. Follow it by the identifier you'll use to end the string. When that identifier
is found alone on a line, PHP will consider it equivalent to a closing quote character. The
identifier you choose must follow the same rules governing the naming of any other
identifier, as described above. It's customary to use HERE or EOD (end of data). See Listing
2.4 for an example.

Listing 2.4 HERE docs

IT-SC book 50

Core PHP Programming

/2 Listing 2.4 - Microsoft Internet Explorer
| Fie Edt View Favoites Tods Hep

"This text can contain both double quotes and single quotes”.
It's simple. Note that the line breal following the first HERE
and the one before the last HERE are not included in the string.
And PHP 15 smart enough to recognize that the line above was
not the real end of the string. You can also embed vanables and
backslash codes i this string. The only downside is that any
tabs or spaces you use to index the text will pass through, too.

|&] Done [[Intemet

N E

<7

Stext = <<< HERE
"This text can contain both double quotes
and single guotes®. It's simple.

Note that the line break following the

first HERE and the one before the last

HERE are not included in the string. And

PHP is smart enough to recognize that the
line above was not the real end of the string.

You can also embed wvariables and backslash
codes in this string.

The only downside is that any tabs or
spaces you use to index the text will
pass through, too.

HERE;

print("S$text\n");

Retrieving Values

To use the value stored in a variable, use it anywhere where a value is required, such as
the argument to a function or in an expression. For example, if you wish to print the value
to the browser, you can type print ($s) to print the value of a variable named s. You can
even set a variable with the value of another, such as $s = $t.

If a variable contains a string, you may refer to each character using square brackets.
Each character is numbered starting with zero. To refer to the seventh character in the s
variable, you would type $s[6]. This notation works both ways, in fact. You can set a
single character of a string with an expression like $s[6] ="x". Only the first character
of the value on the right-hand side will be used to replace the specified character. If the
variable on the left-hand side is not a string, it will be unchanged. Listing 2.5
demonstrates the use of square brackets to reference single characters.

Listing 2.5 Referencing a Single Character

IT-SC book 51

Core PHP Programming

2} Listing 2.5 |9 [=] B3
| Fle Edit ¥ ﬂ
[

|

4

a_string

D Internet
<?
//replace space with underscore
$s = "a string";
$s[1] = "_";
print ($s) ;

>

Freeing Memory

Each time you create a variable, system memory is set aside for it. Although there is a
limit to the memory available to any computer, you will rarely need to consider
conserving its use when programming in PHP. Your scripts are likely to use very small
amounts of data. And when your script finishes, the memory needed for variables is freed
for use by other processes.

I am simplifying the process somewhat. There are some ways in PHP to create memory
that persists longer than a single page load, and in modern operating systems physical
memory does not match one-for-one with a program's view of available memory. In most
cases you will be doing fine to consider that memory is a finite but abundant resource.

If you do run into memory shortages, or have some other reason for destroying a variable,
you use the unset statement. This statement completely removes a variable or an array
element from memory. The variable name itself will no longer be recognized. Paired with
this statement is the isset function discussed in Chapter 9. This function returns TRUE
when a variable exists.

Constants

Constants are similar to variables, but they may be set only once. Some of them are
created automatically by PHP; others you will create with the define function discussed
in Chapter 9. You do not use the dollar-sign operator to get the value of a constant, and a

IT-SC book 52

Core PHP Programming

constant may never be used on the left side of an assignment operator. Constants ignore
scope and are therefore visible inside functions without the use of the global statement.

Although it is not necessary, it is customary to name constants exclusively with capital
letters. This helps make them stand out in your script, as in Listing 2.6.

Listing 2.6 Using a Constant

2§ Listing 2.6 - ... [[=]E3
| Ele Edt Vier ”|

-
Hello, World! :|
40 Intemet Z
<7
define ("STANDARD GREETING", "Hello, World!"):

print (STANDARD_GREETING) ;

PHP creates several constants upon startup. PHP VERSION contains the version of PHP
running the script. TRUE is set to 1. FALSE is set to 0. pHP 0s describes the operating
system. E ERROR, E WARNING, E NOTICE, E PARSE, E ALL are for use with the
error reporting function. You can also use FILE and LINE to get the name
of the executing script and the line number, respectively. The value of pi is stored in the
constant M_PI. Some extensions create constants, too.

Operators

An operator is a symbol that tells PHP to perform a mathematical or logical operation.
Some operators expect two arguments, some only one. Most operators fall into three
categories: arithmetic, logical, and bitwise. There are some exceptions, however. Table
2.4 lists the arithmetic operators.

Table 2.4. Arithmetic Operators

Operator Operation It Performs
+ Addition
- Subtraction and Negation
* Multiplication
/ Division
% Modulo Division

IT-SC book 53

Core PHP Programming

++ Increment

- Decrement

Addition, subtraction, multiplication, and division are familiar concepts. They may be
applied to integers or doubles. Using a string with an arithmetic operator causes the string
to be converted to a number first. Modulo division returns the integer remainder of a
division. The - operator may also be used to swap the sign on a number or variable.

The increment and decrement operators are shorthand for adding or subtracting 1 from a
variable. You might remember that we used it in Listing 2.3 inside the for loop. You
may put an increment or decrement operator before or after a variable. If the variable is
within an expression, you will get one of two behaviors. If an increment operator
precedes the variable, the variable will be incremented prior to evaluation of the
expression; otherwise the variable isn't operated on until after the value of the expression
is computed. Listing 2.7 demonstrates this concept.

Listing 2.7 Comparing Preincrement to Postincrement

<?
SVisitorsToday = 1;
// prints 1
print ($VisitorsToday++) ;
// VisitorsToday is now 2
print ("
\n") ;
// prints 3
print (++$VisitorsToday) ;
print ("
\n") ;

?>

In this first print statement visitorsToday still contains the value 1 when it is printed,
because the increment operator isn't applied until after the expression is evaluated. In the
third print statement visitorsToday is incremented before the expression is evaluated;
therefore 3 is sent to the browser.

Logical and Relational Operators

Relational operators compare values and return either TRUE or FaLsSE. Logical operators
perform logical operations on TRUE and FALSE. Values used with a logical operator are
converted into booleans prior to being evaluated. For numerical values, zero will be
interpreted as FALSE, and other values will be TRUE. Empty strings are considered be
FALSE, and any nonempty string is TRUE. Table 2.5 lists the logical and relational
operators.

Table 2.5. Logical and Relational Operators

Operator | Operation Performed

IT-SC book 54

Core PHP Programming

< Is Less Than

> Is Greater Than

<= Is Less Than or Equal To

>= Is Greater Than or Equal To
== Is Equal To

I= Is Not Equal To

AND &6 And

OR || Or

XOR Exclusive Or

! Not

Notice that the equality operator is very similar to the assignment operator. That's
reasonable. One performs the action of making both sides equal; the right-side value is
copied to the variable on the left side. The other asks the question, "Are both sides
equal?" The inherent danger is that the two can be confused, and it is difficult to discover.
PHP will allow you to put an assignment inside the parentheses of an i f statement. If you
have an if statement that always seems to evaluate one way, check to make sure you
haven't typed = when you meant ==.

If you are unfamiliar with logical operations, refer to Table 2.6. The first two columns
enumerate all the possible combined values of p and g, which stand for relational
expressions. The other four columns show the results of performing a logical operation
on p and q.

Table 2.6. Truth Table for Logical Operators

p q pAND q PORq P XOR q p
false false false false false true
false true false true true true
true false false true true false
true true true true false false

You might have noticed in Table 2.5 two versions of the logical operators. For instance,
there is both ss and anp. Operationally, they are the same, but they differ in
precedence—a topic discussed at the end of this chapter. Aside from precedence, you are
free to use them interchangeably.

Bitwise Operators

A binary digit, which may be 1 or 0, is called a bit. Bitwise operators are similar to
logical operators, but where logical operators work on TRUE and FALSE, bitwise operators
view numbers from a binary perspective. When using logical operators, 1 and 10 are both
TRUE, but to a bitwise operator 1 looks like 0001 and 10 looks like 1010. A logical AND
of 1 and 10 results in TRUE. A bitwise AND of 1 and 10 results in 0. This is because each
bit of the two numbers is compared by a bitwise AND. Table 2.7 lists PHP's bitwise
operators.

IT-SC book 55

Core PHP Programming

See Table 2.8 for an example of a bitwise operation, which shows that (12 s 10) ==
Matching bits are operated on. In the rightmost position 0 and 0 are operated on with a
bitwise AND. The result is 0, so a 0 is put in this position of the result.

Bitwise operators are very useful in C, from which PHP takes inspiration, but you rarely
will need to use them in a PHP script. You will find some functions in the reference
chapters (8 through 14) that use bitfields.

Table 2.7. Bitwise Operators

Operator Operation Performed

& And

\ Or

Exclusive Or

~ One's Complement or NOT

>> Shift all bits to the right

<< Shift all bits to the left

Table 2.8. Bitwise AND of 12 and 10

1 0 0 (12)
& 1 0 1 0 (10)
0 0 0 (8)

Miscellaneous Operators

There are operators that don't fit into any of the previous categories: the concatenation
operator, the variable marker, the reference operator, and others. Table 2.9 lists them.

The concatenation operator is similar to the addition operator except that it joins two
strings. I find this operator indispensable. When issuing a print, it is convenient to
concatenate several strings. I also use the concatenation operator to build database
queries. Listing 2.8 is an example of doing this.

When variables were discussed earlier, it was shown that a dollar sign always precedes
the name of a variable. This is true whether the variable is global, local, or a function
argument. The operator can be taken to mean, "Use the value stored in the named
variable." If an ampersand precedes the dollar sign, it changes the meaning of the
operation to be, "Use the memory set aside to store the data for the variable." This is
similar to the new operator in C++ and other languages. This subtle difference is useful in
declaring and calling functions.

Table 2.9. Miscellaneous Operators

Operator Operation Performed

Concatenate

IT-SC book 56

Core PHP Programming

$ Reference a Variable

& Reference Variable Storage

-> Reference a Class Method or Property

=> Set Argument Default or Assign Array Element Index
@ Suppress Error Messages

? Tertiary Conditional Expression

{} Variable Embedded in a String

When a function is called with an argument, the value of the argument is passed to the
function and put into the special argument variable in the function declaration. If a
variable is used inside a function call, only the value of the variable is sent to the
function. If you choose to change the value of an argument, the original variable will be
unchanged.

However, if you put an ampersand before the dollar sign in a function declaration, the
function will expect a reference to a variable. Inside the function the argument acts like
an alias to the supplied variable; any change to the argument changes the variable named
in the function call. This behavior is discussed and demonstrated in Chapter 4.

Outside of functions, the ampersand allows you to make more than one variable point to
the same area of memory. This is like making an alias. Operations on either variable will
change the underlying memory, as demonstrated in Listing 2.9.

Listing 2.8 The Concatenation Operator

<?
SQuery = "SELECT LastName, FirstName "
"FROM Clients "
"WHERE Disposition = 'Pleasant' "
"ORDER BY LastName ";
print ($Query) ;
?>

Listing 2.9 The Reference Operator

IT-SC book 57

Core PHP Programming

4 Listing 2.9 ___ [M[=]

| Eile Edt ¥

Leon Atkinson
Leon Atlanszon

hd
) Intemet A

<?
Ss = "Leon";
St = &S$s;
St .= " Atkinson";
print ("$s
\n") ;
print ("$t
\n") ;
>

The dollar-sign operator may operate on the result of another dollar-sign operator. In the
simplest case a variable holds the name of another variable. This is shown in Listing 2.10

Note that { and } is used for grouping as the parentheses are used for numbers. This
eliminates the ambiguity that can arise when referencing arrays. It also allows you to
specify elements of multidimensional arrays inside strings. But even when not strictly
necessary, it's a good idea to use curly braces as I have in Listing 2.10. It's clear that I
mean to use a variable to name another variable here.

The dollar-sign operator is unique because it is executed when placed inside double
quotes. This allows you to avoid the extra code needed to break from a string to insert the
value of a variable. But dollar signs inside double quotes do not behave exactly like
dollar signs outside double quotes. When two or more dollar signs appear together, all but
the last will be treated as any other character with no meaning. To use one variable to
name another, use curly braces. Listing 2.10 demonstrates the subtleties of this
functionality.

The -> operator is used strictly to reference either methods or properties of classes, which
are discussed in Chapter 6. The left-hand side of the operator is the name of an

IT-SC book 58

Core PHP Programming

instantiated class; the right-hand side is the name of a function or variable inside the
class.

Listing 2.10 Using Variables to Name Variables

<?
//set variables
$var name = "myValue";
SmyValue = 123.456;
$array name = "myArray";
SmyArray = array(l,2,3);

//prints "123.456"
print ($$var name . "
\n");

//prints "SmyValue"
//perhaps not what you expect
print ("$$var name
\n");

//prints "123.456"
print ("${Svar name}
\n");

//prints "3"
print (${Sarray name}[2] . "
\n");
2>

The => operator is used in declaring arrays, discussed in Chapter 5. When creating an
array with the array statement, you may specify the index for an element with the =>
operator. The left-hand side of the operator is the index and the right-hand side is the
value. This operator is also used by the foreach statement in much the same way.

The > operator is equivalent to an if statement. It is called a tertiary operator, because it
takes three parameters: an expression that is evaluated to be TRUE or FALSE, an expression
that's evaluated if the first is true, and an expression that's evaluated if the first is false. A
complete discussion of the > operator appears in Chapter 3, "Control Statements."

The @ operator suppresses any error messages when it precedes an expression. Normally
when a built-in function encounters an error, text is sent directly to the browser.
Sometimes this is just warning text. If you want to suppress any error or warning
messages, place @ directly before the name of the function. You may also place @ before
an expression if you anticipate an error condition, such as division by zero. Error
messages may also be suppressed for all functions in a script with the error reporting
function.

Assignment Operators

There really is only one assignment operator, but PHP offers a handful of shortcut
operators for combining assignment with another operator. Table 2.10 lists all the
assignment operators.

IT-SC book 59

Core PHP Programming

All the assignment operators put a value into a variable. Specifically, they put a value on
the right side into a variable on the left side. You may not reverse the order. The
operators that combine another operator with an assignment operator operate on both the
right and left sides and then put the result in the variable on the left. Listing 2.11
demonstrates equivalent statements.

Table 2.10. Assignment Operators

Operator Operation Performed
= Assign right side to left side
+= Add right side to left side
-= Subtract right side from left side
*= Multiply left side by right side
/= Divide left side by right side
%= Set left side to left side modulo right side
&= Set left side to bitwise AND of left side and right side
= Set left side to bitwise OR of left side and right side
n= Set left side to bitwise XOR of left side and right side
.= Set left side to concatenation of left side and right side

Expressions

Expressions are combinations of identifiers and operators. In most cases, they are the
familiar formulas you learned about in high school algebra. They are executed from left
to right; some operators are processed before others, and you can use parentheses to force
an operation to occur before the rest of the expression. But since the expression may be a
mix of different data types, you must be aware of how types are converted.

Listing 2.11 Using Assignment Operators

<?
// this assignment
$Count = $Count + 1;
// 1s the same as this assignment
$Count += 1;
2>

Two general rules are at work when an expression is evaluated. First, some operators
work only on certain data types. Second, if the operation is on a mix of an integer and a
double, the integer will be converted to a double.

Most operators work on numbers. If you attempt to add a string, the string will be
converted to a number. The contents of the string will determine whether it becomes an
integer or a double. PHP will make a good attempt at converting your string to a number.
It will strip leading whitespace and it will strip off all characters after a string of digits. It
will even read doubles with an exponent. But if PHP can't decide on a reasonable
numerical value, it will treat your string as zero.

IT-SC book 60

Core PHP Programming

Listing 2.12 String/Number Conversion

<?
//1 + 1 ==
print ((1 + "1"™) . "
\n");
//1 + 2 == 3
print ((1 + "™ 2") . "
\n");
//1 + 3 == 4
print ((1 + "3extra stuff") . "
\n");
//1 + 4500000 == 4500001
print ((1 + "4.5e6") . "
\n");
//1 + 0 ==
print ((1 + "a7") . "
\n");
2>

Listing 2.12 is a good test of how PHP will convert strings to numbers. All the
commands will produce a number from the string, except the last. Since the string in the
last line begins with a letter, PHP gives up and treats it as zero. Notice that after the
addition the script uses a concatenation operator. This causes the integer created inside
the parentheses to be converted to a string for the purposes of printing. The concatenation
operator forces both sides to be treated as strings.

Listing 2.13 demonstrates the use of parentheses to force the order in which the
expression is evaluated. The first line evaluates to 17, the second to 35. In addition to
evaluation from left to right, operators execute in a specific precedence. For example,
multiplication is resolved before addition.

A programming language must order all its operators, but in practice it is difficult for the
programmer to keep it all straight. The best policy is to use parentheses to explicitly force
the precedence you want on complex expressions. Table 2.11 lists the operators in order
of precedence. Operators on the same line are of equal precedence, therefore falling back
to left-to-right precedence.

Listing 2.13 Using Parentheses

<?
print ((3 + 2 * 7) . "
\n");
print (((3 + 2) * 7) . "
\n");
2>
Table 2.11. Precedence of Operators
Highest []
0 {3
~ L ++ - -5 & @
(double) (integer) (string) (array) (object)
* / %

+ - .

IT-SC book 61

Core PHP Programming

<< >>

< > <= >=

Lowest

IT-SC book

62

Core PHP Programming

Chapter 3. CONTROL STATEMENTS

Control statements allow you to execute blocks of code depending on conditions. They
also allow you to repeat a block of code, which leads to simpler, more efficient scripts.
This chapter will introduce you to the decision-making statements if and switch. You
will also learn about loops using for and while.

True and False

As you remember from Chapter 2, PHP has the concepts of true and false. Zero and an
empty string are considered to be false. Any other numerical value or string is true. These
concepts were discussed in regard to relational operators, but they are also used in control

statements. Control statements like if expect a boolean value, so any value they are
given will be converted to a boolean.

The i Statement

Figure 3-1 lays out the form of an i £ statement.

Figure 3-1. The form of an if statement.

if (expressionl)
{
This block gets executed if expressionl is true.
}
alseif (expression?)
{
This block gets executed if expressionl
is false and expression 2 is true,.
}
alsa
{
This block gets executed if both expressionl
and expression? are false,
}

The if statement executes a statement if the expression inside the parentheses evaluates
to true; otherwise the code is skipped. It may be a single statement followed by a
semicolon. Usually it's a compound statement surrounded by curly braces. An else
statement may appear immediately after the statement and has a statement of its own. It,
too, may be either single or compound. It is executed only when the previous expression
is false. In between an if statement and an else statement you may put as many elseif
statements as you'd like. Each elseif expression is evaluated in turn, and control skips
past those that are false. If an elseif statement evaluates to true, then the rest of the

IT-SC book 63

Core PHP Programming

code in the greater if statement is skipped. That is to say, only one match will be made.
Listing 3.1 demonstrates an i f-elseif-else Statement.

Of course, you are not obligated to have an elseif or an else. Sometimes you might
want to build a very simple i f statement as in Listing 3.2.

You can use if to build a series of checks that covers all possible cases. Just start by
checking for the first condition with an i f; then check for each following condition with
an elseif. If you put an else at the end, you will have accounted for all possible cases.
Listing 3.3 uses this method to print the day of the week in German. The script gets
today's name and then compares it to the days Monday through Saturday. If none of these
match, it is assumed to be Sunday.

Listing 3.1 An if-elseif-else Statement

<?
if ($name == "")

{

print ("You have no name.");

}

elseif ((Sname == "leon") OR ($Sname == "Leon"))

{
print ("Hello, Leon!");

}

else

{

print ("Your name is 'Sname'.");

}

2>
Listing 3.2 A Simple if Statement

<?
if(date("D") == "Monﬂ)
{
print ("Remember to put the trash out.");

}

2>
The » Operator

PHP offers an abbreviated version of the if statement which borrows syntax from C. It
uses the question mark as a tertiary operator. Figure 3-2 outlines the format.

Figure 3-2. The ? operator.

conditional expression ? true expression : false expression:

IT-SC book 64

Core PHP Programming

Listing 3.3 Covering All Cases with if-elseif-else

IT-SC book

65

Core PHP Programming

IT-SC book

66

Core PHP Programming

% Listing 3.2 - Microsoft Intemet Explorer

| Ele Edt View Favoites TIools Help

German Lesson: Day of the Week

In English: Sunday.
In German: Sonntag.

R

@] Done || Intemet

<7
ll,ft
** Get today's weekday name
*
Senglish_Day = date("1l");
,l'f*
** Find the today's German name
w7
if (Senglish_Day == "Monday")
{
Sdeutsch_Day = "Montag™:
}
elseif (Senglish_Day == "Tuesday")
{
Sdeutsch_Day = "Dienstag";
1
elseif ($english_Day == "Wednesday")
{
sdeutsch_Day = "Mittwoch";
}
elseif (Senglish_Day == "Thursday")
{
Sdeutsch_Day = "Donnerstag”;
1
elseif ($english_Day == "Friday")
{
$deutsch_Day = "Freitag";
}
elseif (Senglish_Day == "Saturday")
{
Sdeutsch_Day = "Samstag";
}
else
{
S/ It must be Sunday
Sdeutsch_Day = "Sonntag";
IT-SC bo
‘I.'*

=% Print today's English and German names

-+

Core PHP Programming

The conditional expression is evaluated to be either true or false. If true, the expression
between the question mark and the colon is executed. Otherwise, the expression after the
colon is executed. The following code fragment

(SclientQueue > 0) ? serveClients() : cleanUp();

does the same thing as

if (SclientQueue > 0)
serveClients () ;
else
cleanUp() ;

The similarity is deceiving. Although the abbreviated form seems to be equivalent to
using if-else, at a deeper level it is not. As I said, 2 is an operator, not a statement. This
means that the expression as a whole will be evaluated. The value of the matched
expression takes the place of the » expression. In other words, something like

print (true ? "it's true" : "it's false");

is a valid statement. Since the conditional expression is true, the line will be transformed
into

print ("it's true");

which is something you can't do with an i f statement.

The 2 operator can be confusing to read and is never necessary. It wouldn't be bad if you
never used it. On the other hand it allows you to write very compact code.

The switch Statement
An alternative to if-elseif-else structures is the switch statement, which works on

the assumption that you compare a single expression to a set of possible values. Figure 3-
3 demonstrates the structure of a switch statement.

IT-SC book 68

Core PHP Programming

Figure 3-3. The switch statement.

switchiroot-expression)

{
case case-expression:
default:

The root expression inside a switch statement is evaluated and then compared to each
expression following a case statement. At the end of the list of cases you can put a
default statement that works exactly like an e1se statement; it matches if no other case
matches.

Notice that cases don't have curly braces after them. This reveals an important difference
between if and switch. When an if block matches and is executed, control skips to the
end of the entire if statement. In Listing 3.3, if today is Tuesday, deutsch Day is set to
Dienstag, and control jumps down to after the closing curly brace closing the else
block.

A case statement serves as a starting point for execution. The root expression is
compared to each case expression until one matches. Each line of code after that is
executed. If another case statement is reached, it is ignored. Sometimes this is useful, but
most often a break statement is used to escape from the switch statement.

Take a look at Listing 3.4. I've recoded Listing 3.3 using a switch statement. The best
argument for using switch is that it can be much easier to understand. Since PHP allows
you to compare strings, the switch statement

Listing 3.4 Covering All Cases with switch

<?
/*
** Get today's weekday name
*/
Senglish Day = date("1");
/* -
** Find the today's German name
*/
switch ($english Day)
{
case "Monday":
$deutsch Day
break;
case "Tuesday":
$deutsch Day
break;
case "Wednesday":
$deutsch Day = "Mittwoch";
break;
case "Thursday":

"Montag";

"Dienstag";

IT-SC book 69

Core PHP Programming

$deutsch Day = "Donnerstag";
break;
case "Friday":
$deutsch Day = "Freitag";
break;
case "Saturday":
$deutsch Day = "Samstag";
break;
default:
// It must be Sunday
$deutsch Day = "Sonntag";
}
/*
** Print today's English and German names
*/

print ("<H2>German Lesson: Day of the Week</H2>\n");
print ("In English: Senglish Day.
\n");
print ("In German: $deutsch Day.
\n");

?>

is much more useful than in other languages. If you have experience with BASIC, you
might wonder if PHP's switch statement allows cases to contain ranges. It doesn't. It's
probably best to code this situation with an i f-elseif-else statement.

Loops

Loops allow you to repeat lines of code based on some condition. You might want to read
lines from a file until the end is reached. You might want to print a section of HTML
code exactly ten times. You may even wish to attempt to connect to a database three
times before giving up. You can do all of these things with loops.

The while Statement

The simplest of loops is the while statement. When first reached, the expression is
evaluated. If false, the code block is skipped. If true, the block is executed and then
control returns to the top where, again, the expression is evaluated. Figure 3-4 shows the
structure of a while statement.

Figure 3-4. The while statement.

whilelexpression)

{
Zero or more statements

}

A while loop is useful when you aren't sure exactly how many times you will need to
iterate through the code—for example, when reading lines from a file or fetching rows
from a database query. For the sake of a simple demonstration, let's examine some code
that prints the days of the week between now and Friday.

IT-SC book 70

Core PHP Programming

The while loop in Listing 3.5 tests that the date stored in currentbate is not a Friday. If
it is, then the loop will be finished, and execution will continue after the closing curly
brace. But if the current date is not a Friday, then a list item with the name of the day is
printed and currentDate is advanced 24 hours. At that point, the end of the code block is

reached, so control jumps back to the beginning of the loop.

Listing 3.5 Using while to Print Day Names

IT-SC book 71

Core PHP Programming

<3 Listing 3.5 - Microsoft. ..

| Fie Edt View Favoi “|-

Days left before Friday:

Sunday
Monday
Tuesday
Wednesday
Thursday

o RO

N

|4 Intemet

<7
J.l'!'
** gat the current date in number of seconds
*/
ScurrentDate = time();
J,f*
** mrint some text explaining the output
*)
print("Days left before Friday:\n");
print("<0L>\n") ;
while(date("1l", ScurrentDate) != "Friday")
{
l',l'i'
** mrint day name
*/
print("=" . date("l", ScurrentDate) . "\n"):
.I'r*
** add 24 hours to currentDate
*/
ScurrentDate += (60 * 60 * 24);
}
print("</0L=\n");
P>

Again the current date is tested for being a Friday. Eventually, currentDate will be a
Friday and the loop will end. But what if I had done something silly such as comparing
the current date to "workday"? There is no weekday with that name, so the expression
will always be true. That is, date ("1", $currentDate) != "Workday" must always be

IT-SC book 72

Core PHP Programming

true. The result is a loop that goes on forever. I might as well write it as while (true)
and make it very clear.

When a loop continues with no end, it's called an infinite loop. If you find your page
loading forever and ever, you may have accidentally written an infinite loop. At times,
you may intentionally create an infinite loop but stop execution somewhere in the middle
of the code block. This is accomplished with the break statement.

The break Statement

When a break statement is encountered, execution jumps outside the innermost loop or
switch statement. You've seen that this is essential to the usefulness of switch
statements. It also has some application for loops. There are cases when you need to
leave a loop block somewhere in the middle. Listing 3.6 shows this in action.

Listing 3.6 Leaving a Loop Using break

<?
while (true)

{
print ("This line is printed.");
break;
print ("This line will never be printed.");

}
7>

The continue Statement

The continue statement is similar to the break statement except that instead of stopping
the loop entirely, only the current execution of the loop is stopped. Control is returned to
the closing curly brace and the loop continues. Inside for loops, described below,
increments will occur just as if control had reached the end of the loop otherwise.

As you might imagine, this function is used to skip parts of a loop when a condition is
met. Listing 3.7 demonstrates this idea. Random numbers are generated inside a loop
until ten numbers, each greater than the previous, are produced. Most of the time the
body of the loop is skipped due to the i f statement that triggers a continue statement.

Listing 3.7 The continue Statement

IT-SC book 73

Core PHP Programming

IT-SC book

74

Core PHP Programming

3 Listing 3.7 - ... |M[=] B3
| Fle Edt View ”\ﬁ
il
19
58
74
82
a7
9%
100
100
100 |
100 ~]
Hﬁ Internet 7
<?
J,."*‘
** get ten random numbers,
** gach greater than the next
*/
//seed random number generator
srand(time()) ;
//init wvariables
$count = 0;
Smax = 0:
//get ten random numbers
while($Scount < 10)
{
Svalue = rand(1,100);
//try again if Svalue is too small
if (5value < Smax)
{
continue;
IT-SC bo }
Scount++;

. I .

Core PHP Programming

The do. . .while Statement

You can delay the decision to continue executing a loop until the end by using a
do...while statement. Listing 3.8 retools Listing 3.7. You won't notice a difference
unless you run the script on a Friday. On Fridays the original will print nothing in its list
of days. The new version will put Friday in the list because the body of the loop is
executed before currentbate is tested. By switching to a do...while loop, the loop
now lists the days until next Friday.

Listing 3.8 Using do. . .while to Print Day Names

<?
/*
** get the current date in number of seconds
*/
ScurrentDate = time () ;
/*
** print some text explaining the output
*/
print ("Days left before next Friday:\n");
print ("\n") ;
do
{
/*
** print day name
*/
print ("" . date("1", S$currentDate) . "\n");
/*
** add 24 hours to currentDate
*/
ScurrentDate += (60 * 60 * 24);

}
while (date("1", S$currentDate) != "Friday");
print ("</0L>\n") ;

2>

The for Statement

Strictly speaking, the for loop is unnecessary. Any for loop can be implemented as
easily as a while loop. What for offers is not new functionality, but a better structure for
building the most common loops. Many loops involve incrementing a counter variable
every time through the loop, iterating until some maximum is reached.

Imagine that you wanted to step through the numbers 1 through 10. Using while, you
would first set a variable to be 1. Then you would make a while loop that tests if your
counter is less than or equal to 10. Inside the code block you would increment your
counter, making sure you do this as the last statement in the block.

IT-SC book 76

Core PHP Programming

The problem is that it is very easy to forget to put the increment in. The result is an
infinite loop. The for loop puts all this functionality in one place. Inside the for
statement you give it three things: an initialization statement, a boolean expression, and
an increment statement. Figure 3-5 defines a for loop.

Figure 3-5. The for statement.

for{initialization; continue; increment)
{

Zero or more statements
1

When first encountered, the initialization statement is executed. This traditionally takes
the form of assigning a variable to be 0 or 1. Then, as with a while statement, the
boolean expression is evaluated. If FALSE, control jumps to just after the code block.
Otherwise, the code block is executed. Before the boolean expression is evaluated again,
the increment statement is executed. This puts all the information needed for running the
loop in one place and forces you to think about all the steps. Listing 3.9 is a very simple
for loop but is typical in form.

Listing 3.9 A Typical for Loop

IT-SC book 77

Core PHP Programming

3 Listing 3.9 -.. JM[=] B3

| e edt v 2N

=

counter 1s 1
counter 15 2
counter 15 3
counter 15 4
counter 15 5
counter 15 &
counter 15 7
counter 15 &
counter 15 9 —
counter 15 10 |

v/

Q Intemet

<?
for (Scounter = 1; Scounter <= 10: Scounter++)

{

print ("counter is Scounter<BR=>\n");

Most for loops look like Listing 3.9. They use a counter that increments by one each
time through the loop. However, the for statement is not particular about what you put in
the three slots. You can use more complex expressions if you wish. The initialization slot
allows a comma-separated list of assignments. This can be used to assign values to two or
more variables. You may also leave a slot blank. Listing 3.10 converts the code in Listing
3.6 into a for loop. I've added line breaks to the for statement to keep the code from
wrapping. It also makes it easier to see the three parts. Although the for statement is
longer and looks more complicated, it really is no different from the simple example in
Listing 3.9. A variable, in this case currentDate, is set to some initial value. That value
is used to test for an end condition. And the value is incremented by the number of
seconds in a day instead of just one.

Listing 3.10 Using for to Print Day Names

IT-SC book 78

Core PHP Programming

/*
** print some text explaining the output
*/
print ("Days left before Friday:\n");
print ("\n") ;
for (ScurrentDate = date ("U");
date("1", S$currentDate) != "Friday";
ScurrentDate += (60 * 60 * 24))

/*
** print day name

*/

print ("" . date("1", S$ScurrentDate) . "\n");

}
print ("</0OL>\n") ;
2>

The foreach Statement

I must discuss the foreach statement here, although it is used with arrays, which are
discussed in Chapter 5. An array is a collection of values referenced by keys. The
foreach statement retrieves values from an array, one at a time. Like other looping
structures, the foreach statement may have a simple or compound statement that's
executed each time through the loop. Figure 3-6 shows the structure of a foreach
statement.

Figure 3-6. The foreach statement.

foreachlarray as key=>value)
{

Zero or more statements
}

The foreach statement expects an array, the keyword as, and a definition of the
variables to receive each element. If a single value follows as, such as foreach ($array
as $value), then with each turn of the loop, the variable named value will be set with
the value of the next array element. You may capture the index of the array element if
you form the foreach statement like foreach ($array as S$key=>$value). Kﬁep this
statement in mind and [will revisit it in Chapter 5.

exit, die, and return

Like break, the exit statement offers a way to escape from execution, but the exit
statement stops all execution. Not even text outside of PHP tags is sent to the browser.
This is useful when an error occurs and it would be more harmful to continue executing
code than to just abort. This is often the case when preparing database queries. If the SQL
statement cannot be parsed, it makes no sense to try to execute it.

IT-SC book 79

Core PHP Programming

The die statement is similar to exit, except that it may be followed by an expression that
will be sent to the browser just before aborting the script. Using the fact that
subexpressions in an if statement are evaluated left to right and only as necessary, the
idiom in Listing 3.11 is allowed. Notice the parentheses around the string to be printed
when the open fails. They are required.

Listing 3.11 Idiom for Using the die Statement
Sfp = fopen("somefile.txt", "r") OR die("Unable to open file");

You will learn about the more traditional use of the return statement in Chapter 4, but
there is an unusual use of return offered by PHP when a script uses the include
function, described in Chapter 7. If called outside of a function, the return statement
stops execution of the current script and returns control to the script that made a call to
include. That is, when a script uses the include function, the included script may return
prematurely. If you use return in a script that was not invoked by include, the script
will simply terminate as if exit were used.

I admit this is a strange concept, and it probably deserves to have its own name instead of
sharing one with the statement for returning from functions. On the other hand, in certain
special cases, it allows for tidy code. One example is to avoid including a file twice, as
described in Chapter 20.

Evaluation of Boolean Expressions

The conditional statements in this chapter may be compound expressions, of course. PHP
will evaluate an expression only to the point of determining its ultimate value. The classic
situation is an expression that uses the or operator. PHP first evaluates the left side of the
or operator. If this subexpression is true, then there is no need to proceed. The entire
expression will be true. This can lead to unexpected functionality if you are embedding
function calls or assignment statements in your boolean expressions, but this isn't a good
idea anyway. However, there are ways to take advantage of this behavior. An example is
testing for something that should be true and calling an error-handling routine on the right
side of an or statement.

IT-SC book 80

Core PHP Programming

Chapter 4. FUNCTIONS

Declaring a Function

The return Statement

Scope and the global Statement
Arguments

Recursion

Dynamic Function Calls

You probably have noticed the use of several functions in the preceding chapters. pate
and print are built-in functions that are always available for you. PHP also allows you to
declare your own functions.

Functions expand the idea of repeating a block of code. They allow you to execute a
block of code arbitrarily throughout your script. You declare a block of code as a function
and then you are able to call the function anywhere. When calling a function, you pass
any number of arguments, and the function, returns a value.

Declaring a Function

When you declare a function, you start with the function statement. Next comes a name
for your function. Inside the parentheses is a list of arguments separated by commas. You
may choose to have no arguments. Figure 4-1 shows you the form of a function
declaration.

Figure 4-1. Declaring a function.

function function_name{arguments)

{

code block

}

In other languages, including older versions of PHP, you must declare a function above
any call to it. This is not true of PHP 4. You may put a function declaration after calls
made to it. When you call a function, you write its name followed by parentheses, even if
there are no arguments to pass.

Functions allow you to put together a block of code that you will repeat several times
throughout your script. Your motivation may be to avoid typing identical code in two or
more places, or it could be to make your code easier to understand. Consider Listing 4.1.
It declares a function called printBold that prints any text with bold tags around it.

IT-SC book 81

Core PHP Programming

Listing 4.1 A Simple Function

2} Listing 4.1 - Micro... [M[=] 3
| Fie Edt View Fc”

.
This Line 15 not Bold
This Line 1s Bold
This Line 15 not Bold ll
4D Intemet 4
=7
function printBold(SinputText)
{
print("<B=" . SinputText . "");
}
print ("This Line is not Bold
\n");
printBold("This Line is Bold");
print ("
\n") ;
print ("This Line is not Bold
\n"):
P

The return Statement

At some point a function will be finished, ready to return control to its caller. This
happens, for example, when execution reaches the end of the function's block of code.
Execution then picks up directly after the point where the function was called. Another
way to stop execution of the function is to use the return statement.

You may have multiple return statements in your function, though you have to consider
how this reduces the readability of your code. Multiple return statements can be a
barrier to understanding the flow of execution. Ideally functions should have one way in
and one way out. In practice there are cases when multiple return statements are
acceptable.

IT-SC book 82

Core PHP Programming

If you follow return with an expression, the value of the expression will be passed back.
Listing 4.2 demonstrates this idea by taking a string and returning it wrapped in bold
tags.

Listing 4.2 A Simple Function Using return

<?
function makeBold ($inputText)
{

SboldedText = "";
SboldedText .= $inputText;
SboldedText .= "";

return ($boldedText) ;
}

print ("This Line is not Bold
\n) ;
print (makeBold ("This Line is Bold") . "
\n");
print ("This Line is not Bold
\n");

2>

Scope and the gloval Statement

As discussed in Chapter 2, variables inside a function exist inside a name space separate
from the global name space. Variables inside a function are private property and may
never be seen or manipulated outside the function. However, there are two ways a
function may access variables in the global scope: the global statement and the GLoBALSs
array.

The global statement brings a variable into a function's name space. Thereafter the
variable may be used as if it were outside the function. Any changes to the variable will
persist after execution of the function ceases. In the same way, it is possible to refer to
global variables through the array crosaLs. The array is indexed by variable names, so if
you create a variable named userName you can manipulate it inside a function by writing
SGLOBALS ["userName"].

Also noted in Chapter 2 is the idea of static variables. If a variable is declared to be
static, it retains its value between function calls. Listing 2.3 demonstrates the use of static
variables.

Arguments

When declaring a function, you may declare arguments inside the parentheses, each
separated by a comma. The arguments must be preceded by a dollar sign. They become
variables inside the function. When the function is called, it expects values to be passed
that will fill the arguments in the order declared.

Arguments, by default, copy the passed value into the local variable. If the variable is
preceded by the s operator, the variable instead becomes an alias for the passed variable.

IT-SC book 83

Core PHP Programming

This is commonly referred to as a variable reference. Changes made to referenced
variables change the original.

To demonstrate this idea, imagine we wanted a function that stripped commas from
numbers. That way if we got something like "10,000" from an input field we would know
it was ten thousand, not ten. We could build the function by passing a string and returning
it with the commas removed. But in this case we want to just pass the variable and have it
be changed. Listing 4.3 demonstrates this functionality.

It is also possible to make an argument optional. Many built-in functions provide this
functionality. The date function is one you should be familiar with by now. You can pass
one or two arguments to date. The first argument is the format of the return value. The
second argument is the timestamp, a date expressed in seconds since January 1, 1970. If
the second argument is omitted, the current time is used.

You do this in your own functions by providing a default value using the = operator
immediately after the argument. The right side of = is a literal value that the variable will
be assigned. See Listing 4.4. Since arguments are matched up left to right, you must
provide a default value for every argument after the first with a default value.

Listing 4.3 Passing Arguments by Reference

<?
function stripCommas (&SinputString)

{
$inputString = ereg replace(",", "", $inputString);
}

SmyNumber = "10,000";

stripCommas (SmyNumber) ;
print ($SmyNumber) ;
?>

You may set an argument to be unset by default by making it equal to NULL, a special
constant. Listing 4.5 demonstrates this functionality.

Other than named arguments, you may also access arguments by their position using
three functions, func get arg, func get args, func num args. These functions
are described in Chapter 8. You may either fetch one argument at a time using
func get arg, or fetch them all as an array using func get args. To find out how
many arguments were passed, use func num args. There is an implication lurking here.
Calling a function with a number of arguments different from the prototype is not an
error unless you write your function that way.

Listing 4.4 Arguments with Default Values

<?
function printColored ($Text, $Color="black")
{

IT-SC book 84

Core PHP Programming

print ("$Text") ;
}

printColored("This is black text");
print ("
\n") ;

printColored ("This is blue text", "blue");

print ("
\n") ;
2>

Listing 4.5 Using unset with a Default Argument

2l Listing 4.5 - Mi... [M[=]E3
| e e veo NSl
E

Normal
Huge

4|
4

[Intemet

<7
function myPrint (Stext, S$size=NULL)
{
if(isset(3s5ize))
{
print ("S5texXt")

print(Stext);

myPrint {"Test");
print{"
“n");

myPrint {"Test", 5);
print{"
“n");
-

You might wonder why you'd ever want to pull arguments out using the functions
mentioned above instead of naming them in the declaration. It's possible that you do not
know how many arguments you will be given. Consider a function that creates a list,
given any number of items. You could first place those items in an array, then pass the

IT-SC book 85

Core PHP Programming

array to the function, which in turn would pull the items out of the array. Alternatively,
you could write a function that accepted a variable number of arguments, as I have in

Listing 4.6.
Listing 4.6 Function with Variable Number of Arguments

<?
function makeList ()

{
print ("\n") ;

for ($i=0; $i <func num args(); S$i++)
{
print ("" . func get arg($i) . "\n");

print ("</0L>\n") ;
}

makeList ("PHP", "MySQL", "Apache");
2>

Recursion

Your functions may make calls to other functions, and they may also make calls to
themselves. The process of a function calling itself is recursion. This circular definition
usually leads to elegant algorithms. The problem is broken down into a small task that's
repeated many times.

Recursive definitions are common in mathematics. Consider this definition of an integer:
the sum or difference between one and any other integer, with one being an integer. Is
three an integer? Yes, because one plus one must be an integer, which is two. And the
sum of one and two must also be an integer.

Recursion is a difficult concept to understand, but it usually leads to clearcode. Take a
look at Listing 4.7. The function checkInteger takes a number as input. We know that
the difference between an integer and one is an integer. So if the function gets a number
bigger than one, it simply checks the number minus one. If we start out with a number
less than zero, we multiply it by negative one and check it. Eventually we will reach one
or a number between zero and one, unless we are passed zero, which is an integer.

Listing 4.7 Using Recursion

IT-SC book 86

Core PHP Programming

IT-SC book

87

Core PHP Programming

Y Listing 4.7 - M. !EIEE
| Ele Edt View >

_ =
Is 0 an mteger? yes

Is 7 an mteger? ves

And 357 no

What about -37 yes

And -5 27 no

£z

oD Inteinet p

<7
function checkInteger ($Number)
{
if (SNumber = 1)
{
f/ integer minus one is still an integer
return(checkInteger ($Number-1}};
}
elseif ($Number < 0)
{
.I'r*
** numbers are symmetrical, so
** check positive version
*/
return (checkInteger((-1) *$Number-1));

1
else
{
if((SNumber > 0) AND (SNumber < 1))
{
return({"no");
1
else
{
_I,I"P'
** zero and one are
** integers by definition
®f
return("yes");
}
}

}
print("Is 0 an integer? "

checkInteger (0) . "
\n");
print("Is 7 an integer? "

checkInteger (7) . "<BR=\n");
print{"aAnd 3.57? " . checkInteger(3.5) . "<BR=\n"};
print ("what about -57 " . checkInteger(-5) . "<BR=\n");
print{*"And -9.27 = . checklInteger(-9.2) . "<BR=\n");

7=

IT-SC book 88

Core PHP Programming

Dynamic Function Calls

You might find yourself in the position of not knowing which function should be called
when you are writing a script. You want to decide based on data you have during
execution. One way to accomplish this is to set a variable with the name of a function and

then use the variable as if it were a function.

If you follow a variable with parentheses, the value of the variable will betreated as the
name of a function. Listing 4.8 demonstrates this. Keep in mind that you can't refer to

built-in functions in this way. Setting myFunction to be print will cause an error.

Listing 4.8 Dynamically Calling a Function

<?

?>

function write (Stext)

{
print (Stext) ;

}

function writeBold (Stext)
{

print ("Stext");
}

SmyFunction = "write";
SmyFunction ("Hello!");
print ("
\n") ;

SmyFunction = "writeBold";

SmyFunction ("Goodbye!") ;
print ("
\n") ;

IT-SC book

89

Core PHP Programming

Chapter 5. ARRAYS

Single-Dimensional Arrays
Indexing Arrays

Initializing Arrays
Multidimensional Arrays

Casting Arrays

Referencing Arrays Inside Strings

Arrays collect values into lists. You refer to an element in an array using an index, which
is often an integer but can also be a string. And the value of the element can be text, a
number, or even another array. When you build arrays of arrays, you get
multidimensional arrays. Arrays are used extensively by PHP's built-in functions, and
coding would be nearly impossible without them. There are many functions designed
simply for manipulating arrays. They are discussed in detail in Chapter 9.

Single-Dimensional Arrays

To refer to an element of an array, you use square brackets. Inside the brackets you put
the index of the element, as in Listing 5.1. This construct may be treated exactly like a
variable. You may assign a value or pass its value to a function. You do not have to
declare anything about the array before you use it. Like variables, any element of an array
will be created on the fly. If you refer to an array element that does not exist, it will
evaluate to be zero or an empty string depending on the context.

Single-dimensional arrays are lists of values under a common name. But you might
wonder, "Why bother?" You could just as easily create variables like "$citiesi,
$Cities2, $Cities3" and not worry about square brackets. One reason is that it's easy
to loop through all values of an array. If you know that all the elements of an array have
been added using consecutive numbers, you can use a for loop to get each element. PHP
makes it easy to create arrays that work this way; if you leave out an index when
assigning an array element, PHP will start at zero and use consecutive integers thereafter.
If you run the code in Listing 5.2, you will discover that the four cities have indexes of 0,
1,2, and 3.

Listing 5.1 Referencing Array Elements

IT-SC book 90

Core PHP Programming

3 Listing 5.1 - ... [M[=] 3

| Fie Edr viev > [N

o | L
I live in Martinez, =

o Intemet 7

<7
SCities[0] = "San Francisco":
SCities[1l] = "Los Angeles";
SCities([2] = "New York";
SCities([3] = "Martinez";

print ("I live in $Cities[3].
\n");

Indexing Arrays

So far we've only seen arrays indexed by integers, but it is also permissible to use strings.
Sometimes these are called associative arrays, or hashes. They are helpful in situations
where you are collecting different types of information into one array. You could build
into your code a system where element zero is a name, element one is a location, and
element two is an occupation. Listing 5.3 is a more elegant way to accomplish this.

Listing 5.2 Adding to an Array

IT-SC book 91

Core PHP Programming

<} Listing 5.2 - Micios... [[=] E3

| Fle Edt View Fa ”|-
=

City 0 15 San Francisco.
City 115 Los Angeles
City 2 15 New York.
City 3 15 Martinez,

| 4D Intemet

J -]
Y

<7
$Cities[] = "San Francisco";
SCities[] = "Los Angeles";
SCities[] = "Mew York";
SCities[] = "Martinez";
lln"\k
** count number of elements
*f
SindexLimit = count(SCities);
."I*
** print out every element
*/
for(Sindex=0; Sindex = SindexLimit; Sindex++)
{
print ("City Sindex 1s 5Cities([%index]. =<BRE='n"):
1
=

Since we aren't indexing the array with integers, we can't just pull out each value starting
at zero. If you've turned ahead briefly to skim the array functions in Chapter 9, you may
have noticed functions like reset, next, and current. These functions offer one way to
step through an array, and they are the best way if you need to do more than simply step
through the array in order. You can also use the each function. However, PHP 4 added a
new statement called foreach specifically for stepping through an array. The foreach
statement is discussed in Chapter 3. It is like a for loop, but designed to pull elements
from an array. You may wish to turn back and review it.

Listing 5.3 Indexing Arrays with Strings

IT-SC book 92

Core PHP Programming

2} Listing 5.3 - Microsoft Inter... 9 [=] E3

| Ele Edt View Favoites 1 [N

e

IName 15 Leon Atkinson.
Locaton 18 Martinez, Califorma.
Title 13 Chief Technologist.

E
2100 | oD Intemet /

<7
II."'#
** fil1l in some information
*/
SUserInfo["Name"] = "Leon Atkinson";
SUserInfo["Location"] = "Martinez, California";
SUserInfo["Title"] = "Chief Technologist”;
foreach(5UserInfo as S$key=>Zvalue)
{
print ("S$key is Svalue.
\n");
1
7>

Initializing Arrays

In the situations where you want to fill an array with several values before you use it, it
can become cumbersome to write an assignment for each element. PHP offers the array
function to help in this matter. It takes a list of values and returns an array. Listing 5.4
uses array to build an array of the months of the year.

Each value is just as it would be if it were on the right side of the assignment operator.
Commas separate the values. By default, as with using empty brackets, elements will be
numbered starting at zero. You can override this by using the => operator. In Listing 5.4 |
have set January to have the index 1. Each subsequent element is indexed by the next
integer.

You aren't limited to setting the index for the first element, of course. You can assign the
index for every element. And you aren't limited to assigning integers as indexes. Listing
5.5 builds an array for translating various ways to write a month into a single form.

IT-SC book 93

Core PHP Programming

Listing 5.4 Initializing an Array

<?
SmonthName = array(l=>"January", "February", "March",
"April", "May", "June", "July", "August",
"September", "October", "November", "December");
print ("Month 5 is $monthName[5]
\n");
>

Listing 5.5 Using an Array to Translate Values

<?

SmonthName = array (
1=>"January", "February", "March",
"April", "May", "June",
"July", "August", "September",
"October", "November", "December",
"Jan"=>"January", "Feb"=>"February",
"Mar"=>"March", "Apr"=>"April",
"May"=>"May", "Jun"=>"June",
"Jul"=>"July", "Aug"=>"August",
"Sep"=>"September", "Oct"=>"October",
"Nov"=>"November", "Dec"=>"December",
"January"=>"January", "February"=>"February",
"March"=>"March", "April"=>"April",
"May"=>"May", "June"=>"June",
"July"=>"July", "August"=>"August",
"September"=>"September", "October"=>"October",
"November"=>"November", "December"=>"December"
);

print ("Month 5 is "™ . $monthName[5] . "
\n");

print ("Month Aug is " . SmonthName["Aug"] . "
\n");

print ("Month June is "

SmonthName ["June"] . "
\n");

?>

Multidimensional Arrays

An array element can be any type of data. You've seen numbers and strings, but you can
even put an array inside an array. An array of arrays is also called a multidimensional
array. Imagine a ten-by-ten grid. You've got 100 different squares, each of which can
have its own value. One way to represent this in code is a two-dimensional array: a ten-
element array of ten-number arrays, ten rows of ten columns.

To reference a single element, you first use square brackets to pick the first dimension
(row), then use a second pair of brackets to pick the second dimension (column). Row 3,
column 7, would be written as $someArray[3][7].

Listing 5.6 initializes a multidimensional array using the array function. This shows that
multidimensional arrays are just arrays of arrays.

IT-SC book 94

Core PHP Programming

Listing 5.6 Creating and Referencing a Multidimensional Array

<?
$Cities = array(
"California"™=>array (
"Martinez",
"San Francisco",
"Los Angeles"
)

"New York"=>array (
"New York",
"Buffalo"

)

print ($Cities["California™] [1]);
2>

Casting Arrays

You can cast an array as another data type to get results of various usefulness. When you
cast an array as an integer, double or boolean, you will get a value of 1. When you cast an
array as a string, you will get the word Array. This is useful as an indicator of when you
have mistakenly used an array as a string. An array will be promoted to a string
containing Array if you use it in a context that demands a string, such as in a print
statement. You can't use an array in a context that expects a number, such as with the
addition operator. This will cause an error. Listing 5.7 explores casting an array as other
data types.

The most useful cast of an array you can perform is to an object. The elements of the
array will become properties of the object. However, elements indexed by values illegal
as property names will remain inaccessible. These values are not lost, and if you recast
the variable as an array, they will become available again. Objects are discussed in

Chapter 6.

Listing 5.7 Casting Arrays as Other Data Types

IT-SC book 95

Core PHP Programming

IT-SC book

96

Core PHP Programming

| Fie Edt View »

|»

1
1
1
Array

Martnez, Calforma
Version

Array ll
|-|Q Internet y

<7
fuserInfo = array("Name"=>"Leon Atkinson®,
"Location"=>"Martinez, California",
"Qccupation"=>"Web Engineer”,
"PHP Version"=>4.0);

[fwhether a boolean, integer or double,
f/PHP converts the array to 1

SasBool = (boolean)SuserInfo:;

print ("5asBool
\n"):;

fasInt = (integer)SuserInfo;
print(*%asInt
\n"};

SasDouble = (double)sSuserInfo;
print ("S$asDouble <BR='n");

f/When converting to a string, PHP
[freturns the string "Array"
SasString = (string)SuserInfo;
print ("$asString
\n");

f/When converting the array to an object,
f/PHP tries to convert all elements to properties.

//Elements with spaces in their keys are not lost,
//but are inaccessible.

SasObject = (ocbject)SuserInfo;
print{"SasObject->Location <BR=\n");

print (" $%asObject->PHF Version
\n"); //doesn't work!

//this causes a parse error
/iprint (SuserInfo + 1);

//PHP knows how to promote an array to a string, though
fi/not with useful results.
IT-SC bo print ($userInfo . "
\n"); 97
J//PHP won’'t promote an array to an object, but it
/falso won't complain if you do this.

P D T I “R N R 1 I N T T T .

Core PHP Programming

Referencing Arrays Inside Strings

As you know from Chapter 2, you may place a variable inside a string using double
quotes. The variable's value will replace it. A single-dimensional array indexed by
integers will be interpreted correctly inside double quotes, but other uses of arrays are
problematic. To force the use of multidimensional arrays, use curly braces. These
suspend the normal parsing that occurs within a double-quoted string. Of course, you
may always concatenate strings. Listing 5.8 explores some different ways to use arrays
inside strings.

Listing 5.8 Referencing Strings

IT-SC book 98

Core PHP Programming

Axray[0]
January has 31 days
Jarwary has 31 days

Mame 15 Leon Atkenson

=l
2l | |3 intemet Y
<7

smonthInfe = array{l=rarray("January", 231},
array("February*, 28},
array{="March*, 31},
array("April", 30),
array("May", 3il),
array("June", 30},
array ("July®, 31},
array (“August®, 3I1),
array("September", 30},
array("October®, 31),
array | "November®, 30},
array | "December®, 31)};:

SuserInfo = array("Name"=>"Laon Atkinson®,
"Location"s»>"Martinez, California-®,
"Cocupation®=>"Web Engineer-});

f/This does not parse as expected. It prints

/fhrray[0] because [0] isn't considered part of

//the expression.

print("SmonthInfe[1][0] =BR>\n"):

//Here the curly braces alert the parser to

/feconsider the entire array expression,

Slineluding the second dimension.

print(*{SmonthInfo(11(0]1} has {SmonthInfo[l]l1l]} days <BRE>\n<):

/ fHere we've avoided the confusion by keeping

fithe array values outside of the strings, perhaps

Jiat the esxpense of some readability.

print{smonthInfo[1][0] . * has * . SmonthInfoll]([l] . * days <BR=\n");

S/This line would cause a parse error.

S/print ("Name is SuserInfo["Name*]
\n"):

SiCnce again, curly braces are used to clear up

/ifeconfusion for the parser.

print("Name is [(SuserInfo(["Name"]} <BR=\n"):

T

IT-SC book

99

Core PHP Programming

Chapter 6. CLASSES AND OBJECTS

Defining a Class
Creating an Object
Accessing Properties and Methods

Object-oriented programming was devised as a solution to problems associated with large
software projects where many programmers work on a single system. When source code
grows to be tens of thousands of lines of code or more, each change can cause
unexpected side effects. This happens when modules form secret alliances like nations in
pre-WWI Europe. Imagine a module for handling logins that allows a credit card
processing module to share its database connection. Surely it was done with the best
intentions, probably to save the overhead of acquiring another connection. Some time
later, the login module severs the agreement by changing the variable name. The credit
card processing code breaks; then the module that handles invoices breaks. Soon totally
unrelated modules are dragged into the fray.

So, I'm being a bit dramatic. Most programmers pick up an appreciation for coupling and
encapsulation. Coupling is the measure of how dependent two modules are. Less
coupling is better. We'd like to take modules from existing projects and reuse them in
new projects. We'd like to make wholesale changes to the internals of modules without
worrying about how they affect other modules. The solution is to follow the principle of
encapsulation. Modules are treated as independent states, and exchanges between
modules are done through narrow, structured interfaces. Modules do not spy on each
other by reaching into each other's variables. They ask politely through functions.

Encapsulation is a principle you can apply in any programming language, if you have
discipline. In PHP, and many procedural languages, it's easy to be tempted to be lazy.
Nothing prevents you from building a web of conceit between your modules. Object-
oriented programming is a way of making it nearly impossible to violate encapsulation.

In object-oriented programming, modules are organized into objects. These objects have
methods and properties. From an abstract perspective, methods are things an object does,
and properties are the characteristics of the object. From a programming perspective,
methods are functions and properties are variables. In an ideal object-oriented system,
each part is an object. And the running of the system consists of objects exchanging
objects with other objects using methods.

Each language takes a different approach to objects. PHP borrows from C++ and offers a
data type that may contain functions and variables under a single identifier. When PHP
was first conceived, even when version 3 was created, PHP wasn't intended as capable of
powering projects of 100,000 lines or more of code. Due to recent advances built into
PHP and Zend, this is a reality. But no matter the size of your project, building your

IT-SC book 100

Core PHP Programming

scripts with classes will certainly aid you in writing code that can be reused. This is a
good idea, especially if you wish to share your code.

The idea of objects is one of those mind-blowing concepts in computer science. It's hard
to grasp at first, but I can attest that once you get it, it becomes quite natural to think in its
terms. Never the less, you can ignore objects if you wish and return to this chapter later.
Some built-in functions return objects. You can find alternatives that don't, or you can
cast the objects as arrays, as described at the end of this chapter.

Defining a Class

When you declare a class, you are really making a template for the creation of objects.
You list all the variables the object should have and all the functions it will need.
Sometimes these are called properties and methods, respectively. Figure 6-1 displays the
form of a class declaration. Note that inside the curly braces you can only declare
variables with the var statement or declare functions. Listing 6.1 shows the definition of
a class with three properties and two methods.

Figure 6-1. Defining a class.

class name axtends another class
{
var Variable Declaration
Function Declaration

When you declare a property, you don't specify a data type. It is a variable like any other,
and it may contain an integer, a string, or even another object. Depending on the
situation, it might be a good idea to add a comment near the declaration of the property
that states its intended use and data type. When you declare a method, you do so just as
you would a function outside a class definition. Both methods and properties exist within
their own scope, or name space. That means you can safely create methods that have the
same name as functions declared outside of class definitions without conflicts. An
exception to this are built-in functions. For example, you cannot have a print method.

Aside from the variables passed as arguments, methods contain a special variable called
this. It stands for the particular instance of the class. You must use this to refer to
properties and other methods of the object. Some object-oriented languages assume an
unqualified variable that refers to a local property, but in PHP any variables referred to
within a method are simply variables local to that scope. Note the use of the this
variable in the constructor for the user class in Listing 6.1.

If you choose to declare a function within a class that has the same name as the class
itself, the function will be considered a constructor and will be executed immediately
upon creating an object from that class. Typically the constructor is used to initialize the
object's properties. Like any other function, the constructor may have parameters and

IT-SC book 101

Core PHP Programming

even default values. You can set up classes that allow you to create an object and set all
its properties in one statement. Unlike other languages, PHP does not allow for
destructors—functions that execute when the instance is deleted. However, if you choose
to use unset on an object, all the memory associated with that object will be freed. In
situations where you must execute some code when you finish using an object, create
your own shutdown function and remember to call it.

One powerful aspect of classes is inheritance, the idea that a class can extend the
functionality of another class. The new class will contain all the methods and properties
of the class it extends, plus any others it lists within its body. You may also override
methods and properties from the extended class. As shown in Figure 6-1, you extend a
class using the extends keyword.

Listing 6.1 Using Classes

IT-SC book 102

Core PHP Programming

IT-SC book 103

Core PHP Programming

J Listing 6.1 - .. [M[=] 3

| Fle Edi Vie ”|-
rY

IMay 07 2000
Leon
=
0 Intemet Y
<=7
ll,fi
** define class for tracking users
*
class user
{
II,I' *
** properties
*/

var Sname;
var Spassword;
var $last_login;

ll.f*

** methods

*f

function user(finputName, SinputPassword)

{
Sthis-»name = SinputName;
Sthis->password = SinputPassword;
Sthis->last_login = time();

// get the date of the last login
function getLastLogin()

{
returni{Date("M 4 Y", Sthis->last_login)};

//ecreate an instance
ScurrentUser = new user|"Leon", "sdfl123");

/fget the last login date
print($currentUser->getLastLogin());
print ("
\n");

//print the user's name
print {(ScurrentUser->name) ;
print("<BR=\n"):

T

IT-SC book 104

Core PHP Programming

One issue you might wonder about is whether and how constructors are inherited. While
they are inherited along with all other methods, they cease to have the property of being
called when an object is created from the class. If you require this functionality, you must
write it explicitly by calling the parent class's constructor within the child class's
constructor.

Creating an Object

Once you have defined a class, you use the new statement to create an instance of the
class, an object. If the definition of the class is the blueprint, the instance is the widget
rolling off the assembly line. The new statement expects the name of a class and returns a
new instance of that class. If a constructor with parameters has been declared, you may
also follow the class name with parameters inside parentheses. Look for the line in
Listing 6.1 that uses the new statement.

When you create an instance, memory is set aside for all the properties. Each instance has
its own set of properties. However, the methods are shared by all instances of that class.

As you recall, PHP allows you to create variables without explicitly declaring the type.
Objects are no different. You can create an object simply by using it in the proper
context. That is, using the -> operator on a variable will make it an object. You can create
as many properties as you wish on this new object just by referring to them.
Unfortunately, you will not be able to attach methods to an object this way.

Another way to create an object is to change the type of an array. When an array becomes
an object, all the elements indexed by strings become properties. Elements indexed by
numbers will remain with the variable but will be inaccessible. If the variable later
returns to being an array, the numbered elements will be accessible again. This is similar
to what happens when an object is cast as an array. All properties will be available as
array elements, but methods are not. When an object is created through casting or
inference, it is of type stdClass.

Accessing Properties and Methods

The properties of an instance are variables, just like any other PHP variable. To refer to
them, however, you must use the -> operator. You do not use a dollar sign in front of the
property name. For an example, refer to the line in Listing 6.1 that prints the name
property of the currentUser object.

Use of -> can be chained. If an object's property contains an object itself, you can use
two -> operators to get to a property on the inner object. The parser in PHP 3 was unable
to deal with complex expressions like this. In PHP 4 you are not limited this way. You

IT-SC book 105

Core PHP Programming

may even place these expressions within double-quoted strings. See Listing 6.2 for an
example of an object that contains an array of objects.

Unlike object-oriented languages, such as C++, PHP does not allow properties of classes
to be private. Any code may reach into the instance and change or read the values of
properties.

Accessing methods is similar to accessing properties. The -> operator is used to point to
the instance's method. This is shown in Listing 6.1 in the call to getLastLogin. Methods
behave exactly as functions defined outside classes.

If a class extends another, the properties and methods of all ancestor classes are available
in the child class, despite not being declared explicitly. As mentioned previously,
inheritance is very powerful. If you wish to access an inherited property, simply refer to it
as you would any other local property.

Three functions allow you to get information about a class as your script runs:
get class, get parent class, and method exists. These functions are described in
Chapter 8.

Listing 6.2 Objects Containing Other Objects

IT-SC book 106

Core PHP Programming

IT-SC book 107

Core PHP Programming

23 Listing 6.2 - .. [N [=] B3
File Edt ‘iev *

l

bedroom

[ﬂ Intermnet

QKU

class room

{

var Sname;

function room(Sname="unnamed")

{

Sthis->name

class house

{

Sname:

//array of rooms
var Sroom;

//create empty house

Shome

//add some rooms

Shome->room|[]
Shome->room/[]
Shome->room|]

new house:

new room/|("bedroom") ;
new room("kitchen") ;
new room("bathroom") ;

//show the first room of the house
print (Shome->room[0] ->name) ;

7>

IT-SC book

108

Core PHP Programming

Chapter 7. I/0 AND DISK ACCESS

HTTP Connections

Writing to the Browser
Output Buffering
Environment Variables
Getting Input from Forms
Cookies

File Uploads

PUT Method Requests
Reading and Writing to Files
Sessions

The include and require Functions

Ultimately, in order to be useful, a script must communicate with the outside world.
We've seen PHP scripts that send text to the browser and get some information from
functions like date. In this chapter we will examine all the ways a PHP script can
exchange data without using special interfaces. This includes reading from local disk
drives, connecting to remote machines on the Internet, and receiving form input.

PHP is similar to other programming environments—with one notable exception: User
input generally comes from HTML forms. The fields in forms are turned into variables.
You can't stop your script in the middle and ask the user a question. This situation
provides unique challenges. Each time a script runs, it is devoid of context. It is not aware
of what has gone on before unless you make it so.

HTTP Connections

It will be helpful to review how data travels between a browser and a Web server. [will
review it simply for purposes of illustration, but you may wish to refer to detailed
descriptions, such as those found on the W3C Web site
<http://www.w3.org/Protocols/>.

When you type a URL into the location box on your browser, the first task of the browser
is to break it up into important parts, the first of which is the protocol, HTTP. Next is the

IT-SC book 109

Core PHP Programming

name of the Web server, to which the browser makes a connection. The browser must tell
the Web server which document it wants, and it does so using the HTTP protocol. Before
completing the request, the browser may provide lines of extra information called
headers. These headers let the server know the brand of the browser, the type of
documents the browser can accept, perhaps even the URL of a referring page.

The Web server places these headers into environment variables to conform with the
Common Gateway Interface (CGI). When a PHP script begins, the environment variables
are converted into PHP variables. One of the most useful headers describes the brand and
version of the Web browser. This header is sent by the browser as User-agent. The Web
server creates an environment variable called 5TTP UsEr AGENT that holds the value of
the header. PHP in turn creates a variable with this same name. You can refer to it using
$, just as for any other variable. If you are using Apache, you also have the option of
using the getallheaders function. It returns an array of all headers exchanged between
the browser and the server.

As a PHP script begins to execute, the HTTP exchange is in the stage where some
headers have been sent to the browser, but no content has. This is a window of
opportunity to send additional headers. You can send headers that cause the browser to
ask for authentication, headers that request that the browser cache a page, or headers that
redirect the browser to another URL. These are just some of the many HTTP headers you
can send using the header function. The most common tasks are described in the last
section of this book.

Headers are placed on a stack, which is a data structure that resembles a literal stack of
dinner plates. Imagine that each plate is a header. Each new plate is placed atop the
previous plate. When it's time to send the headers, they are removed from the top, one at
a time. This has the effect of sending the headers to the browser in the reverse of the
order in which they were added. Usually this has no effect. HTTP doesn't define any
special meaning to the order of headers. However, if you send the same header twice, the
later header may overwrite the value of the earlier. This means that if you try resending a
header, the browser most likely will ignore it. My advice is to write your scripts so they
send headers only when they are certain of the value.

Once any content is sent, the opportunity to send headers is lost. This includes any text
outside of PHP tags, even if it's just a linefeed. If you try to send a header after content is
sent, an error message is generated. You can use the headers sent function to test
whether it's safe to add more headers to the stack, or too late. Cookies, described below,
use headers, and therefore are limited in the same way.

As a script runs and sends content, the output is buffered. There is a bit of overhead to
every network action, so a small amount of memory temporarily stores the information to
be sent out in batches. This buffer is owned by the Web server, so PHP does not have
control of it. However, you may request that the buffer be flushed—immediately sent to
the browser—by using the fiush function. This is most useful in long scripts. Both
browsers and people have limits to how long they wait for a response, so you can let them

IT-SC book 110

Core PHP Programming

know you're making progress by flushing the output. I've written scripts that print a single
period and then flush the buffer each time through a long loop.

There are two ways a script may halt unexpectedly: when the script runs too long, and
when the user clicks the stop button. By default, scripts are limited to a number of
seconds specified in php.ini. This is usually 30 seconds, but you can change it. Look for
the max execution time directive. But 30 seconds is a good setting. In case you write a
script that could run forever, you want PHP to stop it. Otherwise a few errant scripts
could slow your server to a crawl. For the same reason, you usually want to allow users
to be able to abort a page request.

There are times when you do want a script to run to completion, and you can instruct
PHP to ignore time limits and user aborts. The set time 1imit function resets PHP's
timer. See Chapter 11 for a complete description and example. I've written some scripts
that run on their own once a night, perhaps doing a lot of work. These scripts I allow to
run for an hour or more. Likewise, ignore user abort tells PHP to continue even when
the user has clicked the stop button.

Instead of just letting a script run, you may wish it to halt, but deal with the reason it
halted with special code. To do this, you must first tell PHP to execute a special function
whenever a script ends. This is done with register shutdown function. This function
will execute regardless of why a script ended. It even executes when the script ends
normally. You can test for the reason with two functions: connection aborted and
connection timeout. These are described in Chapter 8.

Writing to the Browser

Three functions in PHP will send text to the browser: echo, print, and printf. Each
does the same thing: They take values and print them to the browser. The printf
function allows you to specify the format of the output rather than sending values as-is.
I've used print so far in my examples, mostly out of personal preference. I don't usually
need the formatting that print £ provides. Many older PHP examples you will find on the
Web use echo because it existed in PHP2. I avoid it, because it behaves more like an
operator than a function. All three functions are discussed in Chapter 8.

It is important to remember everything you write is in the context of a Web browser.
Unless you take measures to make it otherwise, your output will be treated as HTML
text. If you send text that is HTML code, it will be decoded by the browser into its
intended form. I've been sending
 via print throughout the book so far, but Listing
7.1 is a more dramatic example of this concept.

Listing 7.1 Sending HTML with print

<?
print ("You're using ");
print ($HTTP7USER7AGENT) ;
print (" to see this page.
\n");

IT-SC book 111

Core PHP Programming

?>

Of course, anything outside PHP tags is sent directly to the browser. This is undoubtedly
the fastest and least flexible way to send content. You might wonder at this point when
it's appropriate to use print and when you should place text outside PHP tags. There are
issues of efficiency and readability to worry about, but put them aside for now. The final
section of the book deals with this issue at length.

Output Buffering

As stated above, the Web server buffers content sent to the browser, and you can request
that the buffer be flushed. PHP4 introduced a new mechanism for buffering output you
can control completely. Four functions control PHP's output buffer: ob start,
ob end flush, ob end clean, and ob get contents. These are described in detail in
Chapter 8, complete with examples, but I would like to give an overview here.

When you call the ob start function, anything you send to the browser is placed into a
buffer. This includes text outside of PHP tags. The Web server will not receive this
content until the ob end flush function is called. There are several powerful
applications of these functions. One is to avoid the problem associated with sending
headers. Because all headers are sent at once, before any content, you have to take care
when using the header function. This results in a script design where early parts of a
script are declared a "no output" zone, which can be annoying. If you use output
buffering, you can safely add headers to the stack where you wish, and delay sending
content until the last line of your script.

Another application of these functions is in building HTML tables. Imagine creating a
table filled with data from a database. You first print the opening tags for the table. You
execute a query and loop over the results being returned. If everything executes without
error, you print a closing table tag. If an error occurs within the loop, you may have to
abort, and the code that closes the table is never reached. This is bad because of the
behavior of Netscape Navigator: It won't display information inside an unclosed table.
The solution is to turn on output buffering before assembling the table. If assembly
completes successfully, you can flush the buffer. Otherwise you can use ob_end clean,
which throws away anything in the buffer.

Environment Variables

PHP also makes environment variables available. These are the variables that are created
when you start a new shell. Some are the standard variables like paTH. Others are
variables defined by the CGI. Examples are REMOTE ADDR and HTTP USER AGENT. These
are turned into PHP variables for your convenience. Listing 7.2 tells you which browser
someone is using to surf your page.

Similar to environment variables are the variables the PHP itself creates for you. The first
is crLoBaLs, which is an associative array of every variable available to the script.

IT-SC book 112

Core PHP Programming

Exploring this array will reveal all the environment variables as well as a few other
variables. Similar to GLOBALS are HTTP GET VARS, HTTP POST VARS, and
HTTP COOKIE VARS. As their names suggest, these are associative arrays of the variables
created by the three methods the browser may use to send information to the server.

The combination of Web server and operating system will define the set of environment
variables. You can always write a script to dump the GLOBALS array to see which are
available to you. Alternatively, you can simply view the output of the phpinfo function.

Listing 7.2 Viewing Environment Variables

<?
/*
** make a multiplication table

*/

// start table
print ("<TABLE BORDER=\"1\">\n") ;

for (SRow=1; SRow=12; SRow++)
{

//start row

print ("<TR>\n") ;

//do each column
for ($Column=1; S$Column <= 12; S$SColumn++)
{

print ("<TD>") ;

print (SRow * $Column) ;

print ("</TD>") ;

//end row
print ("</TR>\n") ;
}

//end table
print ("</TABLE>\n") ;
2>

Getting Input from Forms

Sending text to the browser is easy to understand. Getting input from forms is a little
tricky. HTML offers several ways to get information from the user via forms. There are
text fields, text areas, selection lists, and radio buttons among others. Each of these
becomes a string of text offered to the Web server when the user clicks the submit button.

When a form is submitted, PHP turns each form field into a variable. The variables
created this way are like any other variable. You may even change their values. They are
created as if you had written the PHP code to put values into the variables. This means
that if you put two form variables on a page with the same name, the second one may

IT-SC book 113

Core PHP Programming

overwrite the value of the first. Other CGI solutions might create an array in this
situation. If you wish to pass arrays through form fields, you can define form fields with
square brackets. This issue is dealt with in more detail in later chapters.

Listing 7.3 1s an example of using variables created from form fields. The script expects a
variable named inputColor. The first time this page is viewed, inputColor will be
empty, so the script sets it to be six rs, the RGB code for pure white. On subsequent calls
to the page, the value of the text box will be used to set the background color of the page.
Notice that inputcColor is also used in the tnpUT field to prepopulate it. This way, each
time you submit the form, you remember what you entered. As an aside, you should also
take note of the technique used here, in which a page calls itself.

Listing 7.3 Getting Form Input

<?
print ("<HTML>\n") ;
print ("<HEAD>\n") ;
print ("<TITLE>Listing 7.3</TITLE>\n");
print ("</HEAD>\n") ;

/*

** if here for the first time
** use white for bgcolor

*/

if ($inputColor == "")

{

SinputColor = "FFFFFF";
}
/*
** open body with background color
*/
print ("<BODY BGCOLOR=\"#S$inputColor\">\n");
/*
** start form, action is this page itself
*/
print ("<FORM ACTION:\"$PHP_SELF\" METHOD=\"post\">\n") ;
/*
** get color
*/

print ("Enter HTML color: ");
print ("<INPUT ") ;

print ("TYPE=\"text\" ");

print ("NAME=\"inputColor\" ");
print ("VALUE=\"S$inputColor\">\n") ;

/*

** show submit button

*/

print ("<INPUT ") ;
print("TYPE:\"SHbmit\u "

print ("NAME=\"Submit Button\" ");

IT-SC book 114

Core PHP Programming

print ("VALUE=\"Try It\">\n");
print ("</FORM>\n") ;

print ("</BODY>\n") ;
print ("</HTML>\n") ;
2>

Cookies

Cookies are small strings of data created by a Web server but stored on the client. In
addition to having names and values, cookies have an expiration time. Some are set to
last for only a matter of minutes. Others persist for months. This allows sites to recognize
you without requiring a password when you return. To learn more about cookies, you
may wish to visit Netscape's site

<http://developer.netscape.com/docs/manuals/communicator/jsquide4/cookies.htm
>,

Using cookies with PHP is almost as easy as using form fields. Any cookies passed from
the browser to the server are converted automatically into variables. In addition, cookies
are stored in the HTTP COOKIE VARS array.

If you wish to send a cookie, you use the setcookie function, described in Chapter 8. A
cookie is sent to the browser as a header. Just like other headers, you must set cookies
before sending any content. When you do set a cookie, the browser may refuse to accept
it. Many people turn off cookies. So, you cannot count on the cookie being present the
next time a user requests a page.

Setting a cookie does not create a variable—not immediately. When setting a cookie, you
are asking the browser to store information that it will return when it next requests a
page. Subsequent page requests will cause the cookie to be created as a variable for your
use. If you write a script that requires the cookie variable always be set, set it
immediately after sending the cookie.

Cookies are a sensitive topic. Some people view them as intrusive. You are asking
someone to store information on their computer, although each cookie is limited in size.
My advice with cookies is to keep them minimal. In most cases it is practical to use a
single cookie for your entire site. If you can identify that user with a unique ID, you can
use that ID to look up information you know about them, such as preferences. Keep in
mind that each page load causes the browser to send the cookie. Imagine an extreme case
where you have created ten 1K cookies. That's 10K of data the browser must send with
each page request.

File Uploads

A file upload is a special case of getting form input. Half of the story is putting together
the correct HTML. File uploads are specified in RFC 1867. They are supported by
Netscape Navigator 2 and above, as well as Internet Explorer 4 and above. Placing an

IT-SC book 115

Core PHP Programming

input tag inside an HTML form with the type attribute set to file causes a text box and a
button for browsing the local file system to appear on the Web page. Browsers that do not
support uploads will likely render this as a text box, so it's best to present uploading
forms only to capable browsers. The forms must use the post method to allow for
uploads, and they must also contain the enctype attribute with a value of
multipart/form-data. A hidden form variable, Max FILE s1zE, must precede the file
input tag. Its value is the maximum file size in bytes to be accepted.

When the form is submitted, PHP will detect the file upload. The file will be placed in a
temporary directory on the server, such as /var/tmp. Several variables will be created
based on the name of the file field. A variable with the same name as the file field will
contain the complete path to the file in the local file system. A variable with name
appended to the file field name will contain the original file name as provided by the
browser. A variable with size appended to the file field name will contain the size of
the file in bytes. Finally, a variable with type appended to the file field name will
contain the MIME type of the file, if it was offered by the browser.

Listing 7.4 File Upload

<?
//check for file upload
if (isset (SUploadedFile))
{
unlink ($UploadedFile) ;
print ("Local File: $UploadedFile
\n"

’

)
print ("Name: $UploadedFile name
\n");
print ("Size: $UploadedFile size
\n");
print ("Type: $UploadedFile type
\n");
print ("<HR>\n") ;

}
2>
<FORM ENCTYPE="multipart/form-data"
ACTION="<? $PHP75ELF ?>" METHOD="post">
<INPUT TYPE="hidden" name="MAX FILE SIZE" value="4096">
<INPUT NAME="UploadedFile" TYPE="file">
<INPUT TYPE="submit" VALUE="Upload">

If you plan on using the file later, move the new file into a permanent spot. If you do not,
PHP will delete the file when it finishes executing the current page request. Listing 7.4 is
an example script that accepts uploads and immediately deletes them.

File uploads are limited in size by a directive in php.ini, upload max filesize. It
defaults to two megabytes. If a file exceeds this limit, your script will execute as if no file
were uploaded. A warning will be generated, as well.

Like other form fields, the upload form field is treated like setting the value of a variable.
If you place square brackets at the end of the field name, an array will be created. As you
would expect, the size and type values will be placed in similarly named arrays. You can
take advantage of this to allow for multiple file upload fields.

IT-SC book 116

Core PHP Programming

PUT Method Requests

The PUT method is an HTTP request for a file to be placed on the remote server. It's like
a file upload that doesn't come from a form and tells you where to place the file in your
document tree. You might guess that this is a very dangerous thing to allow for
anonymous users. It's especially dangerous when users could be uploading PHP scripts.

Not all browsers support PUT requests, and neither do all servers. Netscape Composer
and the W3C's Amaya browsers reportedly allow PUT requests. Apache for UNIX will
accept them if configured to do so. To configure Apache to allow PUT requests, you use
the script directive inside a configuration file. See the Apache site for more information
<http://www.apache. org/docs/mod/mod actions.html#script>. You could tell
Apache to run all PUT requests through a PHP script with a line like Script PUT
/handle put.php in httpd.conf.

The pHP UPLOADED FILE NAME variable will be set with the path to the uploaded file,
which will be in a temporary directory. Just as with file uploads using the POST method,
this file will be automatically deleted when your script ends if you don't move it. If you
need to know the requested URI, look in the REQUEST URT variable.

Reading and Writing to Files

Communication with files follows the pattern of opening a stream to a file, reading from
or writing to it, and then closing the stream. When you open a stream, you get an integer
that refers to the open stream. Each time you want to read from or write to the file, you
use this stream identifier. Internally PHP uses this integer to refer to all the necessary
information for communicating with the file.

To open a file on the local file system, you use the fopen function. It takes a name of a
file and a string that defines the mode of communication. This may be r for read-only or
w for write-only, among other modes. It is also possible to specify an Internet address by
starting the file name with http:// or £tp:// and following it with a full path including
a host name. The file functions are fully defined in Chapter 8.

Two other functions create file streams. You may open a pipe with the popen function or
you may open a socket connection with the fsockopen function. If you have much
experience with UNIX, you will recognize pipes as temporary streams of data between
executing programs. A common Perl method for sending mail is to open a pipe to
sendmail, the program for sending mail across the Internet. Because PHP has so many
built-in functions, it is rarely necessary to open pipes, but it's nice to know it's an option.

You can open a file stream that communicates through TCP/IP with fsockopen. This
function takes a hostname and a port and attempts to establish a connection. It is
described in Chapter 8, along with the rest of the I/O functions.

IT-SC book 117

Core PHP Programming

Once you have opened a file stream, you can read or write to it using commands like
fgets, and fputs. Listing 7.5 demonstrates this. Notice that a while loop is used to get
each line from the example file. It tests for the end of the file with the feof function.
When you are finished with a file, end of file or not, you call the fc1ose function. PHP
will clean up the temporary memory it sets aside for tracking an open file.

Keep in mind that PHP scripts execute as a separate user. Frequently this is the "nobody"
user. This user probably won't have permission to create files in your Web directories.
Take care with allowing your scripts to write in any directory able to be served to remote
users. In the simple case where you are saving something like guest book information,
you will be allowing anyone to view the entire file. A more serious case occurs when
those data files are executed by PHP, which allows remote users to write PHP that could
harm your system or steal data. The solution is to place these files outside the Web
document tree.

Listing 7.5 Writing and Reading from a File

<?

/*

** open file for writing

*/

$filename = "data.txt";

if (! (SmyFile = fopen($Sfilename, "w")))

{
print ("Error: ");
print ("'$filename' could not be created\n");
exit;

}

//write some lines to the file
fputs ($SmyFile, "Save this line for later\n");
fputs (SmyFile, "Save this line too\n");

//close the file
fclose ($myFile) ;

/*

** open file for reading

*/

if (! (SmyFile = fopen($filename, "r")))

{
print ("Error:");
print ("'$filename' could not be read\n");
exit;

}

while (!feof (SmyFile))

{
//read a line from the file
SmyLine = fgets($myFile, 255);
print ("$myLine
\n");

}

IT-SC book 118

Core PHP Programming

//close the file
fclose ($myFile) ;
7>

Sessions

If you build a Web application, it's likely you will have information to associate with
each user. You may wish to remember the user's name from page to page. You may be
collecting information on successive forms. You could attempt to pass the growing body
of information from page to page inside hidden form fields, but this is impractical. An
elegant solution is to use the idea of a session. Each visitor is assigned a unique identifier
with which you reference stored information, perhaps in a file or in a database.

In the past, PHP developers were required to create their own code for handling sessions,
but Sascha Schumann and Andrei Zmievski added new functions for session handling to
PHP 4. The concept is as follows. You register global variables with the session handler.
The values of these variables are saved in files on the server. When the user requests
another page, these variables are restored to the global scope.

The session identifier is a long series of numbers and letters and is sent to the user as a
cookie. It is possible that the user will reject the cookie, so a constant is created that
allows you to send the session identifier in a URL. The constant is s1D and contains a full
GET method declaration, suitable for attaching to the end of a URL.

Consider Listing 7.6, a simple script that tracks a user's name and the number of times
they've visited the page. The first step is to call the session start function. This sends
the cookie to the browser, and therefore it must be called before sending any content.
Next, two variables are registered with the session, Name and count. The former will be
used to track the user's name, and the latter to count the number of times the user
redisplays the page. Once registered, the values of these variables will be preserved in the
session. Before starting the HTML document, the example script sets Name with input
from a form submission if present, and then it increments the page counter.

The first bit of content the page provides is diagnostic information about the session. The
session name is set inside php. ini, along with several other session parameters. It is used
to name the cookie holding the session identifier. The identifier itself is a long string of
letters and numbers, randomly generated. By default, PHP stores sessions in /tmp using a
built-in handler called files. This directory isn't standard on Windows, and if it is not
present, sessions will not work correctly.

It's likely that other handlers will be added for storing sessions in relational databases, but
you do have the option of creating your own handler in PHP code using the
session set save handler function. You can read about how you'd do that in Chapter
17. Sessions are encoded using serialization, a method for compacting variables into a
form suitable for storing as text strings. If you examine the files saved in /tmp, you will
find they match the strings returned by session encode.

IT-SC book 119

Core PHP Programming

Listing 7.6 Using Sessions

<?

7>

//Start the session.

//This must be called before
//sending any content.
session start();

//Register a couple of variables
session register ("Name") ;
session register ("Count");

//Set variable based on form input
if ($inputName != "")
{

S$SName = S$inputName;

}

//Increment counter with each page load
SCount++;

<HTML>
<HEAD>
<TITLE>Listing 7.6</TITLE>

</

HEAD>

<BODY>

<?

//print diagnostic info
print ("Diagnostic Information
\n");

print ("Session Name: " . session name() . "
\n");

print ("Session ID: " . session id() . "
\n");

print ("Session Module Name: " . session module name () . "
\n");
print ("Session Save Path: " . session_save path() "
\n") ;
print ("Encoded Session:" . session _encode() . "
\n");

print ("<HR>\n");

if (SName != "")

{
print ("Hello, $Name!
\n");

}

print ("You have viewed this page $Count times!
\n");

//show form for getting name

print ("<FORM ACTION=\"$SCRIPT NAME?".SID."\" METHOD=

print ("<INPUT TYPE=\"text\" NAME=\"inputName\"

VALUE=\"SName\">
\n") ;
print ("<INPUT TYPE=\"submit\" VALUE=\"Change Name\">
\n") ;

?>

print ("</FORM>") ;

//use a link to reload this page

\IIPOST\">") H

print ("Reload
\n");

</BODY>

IT-SC book

120

Core PHP Programming

</HTML>

As stated earlier, session identifiers are sent by cookies, but a browser may refuse them.
As a backup, you may use the s1D constant. It will contain a string consisting of the
session name, an equal sign, and the session identifier. This is suitable for placing in a
URL, as I have done in both the form action and the anchor tag below it. If the browser
returns a session cookie to the script, the s1p constant will be empty.

All the session functions are described in Chapter 8.
The include and require Functions

The include and require functions take the path to a file. The file is parsed as if it were
a stand-alone PHP script. This is similar to the include directive in C and the require
directive in Perl. There is a subtle difference between the two functions. When the
require function is processed, it is replaced with the file it points to. The include
function acts more like a function call.

The difference is most dramatic inside a loop. Imagine having three files you wanted to
execute one after the other. You could put an include inside a for loop, and if the files
were named something like includel.php, include2.php, and include3.php, you
would have no problem. You could just build the name based on a counter variable.

If you used require, however, you would execute the first file three times. That's
because on the first time through the loop, the call to require would be replaced with the
contents of the file. As I said, the difference is subtle but can be very dramatic.

Listings 7.7 and 7.8 show one possible use of the include function. Here we revisit an
example from the chapter on arrays. I've taken the definition of the array from the main
file and put it into its own file. All the code that matches ways to refer to months with a
preferred output form is not necessarily interesting to the main script. It is enough to
know that we've included the translation array. This makes the script in Listing 7.8 a lot
easier to understand.

This strategy of modularization will enhance the readability of your code. It gives the
reader a high-level view. If more detail is needed, it takes a few clicks to open the
included file. But more than enhancing readability, coding in this way tends to help you
write reusable code. Today you may use the translation array for a catalog request form,
but in a week you may need it for displaying data from a legacy database. Instead of
cutting out the array definition, you can simply copy the file.

Listing 7.7 Included File

<?
/*
** Build array for referencing months
*/
SmonthName = array (

IT-SC book 121

Core PHP Programming

1=>"January", "February", "March",

"April", "May",
"July", "August"

"June" ,
, "September",

"October", "November", "December",

"Jan"=>"January"
"Mar"=>"March",

, "Feb"=>"February",
"Apr"=>"April" ,

"May"=>"May", "Jun"=>"June",
"Jul"=>"July", "Aug"=>"AuguSt",
"Sep"=>"September", "Oct"=>"October",

"Nov"=>"November

"January"=>"January",

"March"=>"March"

", "Dec"=>"December",

, "April"=>"April",

"May"=>"May" , " June n_smn June " ,

" July":>" July" ,

"September"=>"September",
"November"=>"November",

)7
2>

"August"=>"August",

Listing 7.8 Including a File

<?
/*

** Get monthName array

*/
include ("7-7.php");

print ("Month 5 is "

print ("Month Aug is "
print ("Month June is "

?>

SmonthName [5]
SmonthName ["Aug"]
SmonthName ["June"]

"February"=>"February",

"October"=>"October",
"December"=>"December"

"
\n") ;

"
\n") ;
H
\ ") :

IT-SC book

122

Core PHP Programming

Part II: FUNCTIONAL REFERENCE

The chapters in this section of the book, Chapters 8 through 14, are a functional
reference. They describe how each PHP function works: what arguments are expected,
what value is returned, and how they ought to be used. The functions are grouped
generally by what they do.

Chapter 8 is concerned with I/O—input and output. Input functions send and receive
information to the browser, and output functions read and write to the file system or to
the network. Chapter 9 is all about manipulating data. There are functions for handling
arrays, functions for searching for information inside strings, and functions for encoding
and decoding information. Chapter 10 is concerned with mathematics. Aside from the
standard mathematical functions you expect, PHP offers some unique features for
handling arbitrarily large or small numbers. Chapter 11 is a bit of a catch-all chapter that
deals with time-related functions and functions that affect the configuration of PHP.
There are functions for normal dates and times, but there are also functions for working
with obscure calendars. In addition, there are plenty of functions for changing the
operation of PHP itself. Chapter 12 is a short but important chapter on graphics
functions. The GD library allows you to create and manipulate images on the fly.
Chapter 13 is a long chapter about all the different database functions. If PHP can boast
of one great achievement, it is certainly support for many databases. In this chapter, you
will find native support for popular commercial databases such as Oracle and Sybase, as
well as support for free technologies like MySQL. Chapter 14 contains miscellaneous
functions, most of which interface with specialized libraries, such as functions for
communicating with LDAP and IMAP servers.

Throughout this section I've used a standard format for showing how a function works.
The form I've chosen is compact yet clear. Each description begins with a prototype for
the function. This tells you what type of data the function returns and what type of data is
expected to be passed. When a function returns nothing, it will not be preceded with a
datatype. Likewise, if a function takes no arguments, the parentheses following the
function's name will be empty.

Some functions are part of PHP's basic functions and are always available. Others are
part of an extension which must be loaded through special files, or added when you
compile PHP. Without doing either of these things, you will get an error reporting an
unrecognized function. There are more extensions than I cover here. Some may have
been written after this text went to press. Others are very specialized.

A lot of effort went into checking for bugs in the functional reference, but it's possible
some will slip through. As I did with the first edition, I will make an errata page available
on my Web site http://www. leonatkinson. com. If an example doesn't work as you
expect, check there first.

Chapter 8. I/0 FUNCTIONS

IT-SC book 123

Core PHP Programming

Sending Text to the Browser
Output Buffering
Files
Compressed Files
POSIX
Debugging
Session Handling
Shell Commands
HTTP Headers
Network I/O

FTP

No useful program can be useful in a vacuum. The functions described in this chapter are
concerned with I/O (Input and Output), whether it's to the browser, files, or across a
network. Some of them perform very specialized duties such as manipulating files.
Others are simply for debugging or reporting information about the environment.

If you are experienced in traditional application development, you may be challenged by
the unique characteristics of a stateless operating environment. Your script can't sit in a
loop and get input from the user until the quit button is clicked. Although there are ways
to force the preservation of state—that is, a collection of variables for each user—I
encourage you to work within PHP's world. You may come to find what at first were
limitations are refreshing opportunities.

Sending Text to the Browser

Any text outside PHP tags is automatically sent to the browser. This is as you would
expect. Chapter 18, "Network" deals with the decision to send text via a PHP function.
PHP offers three functions that simply send text to the browser: echo , print , and
printf.

The echo string first, string second, .. ., string last

The echo function sends any number of parameters, separated by commas, to the
browser. Each will be converted to a string and printed with no space between them.
Unlike most other PHP functions, the echo function does not require parentheses. In fact,
echo is more of a statement than a function.

IT-SC book 124

Core PHP Programming

<?
echo "First string", 2, 3.4, "last string";
?>

flush()

As text is sent to the browser via functions like print and echo, it may be stored in a
memory buffer and written out only when the buffer fills. The f1ush function attempts to
force the buffer to be dumped to the browser immediately. Since the Web server
ultimately controls communication with the browser, the flush may not be effective.

If your script takes a long time to execute, it's a good idea to output a status message and
flush the buffer. This keeps the user from clicking away.

<?
//simulate long calculation
//flush output buffer with each step
for (Sn=0; Sn5; $Sn++)
{
print ("Calculating...
");
flush();
sleep (3);
}
print ("Finished!
") ;
?>

print(string output)

The output argument of print is sent to the browser.

<?
print ("hello world!BR>\n");
2>

printf(string format, . ..)

The printf function converts and outputs arguments to the browser based on a format
string. The format string contains codes, listed in Table 8. 1, for different data types.
These codes begin with a percentage sign, %, and end with a letter that determines the
type of data. The codes match up with a list of values that follow the format string in the
argument list. Any text outside these codes will be sent unchanged to the browser.

IT-SC book 125

Core PHP Programming

You also have the option of placing characters between the % and the type specifier that
control how the data is formatted. Immediately following the % you may place any
number of flags. These flags control padding and alignment. They are listed in Table 8.2.

After any flags, you may specify a minimum field length. The converted output will be
printed in a field at least this wide, longer if necessary. If the output is shorter than the
minimum width, it will be padded with a padding character, a space by default. The
padding will normally be placed to the left but, if the - flag is used, it will be placed to the
right.

Next, you may specify a precision. It must start with a period to separate it from the
minimum field length. For strings, the precision is taken to mean a maximum field
length. For doubles, the precision is the number of digits that appear after the decimal
point. Precision has no meaning for integers.

Table 8.1. printf Type Specifiers

Sp?c)' Ii)f‘;er Description
d Integer, decimal notation.
Integer, octal notation.
X Integer, hexadecimal notation. "x" will use lowercase letters; "X" will use

uppercase letters.

b Integer, binary notation.

Character specified by integer ASCII code. See Appendix B for a complete
list of ASCII codes.

String.
Double.
e Double, using scientific notation such as 1.2e3.
% Print a percentage sign. This does not require a matching argument.
<?
printf ("%-10s %5d %05.5f
\n", "a string", 10, 3.14);
2>

Output Buffering

The output buffering commands add a layer of buffering controlled by PHP in addition to
whatever buffering the Web server uses. Some performance penalty may be incurred by
adding another layer of buffering, but you may decide the greater control you have is
worth the price.

When ob start is called, all output by functions such as print and echo are held back
in a buffer, a large area of memory. The contents of the buffer may be sent to the browser
using ob_end_ flush, or it may be thrown away using ob_end clean. As you recall from
Chapter 7, "I/O and Disk Access," headers cannot be sent after the first content is sent.

IT-SC book 126

Core PHP Programming

Therefore, these functions allow you to avoid errors created by sending headers after
content.

ob_start()

The ob start function begins output buffering. All text sent by print and similar
functions is saved in a buffer. It will not be sent to the browser until ob end flush is
called. The buffer will also be flushed when the script ends.

<?
//begin output buffering
ob start();
?>
<HTML>
<HEAD>
<TITLE>ob_Start</TITLE>
</HEAD>
<BODY>
<?
print ("At this point ");
print (strlen(ob get contents()));
print ("characters are in the buffer.
\n");
2>
</BODY>
</HTML>
<?
//add a test header
header ("X-note: COREPHP") ;

//dump the contents
ob end flush();
2>

ob_end_flush()

The ob_end flush function halts output buffering and sends the contents of the buffer to
the browser.

ob_end_clean()

The ob_end clean function halts output buffering and eliminates the contents of the
buffer. Nothing is sent to the browser.

string ob_get_contents()

The ob_get contents function returns the contents of the output buffer.

Files

IT-SC book 127

Core PHP Programming

These functions manipulate or return information about files. Many of them are wrappers
for the commands you execute in a UNIX or Windows command shell.

When the functions in this section call for a filename or a directory, you may name a file
in the same directory as the script itself. You may also use a full or relative path. The .
and .. directories are valid in both UNIX and Windows. You may also specify drive
letters on a Windows machine. Backslashes can delimit directories and filenames when
running under Windows, but forward slashes are interpreted correctly, so you stick with
them.

boolean chdir(string directory)

When a PHP script begins to execute, its default path is the path to the script itself. That
is, if the fully qualified path to the script were /users/leon/
public html/somescript.php, then all relative paths would work off
/users/leon/public html/. You may change this default path with the chdir
function. It returns TRUE if the change was made, FALSE if the script was unable to change
directories.

<?
if (chdir ("/tmp"))
{

print ("current directory is /tmp");

}

else

{
print ("unable to change to /tmp");

}

7>

boolean chgrp(string filename, string group)

The chgrp function invokes the UNIX idea of changing the group to which a file
belongs. If successful, TRUE is returned. If the group cannot be changed, FALSE is
returned. Under Windows this function always returns TrRUE and leaves the file
unchanged. Two similar functions are chmod and chown. If you want to find the group to
which a file is currently assigned, use the filegroup function.

You may wish to refer to the UNIX man page for the shell command of the same name.

if (chgrp("log.txt", "editors"))
{

print ("log.txt changed to editors group");
}

else

IT-SC book 128

Core PHP Programming

print ("log.txt not changed to editors group");

?>

boolean chmod(string filename, integer mode)

The chmod function sets the UNIX permissions for the given file based on the mode
supplied. The mode is interpreted like the UNIX shell command, except that it is not
converted to octal. Unless prefixed with a 0, mode is treated as a decimal number.

Under UNIX, three octal numbers specify access privileges for owner, group, and others,
respectively. The modes may be added in order to combine privileges. For example, to
make a file readable and executable, use mode 5. Refer to Table 8.3. You also may wish
to refer to the man page for chmod on your UNIX system.

Under Windows, chmod has limited use. The modes described in Table 8.4 are defined by
Microsoft. They may be combined with the bitwise-or (|), but in practice only write
permission has any meaning. All files in Windows are readable and the file extension
determines whether the file will execute.

Table 8.3. File Modes

Mode Description
0 No access
1 Execute
2 Write
4 Read
Table 8.4. Windows File Modes

Mode Description
0000400 read permission, owner
0000200 write permission, owner
0000100 execute/search permission, owner

This function is part of a group of three functions that change similar information about
files. The other two are chgrp and chown. The fileperms function will tell you the file's
current modes.

/*
** allow everyone to read and write to file
** when running PHP under UNIX

*/

IT-SC book 129

Core PHP Programming

if (chmod ("data.txt", 0666))
{

print ("mode change successful");

}

else

{

print ("mode change unsuccessful");

}

?>

boolean chown(string filename, string user)

The owner of the named file is changed by the chown function. If successful, TRUE is
returned. Otherwise the function returns rFarse. Under Windows this function does
nothing and always returns TRUE. This function is similar to chgrp and chmod. If you
need to know the current owner of a file, use the fileowner function.

<?
/*
** change owner to leon
*/
if (chown ("data.txt","leon"))
{
print ("owner changed");
}
else
{
print ("couldn't change owner");
}
2>

closedir(integer directory_handle)
The closedir function closes a directory after it has been opened with the opendir
function. PHP will close a directory connection for you when the script ends, so use of

this function is not strictly necessary.

Figure 8-1. closedir.

IT-SC book 130

Core PHP Programming

IT-SC

3 closedir - Microsoft Internet ... |8 [=] B3

J File Edt View ngarites_lu ”‘-

e abs.php

e acos.php

e addcslashes.php

o addslashes.php

e apache lookup uri.php
e apache note.php

o array.php

e array count values.php
o array flip.php

o array keys.php

e array merge php

e array_rmultisort.php

o array pad.php

o array_pop.php

e array push.php

e array reverse.php

o array_shift php

e array shce.php

o array splice.php

o array_unshift php

-

131

Core PHP Programming

boolean copy(string source, string destination)

The copy function copies a file specified by the source argument into the file specified by
the destination argument. This results in two separate and identical files. A similar
function is 1ink, which is described below.

<?
if (copy("data.txt", "/tmp/data.txt"))
{
print ("data.txt copied to /tmp");
}
else
{
print ("data.txt could not be copied");
}
?>

float diskfreespace(string path)

The diskfreespace function returns the number of free bytes for the given path.

<?
print (diskfreespace ("/"));
print (" bytes free");

?>

object dir(string directory)

The dir function creates a directory object to be used as an alternative to the group of
functions that includes opendir and closedir. The returned object has two properties:
handle and path. The handle property can be used with other directory functions such as
readdir as if it were created with opendir. The path property is the string used to create
the directory object. The object has three methods: read, rewind, and close. These
behave exactly like readdir, rewinddir, and closedir.

boolean fclose(integer file_handle)

The fclose function closes an open file. When a file is opened, you are given an integer
that represents a file handle. This file handle is used to close the file when you are
finished using it. The functions used to open files are: fopen and fsockopen. To close a
pipe, use pclose.

IT-SC book 132

Core PHP Programming

// open file for reading
SmyFile = fopen ("data.txt","xr");

// make sure the open was successful
1if (! ($myFile))
{

print ("file could not be opened");
exit;

}

while (!feof (SmyFile))

{
// read a line from the file
SmyLine = fgets ($myFile, 255);
print ("$myLine
\n");

}

// close the file
fclose ($myFile) ;
2>

boolean feof(integer file_handle)

As you read from a file, PHP keeps a pointer to the last place in the file you read. The
feof function returns TRUE if you are at the end of the file. It is most often used in the
conditional part of a while loop where a file is being read from start to finish. See the
description of fclose, above, for an example of use. If you need to know the exact
position you are reading from, use the ftel1 function.

string fgetc(integer file_handle)

The fgetc function returns a single character from a file. It expects a file handle as
returned by fopen, fsockopen, or popen. Some other functions for reading from a file
are:. fgetcsv, fgets, fgetss, fread, gzgetc.

<?
// open file and print each character
if (SmyFile = fopen("data.txt", "r"))
{
while (!feof ($SmyFile))
{
SmyCharacter = fgetc($SmyFile);
print (SmyCharacter) ;

fclose (SmyFile) ;

?>

IT-SC book 133

Core PHP Programming

array fgetcsv(integer file_handle, integer length, string
separator)

The fgetcsv function is used for reading comma-separated data from a file. It requires a
valid file handle as returned by fopen, fsockopen, or popen. It also requires a maximum
line length. The optional separator argument specifies the character to separate fields. If
left out, a comma is used. Fields may be surrounded by double quotes, which allows
embedding of commas and line breaks in fields.

Figure 8-2. fgetcsv.

IT-SC book 134

Core PHP Programming

<} fgetcsy - Microsoft Internet __. [[=] B3

| Fle Edt Yiew Favortes Tc»

e,
SKU Name Price
001 Broom 5.00
002 Mop 5,50
002 Dustpan 3.00
004 Deluze Mop 7.50
005 Broom, Professional 10.00 T
d |
@1 0at| | |4 Intemet ﬁ
<7
J/ open file
if(smyFile = fopen("data.csv", "r"))
{
print{*<TABLE=n") ;
while(!feof ($myFile))
{
print ("<TRE>\n") ;
smyField = fgetcsv(SmyFile, 1024);
for(sn=0; Sn<count(SmyField); 3Sn++)
{
print {"\t<TD=>"};
print (SmyField[&n]);
print("</TD=>\n") ;
}
print ("</TR=\n"};
1
fclose(smyFile) ;
print{®*=</TABLE='n");
}
7>

string fgets(integer file_handle, integer length)

IT-SC book

135

Core PHP Programming

The fgets function returns a string it reads from a file specified by the file handle, which
must have been created with fopen, fsockopen, or popen. It will attempt to read as many
characters as specified by the length argument less one. A linebreak character is treated
as a stopping point as is the end of the file. It will be included in the returned string.

Some other functions for reading from a file are: fgetc, fgetcsv, fgetss, fread,
gzgets.

// open file and print each line
if($myFile = fopen ("data.txt", "r"))
{

while (!feof (SmyFile))

{
SmyLine = fgets (SmyFile, 255);
print (SmyLine) ;

}

fclose (SmyFile) ;

?>

string fgetss(integer file_handle, integer length, string ignore)

The fgetss function is in all respects identical to fgets except that it attempts to strip
any HTML or PHP code before returning a string. The optional ignore argument
specifies tags that are allowed to pass through unchanged. Note that if you wish to ignore
a tag, you need only specify theopening form. Some other functions for reading from a
file are: fgetc, fgetcsv, fgetss, fread, gzgets. If you wish to preserve HTML
butprevent it from being interpreted, you can use the htmlentities function.

<?
// open file and print each line,
//stripping HTML except for anchor tags
if (SmyFile = fopen("index.html"™, "r"))
{
while (!feof ($myFile))
{
SmyLine = fgetss ($SmyFile, 1024, "<A>);
print (SmyLine) ;
}
fclose ($myFile) ;

?>

array file(string filename)

IT-SC book 136

Core PHP Programming

The file function returns an entire file as an array. Each line of the file is a separate
element of the array, starting at zero. If it would be more convenient to work with the file
as one string, use the implode function, as I have in the following example. If you are
planning on sending a file directly to the browser, use readfile instead.

// open file
SmyFile = file("data.txt");

//fold array elements into one string
$SmyFile = implode (SmyFile, "");

//print entire file
print (SmyFile) ;
2>

boolean file_exists(string filename)

The file exists function returns TRUE if the specified file exists and FaLsE if it does
not. This function is a nice way to avoid errors with the other file functions. The example
below tests that a file exists before trying to send it to the browser.

Sfilename = "data.txt";

//1if the file exists, print it
if (file exists($filename))
{

readfile ($filename) ;

}

else

{

print ("'$filename' does not exist");

}
7>

integer fileatime(string filename)

The fileatime function returns the last access time for a file in standard timestamp
format, the number of seconds since January 1, 1970. False is returned if there is an error.
A file is considered accessed if it is created, written, or read. Unlike some other file-
related functions, fileatime operates identically on Windows and UNIX.

Two other functions for getting timestamps associated with files are filectime and

filemtime.

IT-SC book 137

Core PHP Programming

<?
SLastAccess = fileatime ("data.txt");
print ("Last access was ");
print (date ("1 F d, Y", S$LastAccess));
?>

integer filectime(string filename)

When running on UNIX, the filectime function returns the last time a file was changed
in standard timestamp format, the number of seconds since January 1, 1970. A file is
considered changed if it is created or written to or its permissions have been changed.
When running on Windows, filectime returns the time the file was created. If an error
occurs, FALSE 1S returned.

Two other functions for getting timestamps associated with files are fileatime and

filemtime.

<?
$LastChange = filectime ("data.txt");
print ("Last change was ");
print (date ("1 F d, Y", $LastChange));
?>

integer filegroup(string filename)

The filegroup function returns the group identifier for the given file, or FALSE when
there is an error. This function always returns FaLsE under Windows. Other functions
that return information about a file are file-inode, fileowner, and fileperms. To
change a file's group, use chgrp.

<?
print (filegroup ("data.txt"));
>

integer fileinode(string filename)
The fileinode function returns the inode of the given file, or FALSE on error. This

function always returns rFaLse under Windows. Similar functions are filegroup,
fileowner,and‘fileperms.

<?

IT-SC book 138

Core PHP Programming

print (fileinode (data.txt));
2>

integer filemtime(string filename)

The filemtime function returns the last time a file was modified in standard timestamp
format, the number of seconds since January 1, 1970. FALSE is returned if there is an
error. A file is considered modified when it is created or its contents change. Operation of
this function is identical under any operating system. There are two other functions
related to timestamps on files: fileatime and filectime.

<?
SLastMod = filemtime ("data.txt");
print ("Last modification was ");
print (date("1 F d, Y", S$LastMod));
?>

integer fileowner(string filename)

The fileowner function returns the user identifier of the owner, or false if there is an
error. This function always returns FarLse under Windows. If you need to change the
owner of a file, use the chown function. Similar functions for getting information about a
file are filegroup, fileinode and fileperms.

<?
print (fileowner ("data.txt"));
7>

integer fileperms(string filename)

The fileperms function returns the permission number for the given file, or false when
there is an error. If you are using UNIX, you may wish to refer to the man page for the
stat system function. You may be surprised to find that printing this number in octal, as is
customary, produces six digits. The first three give you information about the file that
don't actually refer to read/write/execute permissions. You may wish to filter that
information out, as I have in the example, by performing a logical AND operation. If you
need to change the mode of a file, use the chmod function.

<?
printf ("%o", (fileperms ("data.txt") & 0777));
2>

IT-SC book 139

Core PHP Programming

integer filesize(string filename)

The filesize function returns the size of the given file in bytes.

<?
print (filesize ("data.txt"));
7>

string filetype(string filename)

The filetype function returns the type of the given file as a descriptive string. Possible
values are block, char, dir, fifo, file, link, and unknown. This function is an
interface to C's stat function, whose man page may be helpful in understanding the
different file types.

<?
print (filetype ("data.txt"));
?>

boolean flock(integer file_handle, integer mode)

Use the flock function to temporarily restrict access to a file. PHP uses its own system
for locking, which works across multiple platforms. However, all processes must be
using the same locking system, so the file will be locked for PHP scripts, but likely not
locked for other processes.

The file handle argument must be an integer returned by fopen. The mode argument
determines whether you obtain a lock that allows others to read the file (1), you obtain a
lock that doesn't allow others to read the file (2), or you release a lock (3). When
obtaining a lock, the process may block. That is, if the file is already locked, it will wait
until it gets the lock to continue execution. If you prefer, you may turn off blocking using
modes 5 and 6. Table 8.5 lists the modes in a table.

Table 8.5. £1lock Modes

Mode Operations Allowed

Allow reads

Disallow reads

Release lock

WIN =

Allow reads, do not block

IT-SC book 140

Core PHP Programming

Sfp = fopen("log.txt", "a");

//get lock
flock (Sfp, 2);

//add a line to the log
fputs ($fp, date("h:1i A 1 F dS, Y\n"));

//release lock
flock (Sfp, 3);

fclose ($fp);

//dump log

print ("<PRE>") ;

readfile ("log.txt");

print ("</PRE>\n") ;
>

integer fopen(string filename, string mode)

The fopen function opens a file for reading or writing. The function expects the name of
a file and a mode. It returns an integer, which is called a file handle. Internally, PHP uses
this integer to reference a block of information about the open file. The file handle is used
by other file-related functions, such as fputs and fgets.

Ordinarily, the filename argument is a path to a file. It can be fully qualified, or relative
to the path of the script. If the filename begins with http:// or ftp://, the file will be
opened using HTTP or FTP protocol over the Internet.

Table 8.6. File Read/Write Modes
Mode Operations Allowed
r[b] |reading only [binary]
w[b] |writing only, create if necessary, discard previous contents if any [binary]
a[b] |append to file, create if necessary, start writing at end of file [binary]
r+[b] |reading and writing [binary]
reading and writing, create if necessary, discard previous contents if any
[binary]
a+[b] [reading and writing, create if necessary, start writing at end of file [binary]

w+[b]

The mode argument determines whether the file is to be read from, written to, or added to.
Modes with a plus sign (+) are update modes that allow both reading and writing. If the
letter b appears as the last part of the mode, the file is assumed to be a binary file, which
means no special meaning will be given to end-of-line characters. Table 8.6 lists all the
modes.

IT-SC book 141

Core PHP Programming

While it is an error to open a file for writing when an HTTP URL is specified, this is not
the case with FTP. You may upload an FTP file by using write mode. However, this
functionality is limited. You can create remote files, but you may not overwrite existing
files. With either HTTP or FTP connections, you may only read from start to finish from
a file. You may not use fseek or similar functions.

Sometimes files on HTTP and FTP servers are protected by usernames and passwords.
You can specify a username and a password exactly as popular Web browsers allow you
to do. After the network protocol and before theserver name you may insert a username, a
colon, a password, and an at-symbol (@).

Three other ways to open a file are the fsockopen, gzopen, popen functions.

<?
print ("<HI>HTTP</H1>\n");

//open a file using http protocol
//Use username and password
if (! (SmyFile = fopen ("http://leon:password@www.clearink.com/", "r")))
{
print ("file could not be opened");
exit;

}

while (!feof (SmyFile))

{
// read a line from the file
SmyLine = fgetss($smyFile, 255);
print ("$myLine
\n");

}

// close the file
fclose ($myFile) ;

print ("<HI>FTP</H1>\n");
print ("<HR>\n") ;

// open a file using ftp protocol
if (! (SmyFile = fopen("ftp://ftp.php.net/welcome.msg", "r")))
{

print ("file could not be opened");

exit;

}

while (!feof (SmyFile))

{
// read a line from the file
SmyLine = fgetss($myFile, 255);
print ("$myLine
\n");

}

// close the file
fclose (SmyFile) ;

IT-SC book 142

Core PHP Programming

print ("<H1>Local</H1>\n");
print ("<HR>\n") ;

// open a local file

if (! (SmyFile = fopen("data.txt", "r")))

{
print ("file could not be opened");
exit;

}

while (!feof (SmyFile))

{
// read a line from the file
SmyLine = fgetss(SmyFile, 255);
print ("$myLine
\n");

}

// close the file
fclose ($myFile) ;
2>

boolean fpassthru(integer file_handle)

The fpassthru function prints the contents of the file to the browser. Data from the
current file position to the end are sent, so you can read a few lines and output the rest.
The file is closed after being sent. If an error occurs, fpassthru returns false. The
gzpassthru function offers the same functionality for compressed files.

<?
/*
** Get a Web page, change the title tag
*/

// open a file using http protocol

if (! (SmyFile = fopen ("http://www.clearink.com/",

{
print ("file could not be opened");
exit;

}
$KeepSearching = TRUE;

while (!feof (SmyFile) AND S$KeepSearching)
{

// read a line from the file

SmyLine = fgets(SmyFile, 1024);

//watch for body tag

if (eregi ("<body", S$myLine))

{
//no chance to find a title tag
//after a body tag

"r")))

IT-SC book

143

Core PHP Programming

SKeepSearching = FALSE;
}

//try adding some text after the title tag
$myLine = eregi replace("<title>",
"<title> (fpassthru example)", SmyLine);

//send line to browser
print ("$myLine");
}

// send the rest of file to browser
fpassthru (SmyFile) ;
2>

integer fputs(int file_handle, string output)

The fputs function writes data to an open file. It expects a file handle as returned by
fopen, fsockopen, Or popen. The number of bytes written is returned, or -1 when an
error occurs. The gzputs function performs the same task on compressed files.

<?
// open file for writing
SmyFile = fopen("data.txt","w");

// make sure the open was successful
1if (! ($myFile))
{

print ("file could not be opened");
exit;

}

for ($index=0; $index<10; S$index++)
{

// write a line to the file
fputs ($SmyFile, "line $index\n");
}

// close the file
fclose ($myFile) ;
>

string fread(integer file_handle, integer length)

The fread function is a binary-safe version of the fgets function. That means it does not
pay attention to end-of-line characters. It will always return the number of bytes specified
by the 1ength argument, unless it reaches the end of the file. This function is necessary if
you wish to read from binary files, such as jpeg image files.

IT-SC book 144

Core PHP Programming

<?
/*
** Check that a file is a GIF89
*/

$filename = "php.gif";
Sfp = fopen($filename, "r");

//get first 128 bytes
Sdata = fread($fp, 128);

//close file
fclose (Sfp);

//check for GIF89
if (substr($data, 0, 5) == "GIF89")
{
print ("$filename is a GIF89 file.\n");

}

else

{
print ("$filename isn't a GIF89 file.\n");

}

?>

integer fseek(integer file_handle, integer offset)

To change PHP's internal file pointer, use fseek. It expects a valid file handle as created
by fopen. It also expects an offset, the number of bytes past the beginning of the file. If
an error occurs, fseek returns negative one (-1); otherwise it returns zero (0). Take note
that this is different from most other PHP functions.

Seeking past the end of the file is not an error; however, using fseek on a file opened by
fopen if it was used with http:// or ftp:// is forbidden.

If you need to know where the file pointer points, use the ftel1 function.

<?
// open a file
if($myFile = fopen ("data.txt", "r"))
{
// Jump 32 bytes into the file
fseek (SmyFile, 32);

// dump the rest of the file
fpassthru(SmyFile) ;
}

else

{

IT-SC book 145

Core PHP Programming

print ("file could not be opened");

?>

array fstat(integer file_handle)

The fstat function gets information from C's stat function about an open file and
returns it in an associative array. The elements of the array are atime, blksize, blocks,
ctime, dev, gid, ino, mode, mtime, nlink, rdev, size, uid. This function returns the
same information returned by stat and 1stat.

integer ftell(integer file_handle)

Given a valid file handle, fte11 returns the offset of PHP's internal file pointer. If you
wish to move the file pointer, use the fseek function.

<?
// open a file
if ($myFile = fopen ("data.txt", "r"))
{
//read characters until we find a space
$C — nn;
while (! (feof ($myFile)) AND (S$c != " "))
{
Sc = fgetc(SmyFile);
}
print ("File pointer at " . ftell(SmyFile) . " bytes");
}
else
{
print ("file could not be opened");
}
?>

integer ftruncate(integer file_handle, integer size)

The ftruncate function truncates a file to a specified size, expressed in number of bytes.
integer fwrite(integer file_handle, string data, integer length)

The fwrite function writes a string to a file. It is similar to fputs, except that it is
binary-safe. The file handle argument must be an integer returned by fopen,
fsockopen, Or popen. The length argument is optional, but if present will cause the
magic quotes functionality to be suspended. This means backslashes inserted into the
string by PHP to escape quotes will not be stripped before writing.

IT-SC book 146

Core PHP Programming

<?
// open file for writing
SmyFile = fopen ("data.txt","w");
// make sure the open was successful
if (! (SmyFile))
{
print ("file could not be opened");
exit;
}
for ($index=0; $index<10; S$index++)
{
// write a line to the file
fputs (SmyFile, "line $index\n");
}
// close the file
fclose (SmyFile) ;
2>

array get_meta_tags(string filename, boolean
use_include_path)

The get meta tags function opens a file and scans for HTML meta tags. The function
assumes it is a well-formed HTML file that uses native line breaks. An array indexed by
the name attribute of the meta tag is returned. If the name contains any characters illegal
in identifiers, they will be replaced with underscores. This helps if you wish to make all
the elements of the ar-ray into variables using extract, a function discussed in Chapter
9, "Data Functions."

The optional use include path will cause get meta tags to look for the file in the
include path instead of the current directory. The include path is set in php.ini and
normally is used by the include function.

Like many of the file functions, get meta tags allows specifying a URL instead of a
path on the local filesystem.

Figure 8-3. get_meta_tags.

IT-SC book 147

Core PHP Programming

"3 get_meta_tage - Microzoft Internet Explorer

]Eile Edt “iew Favortes Tool: Help |

LArray
{

[description] => Demonstration of get meta tags.
[kevywords] => FHP, Core PHP, Leon Atkinson
[naree with space] => see how the name changes

Descniption1s Demeonstration af get_meta_tags.

o

] Done L |4 Intemet

=HTHML=>
=HEAD>
<TITLE>get_meta_tags</TITLE=
<META NAME="description" CONTENT="Demonstration of
get_meta tags.">
<META NAME="keywords" CONTENT="PHP, Core PHP, Leon Atkin-
sSon"s
<META NAME="Name With Space" CONTENT="see how the name
changes"®>
< /HEAD>
<BODY>
<7
Stag = get_meta_tags("get_meta_tags.php"}:

fidump all elements of returned array
print ("<PRE>");

print_r{Stag):

print(“</PRE>\n");

//get all tags as wvariables
extract {$tag, EXTR_PREFIX_ALL, “"meta®);

print("Description is «<I>$meta_description</I>
\n") ;
>
< /BODY>
< fHTML>

include(string filename)

The include function causes the PHP parser to open the given file and execute it. The
file is treated as a normal PHP script. That is, text is sent directly to the browser unless
PHP tags are used. You may use a variable to specify the file, and if the call to include is
inside a loop, it will be reevaluated each time.

IT-SC book 148

Core PHP Programming

You may also specify files by URL by starting them with http:// or ftp://. PHP will
fetch the file via the stated protocol and execute it as if it were in the local filesystem.

Use of this function is discussed in detail in Chapter 7. Compare this function to

require.
boolean is_dir(string filename)

The is dir function returns TRUE if the given filename is a directory; otherwise it returns
FALSE. Similar functions are is file and is link.

<?
$filename = "data.txt";
if(is_dir($filename))
{
print ("$filename is a directory");
}
else
{
print ("$filename is not a directory");
}
2>

boolean is_executable(string filename)

The is executable function returns true if a file exists and is executable; otherwise it
returns false. On UNIX this is determined by the file's permissions. On Windows this is
determined by the file extension. Two related functions are is readable and
is writeable.

<?
$filename = "data.txt";
if (is_executable ($filename))
{
print ("$filename is executable");
}
else
{
print ("$filename is executable");
}
?>

boolean is_file(string filename)

IT-SC book 149

Core PHP Programming

The is file function returns true if the given filename is neither a directory nor a
symbolic link; otherwise it returns false. Similar functions are is dir and is 1link.

@CPO # above:?
Sfilename = "data.txt";

if(is _file(Sfilename))

{

print ("$filename is a file");

}

else

{

print ("$filename is not a file");

}

?>

boolean is_link(string filename)

The is 1ink function returns true if the given filename is a symbolic link; otherwise it
returns false. Similar functions are is dir and is file.

<?
$filename = "data.txt";
if(is_link(Sfilename))
{
print ("$filename is a 1link");
}
else
{
print ("$filename is not a link");
}
2>

boolean is_readable(string filename)

The is readable function returns true if a file exists and is readable; otherwise it
returns false. On UNIX this is determined by the file's permissions. On Windows, true
is always returned if the file exists. This function is similar to is executable and

is writeable.
<?
Sfilename = "data.txt";

if (is_readable ($filename))

{

IT-SC book 150

Core PHP Programming

print ("$filename is readable");

}

else

{

print ("$filename is not readable");

}

7>

boolean is_writeable(string filename)

The is writeable function returns true if a file exists and is writeable; otherwise it
returns false. Similar functions are is executable and is readable

Sfilename = "data.txt";

if (is writeable($filename))

{

print ("$filename is writeable");

}

else

{

print ("$filename is not writeable");

}
7>

boolean link(string source, string destination)

The 1ink function creates a hard link. A hard link may not point to a directory, may not
point outside its own filesystem, and is indistinguishable from the file to which it links.
See the man page for 1ink or 1n for a full description. The 1ink function expects a
source file and a destination file. On Windows this function does nothing and returns
nothing. You can create a symbolic link with the sym1ink function.

<?
link ("/www/htdocs/index.php", "/www/htdocs/index2.php"):;
?>

integer linkinfo(string filename)

The 1inkinfo function calls the C function 1stat for the given filename and returns the
st dev field 1stat generates. This may be used to verify the existence of a link. It
returns false on error. You can read more about 1stat on the man page, or in the help
file for Microsoft Visual C++.

IT-SC book 151

Core PHP Programming

<?
print (linkinfo ("data.txt"));
>

array Istat(string filename)

The 1stat function executes C's stat function and returns an array. The array contains
13 elements, numbered starting with zero. If the filename argument points to a symbolic
link, the array will reflect the link, not the file to which the link points. To get
information about the files to which the link points, use the stat function. Table 8.7 lists
the contents of the array.

Figure 8-4. Istat.

IT-SC book 152

Core PHP Programming

I [=] B3
| Fle Edt View Favoitss Tools Hel»

=} Istat - Microsoft Internet E xplorer

|»

Dewice: 770

Mode S03870

Mode: 100646

Links: 1

TID: O

GID: 0

Device Type: U

size: 28 bytes

Last Accessed 13:04:28 March 26, 2000
Last Modified: 14:59:20 March 11, 2000
Last Changed: 14.59.20 March 11, 2000
Block Size 4096

Elocks: 2 El
|&] Dare L |4 Intemet Y
<7
,-"l*
** print stat information based on 0S
*f

/f get stat information
SstatInfo = lstat("data.txt"):

if (eregi("windows", 503))
{
// print useful information for Windows
printf("Drive: %c
\n", (SstatInfo[0]+65));
printf(*Mode: %o <BR=\n", S5statInfol2]);
print({"Links: S$statInfol[3]
\n"};
print({"Size: SstatInfol[7] bytes
\n"):
printf("Last Accessed: %s
\n",
date("H:i:s F d, ¥*, SstatInfol[B]));
printf ("Last Modified: %s
\n",
date("H:i:s F d, ¥*, SstatInfold]));
printf(“Created: %s
\n",
date({"H:1:8 F d, ¥", SstatInfo[l0])):

else

J/ print UNIX wversion
print("Device: SstatInfo[0]
\n"):
print{"INode: S5statInfo[l] <BE>\n");
printf("Mode: %o <ER>\n", S$statInfol[2]);
print{"Links: $statInfo[3] <BR=\n"};

IT-SC print{"UID: SstatInfol4]
\n"); 153
print{"GID: S$statInfo[5]
\n");
print{"Device Type: SstatInfol[é]
\n"):
print({"Size: SstatInfol[7] bytes
\n");

Core PHP Programming

boolean mkdir(string directory, integer mode)

The mkdir function creates a new directory with the supplied name. Permissions will be
set based on the mode argument, which follows the same rules as chmod. On Windows the

mode argument is ignored. You can use the rmdir function to remove a directory.

<?
if (mkdir ("myDir", 0777))
{
print ("directory created");

}

else

{

print ("directory cannot be created");

}

?>

integer opendir(string directory)

The opendir function requires a directory name and returns a directory handle. This
handle may be used by readdir, rewinddir, and closedir. The dir function described

above provides an alternative to this group of functions.

// print the current directory in a table
print ("<TABLE BORDER=\"1\">\n");

// create header row

print ("<TR>\n") ;

print ("<TH>Filename</TH>\n") ;
print ("<TH>File Size</TH>\n");
print ("</TR>\n") ;

// open directory
SmyDirectory = opendir(".");

// get each entry
while ($entryName = readdir (SmyDirectory))
{
print ("<TR>") ;
print ("<TD>$SentryName</TD>") ;
print ("<TD ALIGN=\"right\">");
print (filesize (SentryName)) ;
print ("</TD>") ;
print ("</TR>\n") ;
}

// close directory
closedir (SmyDirectory) ;

IT-SC book

154

Core PHP Programming

print ("</TABLE>\n") ;
2>

integer pclose(integer file_handle)

The pclose function closes a file stream opened by popen. The return value of the
process called in the call to popen is returned.

integer popen(string command, string mode)

The popen function opens a pipe to an executing command that may be read from or
written to as if it were a file. A file handle is returned that is appropriate for use with
functions such as fgets. Pipes work in one direction only, which means you can't use
update modes with popen.

When you open a pipe, you are executing a program in the local filesystem. As with the
other functions that execute a command (exec, passthru, and system), you should
consider both the high cost of starting a new process and the security risk if user input is
included in the command argument. If you must pass user-supplied data to a command,
pass the information through the escapeshellcmd function first.

Figure 8-5. popen.

2} popen - Microsoft Internet Explorer

J File Edit ‘iew Favoites Tools Help

leot typl Mar 26 1220 (ali-cad-65 tzne)
leon typ 1 Mar 26 12:21 (max cleannls cotn)

|&] Done | W Intermet o
<7

|'Ir*

** zge who's logged in

*f

SmyPipe = popen|®"whoa", "r");

while{!feof (SmyPipe})

{
print (nlzZbr {fgets{SmyPipe, 255)1}1);

}

polose (SmyPipe) ;

IT-SC book 155

Core PHP Programming

string readdir(integer directory_handle)y

The readdir function returns the name of the next file from a directory handle created by
opendir, Or FALSE when no entries remain. You can place readdir in the conditional
expression of a while loop to get every entry in a directory. Keep in mind that . and .. are
always present and will be returned. See c1osedir for an example of use.

integer readfile(string filename)

The file given is read and sent directly to the browser by the readfile function, and the
number of bytes read is returned. If an error occurs, false is returned. If the filename
begins with http:// or ftp://, the file will be fetched using HTTP or FTP,
respectively. Otherwise the file is opened in the local filesystem. If you need to send a
compressed file to the browser, use readgzfile. If you'd rather read a file into a
variable, use the f£ile function.

<?
print ("Here is some data BR>\n");
readfile ("data.txt");

2>

string readlink(string filename)

The readlink function returns the path to which a symbolic link points. It returns false
on error. Another function that gets information about a link is 1inkinfo.

<?
print (readlink ("data.txt"));
2>

boolean rename(string old_name, string new_name)

The rename function changes the name of a file specified by the o1d name argument to
the name specified in the new name argument. The new and old names may contain
complete paths, which allows you to use rename to move files.

<?
//move data.txt from local directory
//to the temp directory
rename ("./data.txt", "/tmp/data.dat");
?>

IT-SC book 156

Core PHP Programming

boolean rewind(integer file_handle)

The rewind function moves PHP's internal file pointer back to the beginning of the file.

This is the same as using fseek to move to position zero.

/*
** print a file, then print the first line again

*/

// open a local file
SmyFile = fopen("data.txt", "r");

while (!feof ($myFile))

{
// read a line from the file
SmyLine = fgetss($myFile, 255);
print ("SmyLine
\n");

}

rewind ($SmyFile) ;

SmyLine = fgetss($SmyFile, 255);

print ("SmyLine
\n");

// close the file

fclose ($myFile) ;
2>

boolean rewinddir(integer handle)

The rewinddir function resets PHP's internal pointer to the beginning of a directory
listing. It returns TRUE unless an error occurs, in which case it returns FaLse. The handle

is an integer returned by opendir.

/*
** print the current directory in a table
*/

print ("<TABLE BORDER=\"1\">\n");

// open directory
SmyDirectory = opendir(".");

print ("<TR>\n") ;
print ("<TH>Filename</TH>\n") ;

// get each entry
while ($SentryName = readdir (SmyDirectory))
{
print ("<TD>$entryName</TD>\n") ;
}

IT-SC book

157

Core PHP Programming

print ("</TR>\n") ;

// Go back to beginning
rewinddir (SmyDirectory) ;

print ("<TR>\n") ;
print ("<TH>Size</TH>\n") ;

// get each entry
while ($SentryName = readdir (SmyDirectory))
{
print ("<TD ALIGN=\"right\">") ;
print (filesize ($SentryName)) ;
print ("</TD>\n") ;
}
print ("</TR>\n") ;

// close directory
closedir (SmyDirectory) ;
print ("</TABLE>\n") ;

2>

boolean rmdir(string directory)

Use the rmdir function to remove a directory. The directory must be empty. To remove a
file, use unlink.

<?
if (rmdir ("/tmp/leon™))
{
print ("Directory removed") ;
}
else
{
print ("Directory not removed") :
}
2>

set_file_buffer(integer file_handle, integer size)

Use set file buffer to set the size of the write buffer on a file stream. It requires a
valid file handle as created by fopen, fsockopen, or popen. The size argument is a
number of bytes, and if you set a buffer size of zero, no buffering will be used. You must
call set file buffer before making any reads or writes to the file stream. By default,
file streams start with 8K buffers.

IT-SC book 158

Core PHP Programming

<?

// open file for writing
SmyFile = fopen ("data.txt","w");

// make sure the open was successful
if (! (SmyFile))

{

}

print ("file could not be opened");
exit;

//use 1K buffer
print (set file buffer (SmyFile, 1024));

for ($index=0; $index<10; S$index++)

{

}

// write a line to the file
fwrite ($SmyFile, "line $index\n");

// close the file
fclose ($myFile) ;

?>

array stat(string filename)

The stat function executes C's stat function and returns an array. The array contains 13
elements, numbered starting at zero. If the filename argument points to a symbolic link,
the array will reflect the file to which the link points. To get information about the link
itself, use the 1stat function. Table 8.7 lists the contents of the array.

/*

** print stat information based on 0S

*/

// get stat information
S$statInfo = stat("data.txt");

if (eregi ("windows", $0S))

{

// print useful information for Windows
printf ("Drive: %c
\n", ($statInfo[0]+65));
printf ("Mode: %o
\n", S$statInfo[2]);
print ("Links: S$statInfo[3]
\n");
print ("Size: S$statInfo[7] bytes
\n");
printf ("Last Accessed: %$s
\n",

date("H:1i:s F d, Y", S$statInfo([8]));
printf ("Last Modified: %s
\n",

date("H:1i:s F d, Y", S$statInfo[9]));
printf ("Created: %$s
\n",

IT-SC book

159

Core PHP Programming

date("H:i:s F d, Y", S$SstatInfo[l10]));

else
{
// print UNIX version
print ("Device: $statInfo[0]
\n");
print ("INode: $statInfo[l]
\n");
printf ("Mode: %o
\n", S$statInfol[2]);
print ("Links: $statInfo[3]
\n");
print ("UID: $statInfo[4]
\n");
print ("GID: $statInfo[5]
\n");
print ("Device Type: S$statInfo[6]
\n");
print ("Size: $statInfo[7] bytes
\n");
printf ("Last Accessed: %$s
\n",
date("H:1i:s F d, Y", S$statInfo[8]));
printf ("Last Modified: %s
\n",
date ("H:i:s F d, Y", S$statInfo[9])):
printf ("Last Changed: %s
\n",
date("H:1i:s F d, Y", S$statInfo[10]));
print ("Block Size: $statInfo[ll]
\n");
print ("Blocks: $statInfo[12]
\n");
}
2>
Table 8.7. Array Elements Returned by the stat Function
Element Name Description
Device or This is a number identifying the device of the filesystem. On
0 . Windows this number denotes the drive letter the file is on,
Drive Letter . . .
with the A drive being zero.
1 Inode A unique identifier for the file, always zero on Windows. This is
the same value you will get from the fileinode function.
This is the same value you will get from fileperms, the
2 Mode . .
read/write/execute permissions.
3 Number of |[Number of links to file. On Windows, this will always be 1 if the
Links file is not on an NTFS partition.
User ID of the owner, Always zero on Windows. This is the
4 User . , .
same value you will get from the fileowner function.
Group ID, always zero on Windows. This is the same value you
5 Group : , .
will get from the filegroup function.
6 Device Type This is the type of the device. On Windows it repeats the device
number.
. Size of the file in bytes, which is the same as reported by
7 Size . .
filesize.
8 Last Last time the file was accessed, as defined in the description of
Accessed fileatime.
9 Last Modified Lgst tlme the file was modified, as defined in the description of
filemtime.
10 Last Last time the file was changed, as defined in the description of
Changed filectime.\ On Windows this is the time the file was created.

IT-SC book 160

Core PHP Programming

11 Block Size Suggested block size for I/0 to file, -1 under Windows.

Number of

12 Blocks

Number of blocks used by file, -1 under Windows.

boolean symlink(string source, string destination)

The symlink function creates a symbolic link to the source argument with the name in
the destination argument. To create a hard link, use the 1ink function.

<?
//1ink moredata.txt to existing file data.txt
if (symlink ("data.txt", "moredata.txt"))
{
print ("Symbolic link created");
}
else
{
print ("Symbolic link not created");
}
?>

integer tmpfile()

The tmpfile function opens a new temporary file and returns its file handle. This handle
may be used in the same way as one returned by fopen using anupdate mode. When you
close the file, or your script ends, the file will beremoved. This function is a wrapper for
the C function of the same name. If for some reason a temporary file cannot be created,
FALSE is returned.

//open a temporary file
Sfp = tmpfile();

//write 10K of random data
//to simulate some process
for ($i=0; $1<10240; S$i++)
{
//randomly choose a letter
//from a range of printables
fputs ($fp, chr(rand(ord(' "), ord('z'))));
}

//return to start of file
rewind (Sfp) ;

//dump and close file,
//therefore deleting it
fpassthru ($fp);

IT-SC book 161

Core PHP Programming

?>

boolean touch(string filename, integer time)

The touch function attempts to set the time the file was last modified to thegiven time,
expressed in seconds since January 1, 1970. If the time argument is omitted, the current
time is used. If the file does not exist, it willbe created with zero length. This function is
often used to create empty files.

To find out when a file was last modified, use filemtime.

<?
touch ("data.txt");
2>

integer umask(integer umask)

The umask function returns the default permissions given files when they are created. If
the optional umask argument is given, it sets the umask to a logical-and (&) performed on
the given integer and 0777. Under Windows this function does nothing and returns
false. To find out the permissions set on a particular file, use fileperms.

<?
printf ("umask is %o", umask (0444));
2>

boolean unlink(string filename)

The unlink function removes a file permanently. To remove a directory, use rmdir.

<?
if (unlink("data2.txt"))
{
print ("data2.txt deleted");
}
else
{
print ("data2.txt could not be deleted");
}
2>

IT-SC book 162

Core PHP Programming

Compressed File Functions

The functions in this section use the zlib library to work with files compressed with GNU
compression tools, such as gzip. The library was written by Jean-loup Gaill and Mark
Adler. The two are authors of the gzip tool, in fact. You can obtain more information and
the library itself from the zlib home page <http://www.cdrom.com/pub/infozip/zlib/>.

In order to activate these functions, you must include the zlib extension. On a UNIX
operating system, you configure PHP to use zlib as you compile it. On Windows you may
activate the php z1ib.d11 extension either in php.ini or using the d1 function.

Most of the functions for reading and writing files are duplicated here and they operate
similarly. One difference is the lack of support for specifying files using HTTP or FTP
protocol.

boolean gzclose(integer file_handle)

The gzclose function closes a file opened with gzopen. TRUE is returned if the file closed
successfully. FALSE is returned if the file cannot be closed. See gzgets for an example of
use.

boolean gzeof(integer file_handle)

As you read from a compressed file, PHP keeps a pointer to the last place in the file you
read. The gzeof function returns TRUE if you are at the end of the file. See gzgets for an
example of use.

array gzfile(string filename, boolean use_include_path)

The gzfile function reads an entire file into an array. The file is first uncompressed.
Each line of the file is a separate element of the array, starting at zero. The optional
use include path argument causes gzfile to search for the file within the include path
specified in php.ini.

<?
// open file and print each line
SmyFile = gzfile("data.gz");
for($Sindex = 0; $index < count ($SmyFile); S$index++)
{
print (SmyFile[$index]) ;
}
2>

string gzgetc(integer file_handle)

IT-SC book 163

Core PHP Programming

The gzgetc function returns a single character from a compressed file. It expects a file
handle as returned by gzopen.

<?
// open compressed file and print each character
if (SmyFile = gzopen ("data.gz", "r"))
{
while (!gzeof ($myFile))
{
SmyCharacter = gzgetc (SmyFile);
print (SmyCharacter) ;
}
gzclose (SmyFile) ;
}
?>

string gzgets(integer file_handle, integer length)

The gzgets function returns a string it reads from a compressed file specified by the file
handle, which must have been created with gzopen. It will attempt to read as many
characters as specified by the length argument less one (presumably this is PHP
showing its C heritage). A linebreak is treated as a stopping point, as is the end of the file.
Linebreaks are included in the return string.

// open file and print each line
if($myFile = gzopen ("data.gz", "r"))
{

while (!gzeof ($myFile))

{
SmyLine = gzgets ($myFile, 255);
print ($SmyLine) ;

gzclose (SmyFile) ;

?>

string gzgetss(integer file_handle, integer length, string
ignore)

The gzgetss function is in all respects identical to gzgets except that it attempts to strip
any HTML or PHP code before returning a string. The optional ignore argument may
contain tags to be ignored.

IT-SC book 164

Core PHP Programming

<?
// open compressed file and print each line
if ($myFile = gzopen ("data.gz", "r"))
{
while (!gzeof (SmyFile))
{
SmyLine = gzgetss ($myFile, 255);
print ($myLine) ;
}
gzclose ($myFile) ;
}
?>

integer gzopen(string filename, string mode, boolean
use_include_path)

The gzopen function is similar in operation to the fopen function, except that it operates
on compressed files. If the use include path argument is TRUE, the include path
specified in php.ini will be searched. See gzgets and gzputs for examples of use.

The mode argument accepts a few extra parameters compared to fopen. In addition to the
modes listed in Table 8.6, you may specify a compression level and a compression
strategy if you are creating a new file. Immediately following the write mode, you may
place an integer between zero and nine that specifies the level of compression. Zero
means no compression, and nine is maximum compression. After the compression level,
you may use h to force Huffman encoding only, or £ to optimize for filtered input.
Filtered data is defined by the zlib source code as being small values of somewhat
random distribution. In almost all cases the default settings are a good choice and the
extra mode settings are unnecessary.

It is possible to open an uncompressed file with gzopen. Reads from the file will operate
as expected. This can be convenient if you do not know ahead of time whether a file is
compressed.

boolean gzpassthru(integer file_handie)

The gzpassthru function prints the contents of the compressed file to the browser,
exactly like the fpassthru function.

// open a compressed file
if (! (SmyFile = gzopen ("data.html.gz", "r")))
{
print ("file could not be opened");
exit;

IT-SC book 165

Core PHP Programming

// send the entire file to browser
gzpassthru ($myFile) ;
?>

boolean gzputs(int file_handle, string output, integer length)

The gzputs function writes data to a compressed file. It expects a file handle as returned
by gzopen. It returns TRUE if the write was successful, FaLsE if it failed. The optional
length argument specifies a maximum number of input bytes to accept. A side effect of
specifying length is that the magic quotes runtime configuration setting will be
ignored.

<?
// open file for writing
// use maximum compress and force
// Huffman encoding only
SmyFile = gzopen ("data.gz","wb9h");
// make sure the open was successful
if (! (SmyFile))
{
print ("file could not be opened");
exit;
}
for ($Sindex=0; $index<10; $index++)
{
// write a line to the file
gzputs (SmyFile, "line $index\n");
}
// close the file
gzclose ($SmyFile) ;
?>
gzread

The gzread function is an alias to gzgets.
boolean gzrewind(integer file_handle)

The gzrewind function moves PHP's internal file pointer back to the beginning of a
compressed file. It returns TRUE on success, FALSE if there is an error.

<?

IT-SC book 166

Core PHP Programming

/*
** print a file, then print the first line again

*/

// open a local file
if (! (SmyFile = gzopen ("data.gz", "r")))
{
print ("file could not be opened");
exit;

}

while (!gzeof ($myFile))

{
// read a line from the file
SmyLine = gzgetss ($myFile, 255);
print ("SmyLine
\n");

}

gzrewind ($SmyFile) ;

SmyLine = gzgetss (SmyFile, 255);
print ("SmyLine
\n");

// close the file

gzclose ($SmyFile) ;
2>

integer gzseek(integer file_handle, integer offset)

This function works exactly like fseek, except that it operates on compressed files.

<?
// open a file
if (! (SmyFile = gzopen ("data.gz", "r")))
{
print ("file could not be opened");
exit;
}
// Jump 32 bytes into the file
gzseek (SmyFile, 32);
SmyLine = gzgets (SmyFile, 255);
print ($SmyLine) ;
// dump the rest of the file
gzpassthru ($myFile) ;
2>

integer gztell(integer file_handle)

IT-SC book

167

Core PHP Programming

Given a valid file handle, gztell returns the offset of PHP's internal file pointer.

<?
// open a file
if (! (SmyFile = gzopen ("data.gz", "r")))
{
print ("file could not be opened");
exit;

}

SmyLine = gzgets ($myFile, 255);
print ($SmyLine) ;

print ("<HR>\n") ;
print ("File pointer at " . gztell (SmyFile) . " bytes");

// close file
gzclose (SmyFile) ;
2>

gzwrite

The gzwrite function is an alias to gzputs.

integer readgzfile(string filename, boolean use_include_path)
The readgzfile function operates identically to the readfile function, except that it

expects the file to be compressed. The file is uncompressed on the fly and sent directly to
the browser.

<?
//dump uncompressed contents of
//data.gz to browser
readgzfile("data.gz");

?>

POSIX

Kristian Koehntopp added a module to PHP to support the POSIX.1 standard, also known
as IEEE 1003.1. This standard describes functionality provided to user processes by an
operating system. A few functions in this section are not part of the standard, but are
commonly available in System V or BSD UNIX systems.

Many of these functions are available only to the root user. PHP scripts are executed by
the owner of the Web server process, which is usually a special user for just this purpose.
Running the Web server as root is unusual and dangerous. Anyone able to view a PHP

IT-SC book 168

Core PHP Programming

file through the Web server would have arbitrary control over the system. Keep in mind,
however, that PHP can be compiled as a stand-alone executable. In this case it can be
used like any other scripting language.

These functions are wrappers for underlying C functions, usually named by the part after
the posix prefix. If you require detailed information, I suggest reading the man pages.

string posix_ctermid()
The posix ctermid function returns the terminal path name.

print ("Terminal Path Name: " . posix ctermid() . "
\n");
2>

string posix_getcwd()

The posix getcwd function returns the current working directory.

print ("Current Working Directory: " . posix getcwd() . "
\n");
?>

integer posix_getegid()
The posix getegid function returns the effective group ID of the calling process.
integer posix_geteuid()

The posix geteuid function returns the effective user ID for the process running the
PHP engine.

integer posix_getgid()
The posix getgid function returns the ID of the current group.

array posix_getgrgiarray posix_getgrgid(integer
group)d(integer group)

The posix getgrgid function returns an array describing access to the group database.
The elements of the returned array are gid, members, name, and an entry of each member
of the group.

IT-SC book 169

Core PHP Programming

$group = posix getgrgid(posix getgid());
print ("Group: {S$Sgroup['name']}
\n");
?>

array posix_getgrnam(string group)

The posix getgrnam function returns an array describing access to the group database.
The elements of the returned array are gid, members, name, and an entry of each member
of the group.

array posix_getgroups()

The posix getgroups function returns supplementary group IDs.

string posix_getlogin()

Use posix getlogin to get the login name of the user executing the PHP engine.
integer posix_getpgid()

The posix getpgid function returns the group ID for the user executing the PHP engine.
integer posix_getpgrp()

The posix getpgrp function returns the current process group ID.

integer posix_getpid()

The posix getpid function returns the process ID.

integer posix_getppid()

The posix getppid function returns the process ID of the parent process.

array posix_getpwnam(string user)

The posix getpwnam function returns an array describing an entry in the user database.
The elements of the array are dir, gecos, gid, name, passwd, shell, and uid.

array posix_getpwuid(integer user)

IT-SC book 170

Core PHP Programming

The posix getpwuid function returns an array describing an entry in the user database
based on a given user ID. The elements of the array are dir, gecos, gid, name, passwd,
shell, and uid. These are the same elements returned by posix getpwnam.

array posix_getrlimit()

The posix getrlimit function returns an array describing system resource usage. The
array contains elements that begin with hard or soft followed by a space and one of the
fOllOWing limit names: core, cpu, data, filesize, maxproc, memlock, openfiles, rss,

stack, totalmem, virtualmem.

Figure 8-6. posix_getrlimit.

3 posix_getdimit - Mic... [[=]E3

| oo ga vew e R
H

soft core: 0

hatrd core: unlimted

soft data: unlirmited

hard data: unlinuted

soft stack: 8388608
hard stack: unlimited
soft totalmem: unlomated
hatd totaltmern: wnlinnite 4
soft rss: unlmited

hard rss; unlimdbed

soft maxproc: 256

hard masproc: 256

soft memlock: urdirmated
hard memlsck: unlrmte d
zoft cpu unlrmted

hard cpu: unlirdbed

soft flesize: unlreubed
hard filesize: unlisdted
soft openfiles: 1024
hatd openfiles: 1024

J |

| 18 Intermet

3

<7
foreach(posix_getrlimit() as S$key=>Svalue)

{
print ("$key: $value
\n");

7=

integer posix_getsid()

IT-SC book 171

Core PHP Programming

The posix getsid function returns the process group ID of the session leader.
integer posix_getuid()

The posix getuid function returns the user ID of the user executing the PHP engine.
boolean posix_isatty (integer descriptor)

The posix isatty function returns TRUE if the given file descriptorisa TTY.
boolean posix_kill(integer process, integer signal)

The posix kill function sends a signal to a process.

boolean posix_mkfifo(string path, integer mode)

The posix mkfifo function creates a FIFO file. The mode argument follows the same
rules as chmod.

boolean posix_setgid(integer group)

Use posix setgid to change the group for the current process. Only the root user may
switch groups.

integer posix_setpgid(integer process, integer group)
The posix setpgid function sets the process group ID for a given process.
integer posix_setsid()

The posix setsid function creates a session and returns the process grouplD.
boolean posix_setuid(integer user)

Use posix setuid to change the user for the current process. Only the root user may
change the user ID.

array posix_times()

The posix times function returns an array of values on system clocks. The elements of
theaﬂayzwecstime,cutime,stime,ticks,andutime

foreach (posix getrlimit() as $key=>S$value)

{

IT-SC book 172

Core PHP Programming

print ("Skey: $value
\n");

?>

string posix_ttyname(integer descriptor)
The posix ttyname function returns the name of the terminal device.

array posix_uname()

The posix uname function returns an array of information about the system. The
elements of the array aré machine, nodename, release, sysname, and version.

Figure 8-7. posix_uname.

a posix_uname - Microsoft Internet Explorer 8 [=] E3

J File Edt View Favontes Toolz Help

sysname: Linux

nodename: max

release: 2.2.6

version: #£20 Tue Apr 27 15:23:25 CDT 1989

machine: 1586 3
&] Done || 4D Intemet Y

<7
foreach(posix_uname() as Skey=>Svalue)
{
print ("Skey: Swvalue
\n");
}
P>
Debugging

The debugging functions help you figure out just what the heck is going on with the
inevitable broken script. Some of these functions make diagnostic information available

IT-SC book 173

Core PHP Programming

to you inside your script. Others communicate with either a system log or a remote
debugger. Practical approaches to debugging are addressed in Chapter 21, "Design."

assert(expression)

The assert function tests an expression. If the assertion is true, no action is taken and the
script continues. If the assertion is false, behavior is dictated by the assertion options. By
default, assertions are not active, which means they are simply ignored. Use
assert options to activate them.

Assertions are a nice way to add error checking to your code, especially paranoid checks
that are useful during development but unneeded during production.

<?
//create custom assertion function
function failedAssertion($file, $line, S$Sexpression)

{
print ("On line $line, in file 'S$file' ");
print ("the following assertion failed:
'Sexpression'
\n") ;

}

//turn on asserts
assert options (ASSERT ACTIVE, TRUE);

//bail on assertion failure
assert options (ASSERT CALLBACK, "failedAssertion");

//assert a false expression
assert(l == 2);
?>

value assert_options(integer flag, value)

Use assert options to get and set assert flags. Table 8.8 lists the flags and their
meanings. The previous value is returned. Most of the options expect a boolean because
they are either on or off. The exception is the option for setting the callback function.
This option expects the name of a function to be called when an assertion fails. This
function will be called with three arguments: the filename, the line number, and the
expression that evaluated as FALSE.

value call_user_function(string function, ...)

Use call user function to execute a function you've defined. The function argument
names the function. Arguments to be passed to the function follow.

Table 8.8. Assert Options

IT-SC book 174

Core PHP Programming

Flag Description
ASSERT_ACTIVE Asserts are ignored unless activated with this option.
ASSERT BAIL Exits the script if assertion fails. FALSE by default.

Registers a function to be called on failure. No function is
registered by default.

ASSERT_QUIET EVAL|Prints the expression passed to assert. FALSE by default.

ASSERT CALLBACK

ASSERT WARNING Prints a regular PHP warning message. TRUE by default.

value call_user_method(string method, string object, ...)

Use call user method to execute a method defined in an object. You are required to
name a method and an object. Any arguments to pass to the method follow.

closelog()

The closelog function closes any connection to the system log. Calling it is optional, as
PHP will close the connection for you when necessary. See syslog for an example of
use.

boolean connection_aborted()

Use connection aborted to test if a request for your script was aborted. The user may
do this by clicking the stop button on the browser, or closing the browser completely.
Ordinarily your script will stop execut- ing when aborted. However, you may change this
behavior with the ignore user abort function. You can also set abort handling using
commands in php. ini or with an Apache directive.

<?
//allow script continuation if aborted
ignore user abort (TRUE) ;
//fake a long task
sleep (20);
//check for abort
if (connection aborted())
{
//write to log that the process was aborted
openlog ("TEST", LOG_PID | LOG CONS, LOG USER);
syslog (LOG _INFO, "The fake task has been aborted!");
closelog();
}
else
{
print ("Thanks for waiting!\n");
}
2>

IT-SC book 175

Core PHP Programming

integer connection_status()

The connection status function returns an integer describing the status of the
connection to the browser. The integer uses bitfields to signal whether a connection was
aborted or timed out. That is, binary digits are flipped on to signal either of the
conditions. The first bit signals whether the script aborted. The second signals whether
the script reached its maximum execution time. Rather than using 1 or 2, you can use the
convenient constants ABORTED and TIiMEOUT. There's also a constant named NORMAL,
which is set to zero, meaning no bitfields are turned on.

An alternative to connection status is to use connect aborted and
connection timeout, which each return TRUE or FALSE.

<?
function cleanUp ()
{
Sstatus = connection status();
$statusMessage = date ("Y-m-d H:i:s");
SstatusMessage .= " Status was S$status. ";
if (Sstatus & ABORTED)
{
$statusMessage .= "The script was aborted. ";
}
if (Sstatus & TIMEOUT)
{
$statusMessage .= "The script timed out. ";
}
S$statusMessage .= "\n";
//write status to log file
error log($statusMessage, 3, "status.log");
}
//set cleanUp to the shutdown function
register shutdown function ("cleanUp");
//wait out the max execution time
sleep(35);
print ("Fake task finished.\n");
?>

boolean connection_timeout()

The connection timeout function returns TRUE when the current script has stopped
because the maximum execution time was reached. It is really of use only inside a
function you've registered as a shutdown function with register shutdown function.

IT-SC book 176

Core PHP Programming

You can use set time limit to adjust the time a script is allowed to run. Alternatively,
you may wish to use connection status.

function cleanUp ()

{

if (connection timeout())

{
$statusMessage = date ("Y-m-d H:i:s");
$statusMessage .= " The script timed out. \n";

//write status to log file
error log($statusMessage, 3, "status.log");

}

//set cleanUp to the shutdown function
register shutdown function("cleanUp"):;

//wait out the max execution time
while (true);

print ("Fake task finished.\n");
7>

debugger_off()

The debugger off function tells PHP to stop sending debugging information to the
remote debugger.

debugger off();
2>

boolean debugger_on(string host)

Use debugger on to enable remote debugging. Diagnostic information will be sent to the
specified host using the port set in php.ini, which is 7869 by default. Use of the remote
debugger is discussed in Chapter 22, "Efficiency and Debugging."

<?
debugger on("127.0.0.1");
?>

IT-SC book 177

Core PHP Programming

boolean error_log(string message, integer type, string
destination, string extra_headers)

The error log function sends an error message to one of four places depending on the
type argument. The four values for the type argument are listed in Table 8.9. An
alternative to error log is the syslog function.

<?
//send log message via email to root
error_ log("The error log is working", 1, "root", "");
?>
Table 8.9. error_log Message Types
Type Description
0 Depending on the error log configuration directive, the message is sent either

to the system log or to a file.

The message is sent by email to the address specified by the destination

1 Jargument. If the extra headers argument is not empty, it is sent as headers to
the email.

The message is sent through the remote debugging system. The destination
argument specifies the host and port separated by a colon.

3 |The message is appended to the file specified by the destination argument.

boolean extension_loaded(string extension)

Use extension loaded to test for the presence of an extension.

<?
if (extension loaded ("php mysqgl.dll"))
{
print ("php mysgl.dll is present");
}
else
{
print ("php mysqgl.dll is not present");
}
?>

value func_get_arg(integer argument)

The func get arg function allows you to get by number an argument passed to a
function you write. The first argument will be number zero. This allows you to write
functions that take any number of arguments. The return value might be any type,

IT-SC book 178

Core PHP Programming

matching the type of the argument being fetched. The func num args function returns
the number of arguments available.

Chapter 4, "Functions," discusses functions, including writing functions that accept an
unlimited number of arguments.

<?
/*
** Function concat
** Input: any number of strings
** Qutput: string
** Description: input strings are put together in
** order and returned as a single string.
*/
function concat ()
{
//start with empty string
SreturnvValue ="";
//loop over each argument
for ($i=0; $i < func num args(); $Si++)
{
//add current argument to return value
$returnvalue .= func get arg($i);
}
return ($SreturnvValue) ;
}
//prints "OneTwoThree"
print (concat ("One", "Two", "Three") . "
\n");
>

array func_get_args()

Use func get args to get an array containing all the arguments passed as arguments to
the function. The elements of the array will be indexed withintegers, starting with zero.
This provides an alternative to using func get argand func num args.

/*
** Function gcd
** Input: any number of integers
** Qutput: integer
** Description: Returns the greatest common
** denominator from the input.
*/
function gcd()
{
/*

IT-SC book 179

Core PHP Programming

** start a smallest value and try every value

** until we get to 1, which is common to all

*/
Sstart = 2147483647;
foreach (func _get args() as Sarqg)
{
if (abs ($arg) < Sstart)
{
Sstart = abs($arqg);
}
}
for ($i=$start; $i > 1; $i-)
{
//assume we will find a gcd
$isCommon = TRUE;
//try each number in the supplied arguments
foreach (func get args() as $arg)
{
//if $Sarg divided by $i produces a
//remainder, then we don't have a gcd
if((Sarg % $1i) != 0)
{
$isCommon = FALSE;
}
}
//1if we made it through the previous code
//and $isCommon is still TRUE, then we found
//our gcd
if ($isCommon)
{
break;
}
}
return ($1) ;
}
//prints 5
print (gcd (10, 20, -35) "
\n") ;

2>

integer func_num_args()

The func num args function returns the number of arguments passed to a function. See
the description of func get arg for an example of use.

boolean function_exists(string function)

IT-SC book

180

Core PHP Programming

Use function exists to test that a function is available, either natively or defined
previously by PHP code.

<?
Sfunction = "date";
if (function exists(Sfunction))
{
print ($function . " exists");
}
2>

object get_browser(string user_agent)

The get browser function works with the browscap.ini (browser capabilities) file to
report the capabilities of a browser. The user agent argument is the text a browser
identifies itself with during an HTTP transaction. If you leave out this argument, PHP
uses HTTP USER AGENT, a variable created by PHP for you. The argument is matched
against all the browsers in the browscap.ini file. When a match occurs, each of the
capabilities becomes a property in the object returned.

The location of the browscap.ini file is specified in php.ini using the browscap
directive. If the directive is not used, or PHP can't match a browser to an entry in your
browscap.ini file, no error will be produced. However, the returned object will have no
properties.

Microsoft provides a browscap.ini file for use with its Web server, but it is not freely
distributable. In response, PHP has an official browscap.ini file. It may be found at
<http://php.netvision.net.il/browscap/> and depends on contributions. At the time of
this writing, it appeared to be abandoned. Alternatively, you may wish to get a
browscap.ini from Web developer cyScape at
<http://www.cyscape.com/asp/browscap/ >. Be aware you are required to register first.

<?
S$browser = get browser();
print ("You are using " . S$browser->browser . "
\n");
if ($browser->javascript)
{
print ("Your browser supports JavaScript.
\n");
}
2>

string get_cfg_var(string variable)

IT-SC book 181

Core PHP Programming

The get cfg var function returns the value of the specified configuration variable.
These are the variables specified in php.ini or in Apache's configuration files. You can
get a report on all configuration information by calling the phpinfo function.

<?
print ("Scripts are allowed to run "
get cfg var ("max execution time")
" seconds");
?>

string get_class(object variable)

The get class function returns the name of the class for the given object.

<?

class animal

{

var S$Sname;

}

Sgus = new animal;

print ("Gus is of type " . get class($gus) . "
\n");
?>

array get_class_methods(string class)

The get class methods function returns an array of the names of the methods for the
given class.

class dog

{
var Sname="none";
var S$Ssound="woof!";

function speak/()
{
print ($this->sound) ;
}
}

Sgus = new dog;
Sgus->name = "Gus";

foreach(get class methods ("dog") as S$method)
{

IT-SC book 182

Core PHP Programming

print ("Smethod
\n") ;

?>

array get_class_vars(string class)

The get class vars function returns an array containing properties of a class and their
default values. Compare this function to get object vars.

Figure 8-8. get_meta_tags.

IT-SC book 183

Core PHP Programming

; get_class_wars - __. !E

J File Edit ‘iew |

|_ @ Irtemet

get _class wars
NAre=none
age=l
color=none

get object vars
natme=Cus

age=7

colar=hlacl and tan

[

B

=<7

P>

class animal

{
var Sname="none";
var Sage=0;
var Sscolor="none";

}

Sgus = new animal;
Sgus->name = "Gus";
Sgus-=age = 7;
sgus-=>color = "black and tan®;
print{"=B>get_class_wars<BR=\n"};
foreach(get_class_wvars{'"animal") as Skey==%val)
{

print{"skey=5val<BRE>\n"}:;
}

print{"<BR=>\n");

print{"<=B>get_ocobject_wvars</B=<BR=>'n"};
foreach(get_object_wvars(Sgus) as Skey==>5val)
{

print ("skey=5val
\n"};

IT-SC book

184

Core PHP Programming

string get_current_user()

The get current user function returns the name of the user who owns the script being
executed. This function isn't guaranteed to have any meaning under Windows 98.

print (get current user());
2>

string getcwd()

The getcwd function returns the name of the current working directory, including the full
path.

print (getcwd()) ;
7>

array get_extension_funcs(string extension)

Use get extension funcs to get an array of the names of functions created by an
extension.

array get_loaded_extensions()

The get loaded extensions function returns an array of the names of the extensions
available. This includes extensions compiled into PHP or loaded with dl. Another way to
see this list is with phpinfo.

array get_object_vars(object data)

The get object vars function returns an array describing the properties of an object and
their values. See get class vars for an example of use.

boolean highlight_file(string filename)
The highlight file function prints a PHP script directly to the browser using syntax

highlighting. HTML 1is used to emphasize parts of the PHP language in order to aid
readability.

//highlight this file

IT-SC book 185

Core PHP Programming

highlight file(FILE_);
?>

boolean highlight_string(string code)

The highlight string function prints a string of PHP code to the browser using syntax
highlighting.

<?
//create some code
Scode = "print (\"a string\");";
//highlight sample code
highlight string($code);
2>

string get__html_translation_table (integer table)

Use get html translation table to get the table used by htmlentities and
htmlspecialchars. By default the former is returned, but if table is 1, the table used by
htmlspecialchars is returned.

<?
Strans = get html translation table (HTML ENTITIES);
print ("pre>");
var_ dump (Strans);
print ("/pre>\n");
?>

integer get_magic_quotes_gpc()

The get magic quotes gpc function returns the magic quotes gpc directive setting,
which controls whether quotes are escaped automatically in user-submitted data.

<?
if (get magic quotes gpc() == 1)
{
print ("magic _quotes gpc is on");
}

else

{
print ("magic quotes gpc is off");

}

?>

IT-SC book 186

Core PHP Programming

integer get_magic_quotes_runtime()

The get magic quotes runtime function returns the magic quotes runtime
directive setting, which controls whether quotes are escaped automatically in data
retrieved from databases. You can use set magic quotes runtime to change its value.

<?
if (get magic _quotes runtime() == 1)
{
print ("magic quotes runtime is on");
}
else
{
print ("magic quotes runtime is off");
}
?>

string get_parent_class(object variable)

The get parent class function returns the name of the parent class for an object.

<?
class animal

{
var S$name;

}

class dog extends animal
{
var $Sowner;

}

Sgus = new dog;
Sgus->name = "Gus";
//Gus is of type dog, which is of type animal
print ("$Sgus->name is of type "
get class(Sgus) . ", which is of type ".
get_parent_class($gus) . "BR>\n");
7>

integer getlastmod()

IT-SC book

187

Core PHP Programming

The getlastmod function returns the date the executing script was last modified. The
date is returned as a number of seconds since January 1, 1970. This is the same as calling
filemtime on the current file.

<?
printf ("This script was last modified %s",
date ("m/d/y", getlastmod())):;
?>

integer getmyinode()

The getmyinode function returns the inode of the executing script. Under Windows, zero
is always returned. You can get the inode of any file using fileinode.

print (getmyinode ()) ;
7>

integer getmypid()

The getmypid function returns the process identifier of the PHP engine. It may not return
anything under Windows 98.

<?
print (getmypid()) ;
2>

integer getmyuid()

The getmyuid function returns the user identifier of the owner of the script.

<?
print (getmyuid()) ;
2>

array getrusage(integer children)

The getrusage function is a wrapper for the C function of the same name. It reports
information about the resources used by the calling process. If thechildren argument is 1,

IT-SC book 188

Core PHP Programming

the function will be called with the RUSAGE CHILDREN constant. You may wish to read
the man page for more information.

<?

//show CPU time used

Srusage = getrusage(l);

print ($Srusage["ru utime.tv sec"] . " seconds
used.");
?>

boolean headers_sent()

The headers sent function returns TRUE if HTTP headers have been sent. Headers must
precede any content, so executing a print statement or placing text outside PHP tags will
cause headers to be sent. Attempting to add headers to the stack after they're sent causes
an error.

<?
if (headers sent())

{
print ("Can't add more headers!BR>\n");

}

else

{
header ("X-Debug: It's OK to send a header");

}

?>

boolean leak(integer bytes)

The leak function purposely leaks memory. It is useful mostly for testing the garbage-
collecting routines of PHP itself. You might also use it to simulate lots of memory usage
if you were stress-testing.

<?
//leak 8 megs
1eak (8388608) ;
2>

boolean method_exists(object variable, string method)

The method exists function returns TRUE when the named method exists in the
specified object.

IT-SC book 189

Core PHP Programming

<?
class animal

{

var S$name;

}

class dog extends animal

{
var $Sowner;
function speak/()

{

print ("woof!");
}
}

Sgus = new dog;
Sgus->name = "Gus";

if (method exists ($gus, "speak"))
{

Sgus->speak () ;
}

?>

openlog(string identifier, integer option, integer facility)

The openlog function begins a connection to the system log and calls C's openlog
function. It is not strictly required to call openlog before using syslog, but it may be
used to change the behavior of the sysiog function. You may wish to refer to the man
page for openlog for more details. On Windows, emulation code is used to mimic UNIX
functionality.

The identifier argument will be added to the beginning of any messages sent to the
system log. Usually this is the name of the process or task being performed.

The option argument is a bitfield that controls toggling of miscellaneous options. Use a
logical-or operator to combine the options you want. Table 8.10 lists the values available.
Only the LoG p1D option has any effect under Windows.

Table 8.10. openlog Options

Constant Description

LOG_PID Add process identifier to each message.

LOG_CONs |If a message can't be sent to the log, send it to the system console.

LOG_ODELAY |Delay opening log until the first call to syslog. This is true by default.

LOG_NDELAY |Open the log immediately. Do not wait for first call to syslog.

LOG NOWAIT |Do not wait for child processes. The use of this flag is discouraged.

LOG_PERROR |Log all messages to stderr as well.

IT-SC book 190

Core PHP Programming

The facility argument sets a default value for the source of the error—that is, from
which part of the system the report comes. The argument is ignored under Windows.
Table 8.11 lists the facilities available.

See syslog for an example of use.

Table 8.11. openlog Facilities

Constant Facility
LOG_AUTH Authorization
LOG_AUTHPRIV Authorization Privileges
LOG CRON Cron
LOG_DAEMON Daemon
LOG_KERN Kernal
LOG_LPR Printer
LOG MAIL Mail
LOG_NEWS News
LOG SYSLOG System Log
LOG_USER User
LOG UUCP UNIX to UNIX protocol

phpcredits(integer flags)

The phpcredits function prints information about the major contributors to the PHP
project. If the optional flags argument is left out, all information will be provided.
Otherwise, you may combine the flags listed in Table 8.12 to choose a specific set of
information. The pEP FULL PAGE constant will cause the credits to be surrounded with
minimal tags for defining an HTML page.

Figure 8-9. phpcredits.

IT-SC book 191

Core PHP Programming

';llh]ll.‘ll.‘lh'l = Microsoll |ntaimel Explonar

| Bz Edt Yew Favoes Jock Heb

PHP 4.0 Credits

| PHP 4.0 Authors

| Contribution . Authors
Zend Seripting Langnage Engine [Andi Gutrmans, Zesw Suraski
i]ixtensinn Module API !.A.n.dx Cutmanz, Zesw Surazk
iII'NIK Buld and Modularzation |Shg Eakleen, Sascha 3chumann
|l'Wi.|13! Port Shane Caraveo, Zeev Surashi

|S:rver AFT (SAFT) Abstraction Layer !.A.nd: Cutmams, Shane Caraweo, Zeey Suracki

| SAFI Modules
| Contribution [Authors
Apache [Rasmus Lerdorf, Zeev Suraski
ISAPI lindi Gutmans, Zeev Suraski
CGI [Rasmus Lerdorf, Stig Bakken
IlA.DI.smer |Sas¢ha. Schumnann
IL]:va Serviet [Sam Fubar
iRn-:tm [Dau;'r:l Hedbar
thttpd |Sascha Schumann :I
2] Dare |1 [ntemet £
<7
//display full credits
phpcredits() ;
=

*

Table 8.12. Flags for phpcredits

CREDITS FULLPAGE

CREDITS GENERAL

CREDITS MODULES

CREDITS DOCS

boolean phpinfo(integer flags)

The phpinfo function sends a large amount of diagnostic information to the browser and
returns TRUE. The f1ags argument is not required. By default all information is returned.
You may use the flags listed in Table 8.13 with bitwise OR operators to choose specific
information.

The complete set of information will contain

PHP version

IT-SC book 192

Core PHP Programming

Credits

Operating system of the Web server

Extensions compiled into PHP executable

Every configuration variable

Every environment variable

Apache variables if running as an Apache module
HTTP headers

Table 8.13. Flags for phpcredits

INFO_GENERAL

INFO CREDITS

INFO CONFIGURATION

INFO MODULES

INFO_ENVIRONMENT

INFO VARIABLES

INFO_LICENSE

Calling phpinfo is a good way to find out which environment variables are available to
you.

phpinfo () ;
2>

string phpversion()

The phpversion function returns a string that describes the version of PHP executing the
script.

<?
print ("PHP version" . phpversion() . "
\n");
<?

print_r(expression)

The print r function prints the value of an expression. If the expression is a string,
integer, or double, the simple representation of it is sent to the browser. If the expression

IT-SC book 193

Core PHP Programming

is an object or array, special notation is used to show indices or property names. Arrays
and objects are explored recursively in the cases where objects or arrays are contained
within each other.

<?
//define some test variables
$s = "a string";
$a = array("x", "y", "z", array(l, 2, 3));

//print a string
print r($s);
print ("\n");

//print an array
print r($a);
print ("\n");

?>

show_source
Use show_source @S an alias to highlight file.
syslog(integer priority, string message)

The syslog function adds a message to the system log. It is a wrapper for C's function of
the same name. The priority is an integer that stands for how severe the situation is.
Under UNIX the priority may cause the system to take special measures. Priorities are
listed in Table 8.14.

Under Windows NT, emulation code is used to simulate the UNIX functionality.
Messages generated by the syslog function are added to theapplication log, which may be
viewed with Event Viewer. The priority isused in two ways. First, it is translated into
being either an error, a warning, or information. This determines the icon that appears
next to the message in Event Viewer. It is also used to fill the Category column. The
Event column will always be set to 2000 and the User column will be set to null.

Table 8.14. syslog Priorities

Constant Priority Description

This is a panic situation and the message may be broadcast to
_EMERG |Emergency |all users of the system. On Windows this is translated into a
warning.

This is a situation that demands being corrected immediately.
It is translated into being an error on Windows.

This is a critical condition that may be created by hardware
errors. It is translated into being a warning on Windows.

ERR Error These are aeneral error conditions. They are translated into

_ALERT |Alert

~CRIT Critical

IT-SC book 194

Core PHP Programming

warnings on Windows.

_WARNING|Warning These are warnings, less severe than errors.

A notice is not an error but requires more attention than an
_NOTICE |Notice informational message. It is translated into a warning on
Windows.

Informational messages do not require that any special action

INFO i
B Information be taken.

These messages are of interest only to debugging tasks. They

DEBUG |Debu : .
- 9 are translated into warnings.

<?
openlog ("TEST", LOG_PID | LOG CONS, LOG USER);
syslog (LOG _INFO, "The log has been tested");
closelog();

2>

var_dump(expression,...)

The var dump function reports all information about a given variable. Information is
printed directly to the browser. You may supply any number of variables separated by
commas. The output of the command is well formatted, including indention for cases
such as arrays containing other arrays. Arrays and objects are explored recursively.

<?
//create a directory object
Sd = dir(".");

//dump info about it
var dump ($Sd)
?>

string zend_version()

Use zend version to get the version of the Zend library.

<?
print (zend version());
2>

Session Handling

IT-SC book 195

Core PHP Programming

The functions in this section work with the session handling capabilities of PHP. They
were added in PHP 4. To read more about their use, turn back to Chapter 7. That chapter
also includes a complete example.

boolean session_decode(string code)

Use session decode to read encoded session data and set the values of global variables
in the session. This happens automatically when you start a session with session start.

boolean session_destroy()

The session destroy function eliminates all the data stored in the session. It does not
destroy the session itself, however.

string session_encode()

The session encode function returns a string that contains encoded information about
the current session.

string session_id(string id)

Use session id to get the value of the session identifier. If you wish to change the
session identifier, supply the optional id argument. If you do, take care to do so before
any output is sent to the browser, because the identifier is sent as a cookie.

boolean session_is_registered(string name)

The session is registered function returns TRUE if the specified variable is registered
with the session.

string session_module_name(string name)

The session module name function returns the name of the module that handles session
duties. This is the same value set by the session.save handler directive inside
php.ini. You can change the module name if you supply the optional name argument,
but the only one available at the time of writing was the £i1les module.

If you wish to implement your own handler in PHP, see the
session set save handler function.

string session_name(string name)
The session name function returns the current name for the session variable. The

session may be renamed with the optional name argument. This name is used as the name
of the cookie that contains the session identifier. It's also used for the back-up ceT

IT-SC book 196

Core PHP Programming

variable. Consequently, if you wish to override the name of the session defined in
php.ini, you must do so prior to registering any variables or starting the session.

boolean session_register(...)

The session register function accepts any number of arguments, each of which may
be a string or an array. Each argument names a global variable that will be attached to the
session. Arrays passed as arguments will be traversed for elements. You can even pass
multidimensional arrays. Each registered variable that is set when the script ends will be
serialized and written into the session information. When the user returns with a later
request, the variables will be restored.

string session_save_path(string path)

The session save path function returns the path in the file system used to save
serialized session information. This is /tmp by default. The optional path argument will
change the path. Keep in mind, the permissions for this directory must include read/write
access for the Web server.

session_set_save_handler(string open, string close, string
read, string write, string destroy, string garbage)

The session set save handler function allows you to implement an alternative
method for handling sessions. Each argument is the name of a function for handling a
certain aspect of the session handling process. Unfortunately, at the time of this writing
the code that implements this functionality was not finished. Consequently, I can describe
the expected arguments, but I can't provide a working example. See Table 8.15.

boolean session_start()

Use session start to activate a session. If no session exists, one will be created. Since
this involves sending a cookie, you must call session start before sending any text to
the browser. You can avoid using this function by configuring PHP to automatically start

sessions with each request. This is done with the session.auto start directive in
php.ini.

Once you start a session, PHP will begin watching the variables you register with
session_register.

boolean session_unregister(string name)

Use session unregister to remove a global variable from the session. It will not be
saved with the session when the script ends.

Table 8.15. Functions for Use with session_set_save_handler

Function | Argument

IT-SC book 197

Core PHP Programming

open string SavePath, string SessionName
close none read string Variable

write string Variable, Value

destroy none

garbage integer MaximumLifetime

Shell Commands

This section describes functions that interact with the command shell in some way. Some
of them execute other programs, and two of them read or write to environment variables.

string exec(string command, array output, integer return)

The exec function attempts to execute the command argument as if you had typed it in
command shell. Nothing is echoed to the browser, but the last line of output from the
execution is returned. If the optional output argument is supplied, each line of output will
be added to the output argument as an array element. If the optional return argument is
supplied, the variable is set to the return value of the command.

It is very dangerous to put any user-supplied information inside the command argument.
Users may pass values in form fields that allow them to execute their own commands on
your Web server. If you must execute a command based on user input, pass the
information through the escape-shellcmd function, defined in Chapter 9.

Compare this function to passthru and system.

// get directory list for the root of C drive
$LastLine = exec("dir C:\ quote>, $AllOutput, S$ReturnValue);

print ("Last Line: $LastLine BR>\n");

print ("All Output:BR>\n");
for (Sindex = 0; Sindex count (SA11Output); Sindex++)

{
print ("$AllOutput[$index] BR>\n");

}
print ("BR>BR>\n") ;

print ("Return Value: $ReturnValueBR>\n");
2>

string getenv(string variable)

The getenv function returns the value of the given environment variable or false if there
is an error. PHP converts all environment variables into PHP variables, so this function is

IT-SC book 198

Core PHP Programming

useful only in those rare instances when environment variables change after a script
begins executing. If you need to set the value of an environment variable, use putenv.

<?
print (getenv ("PATH")) ;
?>

string passthru(string command, integer return)

The passthru function is similar to exec and system. The command argument is executed
as if you typed it in a command shell. If you provide the optional return argument, it
will be set with the return value of the command. All output will be returned by the
passthru function and sent to the browser. The output will be sent as binary data. This is
useful in situations where you need to execute a shell command that creates some binary
file, such as an image. See Chapter 17, "Database Integration," for an application of
this.

It is very dangerous to put any user-supplied information inside the command argument.
Users may pass values in form fields that allow them to execute their own commands on
your Web server. If you must allow this, pass the information through the
escapeshellcmd function first.

putenv(string variable)

The putenv function sets the value of an environment variable. You must use syntax
similar to that used by a command shell, as shown in the example below. To get the value
of an environment variable, use getenv, or use phpinfo to dump all environment
variables.

<?
putenv ("PATH=/local/bin;.");
2>

string system(string command, integer return)

The system function behaves identically to C's system function. It executes the command
argument, sends the output to the browser, and returns the last line of output. If the
return argument is provided, it is set with the return value of the command. If you do
not wish for the output to be sent to the browser, use the exec function.

It is very dangerous to put any user-supplied information inside the command argument.
Users may pass values in form fields that allow them to execute their own commands on

IT-SC book 199

Core PHP Programming

your Web server. If you must allow this, pass the information through the
escapeshellcmd function first.

<?
// list files in directory
print ("PRE>") ;
system("1ls -1");
print ("/PRE>") ;
?>

HTTP Headers

HTTP headers are special commands sent between the browser and Web server before
the browser receives any content. Some of the headers let the server know which file the
browser wants. Others may instruct the browser about the type of file it will soon be sent.
To learn more about headers, refer to the HTTP specification that was originally
described in RFC 1945. It and other documents may be found at the W3C site, which has
a section devoted to the HTTP protocol <http://www.w3.org/Protocols/>. For an
overview of how headers work with PHP, turn back to Chapter 7.

boolean header(string http_header)

The header function sends an HTTP header to the browser. It must be called before any
output is sent to the browser, inside or outside PHP tags. You may wish to turn back to
the description of HTTP connections in Chapter 7. Many different kinds of headers may
be sent. Perhaps the most common is a location header, which redirects the browser to
another URL.

Each time you call header, it is pushed onto a stack. If you are unfamiliar with the
concept of a stack, think of it as a list of items placed one on top of another. When your
script gets to the point of sending content to the browser, headers are pulled from the
stack one at a time. This means headers are sent to the browser in reverse order.

Headers are also used to send cookies, but PHP's setcookie function is better suited for
this purpose.

One common trick the header function provides is sending a user to another page, as
demonstrated in the example below. Another is to force the browser to either download
the file or display it in an OLE container. This isdone by setting the Content-type
header, which PHP defaults to text/html. Sending a value of application/octet-
stream Will cause most browsers to prompt the user for where to save the file. You can
also use other MIME types to get the browser to run a helper application. For example, if
you use application/vnd.ms-excel, a Windows machine with Microsoft Excel
installed will launch Excel in an OLE container inside the browser window. In this case
you don't need to send an actual Excel file. A simple tab-delimited file will be interpreted
correctly.

IT-SC book 200

Core PHP Programming

// redirect request to another address
header ("Location: http://www.leonatkinson.com/") ;
?>

boolean setcookie(string name, string value, integer expire,
string path, string domain, integer secure)

Use setcookie to send a cookie to the browser. Cookies are sent as headers during an
HTTP connection. Since cookie headers are more complex than other headers, it is nice
to have a function specifically for sending cookies. Keep in mind that all headers must be
sent prior to any content. Also, calling setcookie does not create a PHP variable until the
cookie is sent back by the browser on the next page load.

If setcookie is called with only the name argument, the cookie will be deleted from the
browser's cookie database. Otherwise, a cookie will be created on the client browser with
the name and value given.

The optional expire argument sets a time when the cookie will automatically be deleted
by the browser. This takes the form of seconds since January 1, 1970. PHP converts this
into Greenwich Mean Time and the proper form for the Set-Cookie header. If the expire
argument is omitted, the browser will delete the cookie when the session ends. Usually
this means when the browser application is shut down.

The path and domain arguments are used by the browser to determine whether to send
the cookie. The hostname of the Web server is compared to the domain. If it is left empty,
the complete hostname of the server setting the cookie is used. The path is matched
against the beginning of the path onthe server to the document. The cookie specification
requires that domains contain two periods. This is to prevent scripts that get sent to every
top-level domain (.com, .edu, .net). It also prevents a domain value of
leonatkinson.com. Just remember to add a leading dot.

The secure argument is used to tell the browser to send the cookie only over secure
connections which use Secure Socket Layers. Use a value of 1 to denote a secure cookie.

Like other headers, those created by the setcookie function are pushed onto a stack,
which causes them to be sent in reverse order. If you set the same cookie more than once,
the first call to setcookie will be executed last. Most likely, this isn't what you intend.
Keep track of the value you intend to set as the value of the cookie and call setcookie
once.

Netscape, which developed cookies, offers more information about them in a document
titled Persistent Client State: HTTP Cookies. Its URL is

<http://developer.netscape.com/docs/manuals/communicator/jsqguided/cooki
es.htm>.

IT-SC book 201

Core PHP Programming

How do you know if a browser accepts your cookie? The only way is to send one and test
that it is returned on the next page request.

/*

** mark this site as being visited

** for the next 24 hours

*/

setcookie ("HasVisitedLast24Hours", "Yes", time()+86400;
2>

Network I/0

The network I/O functions send information directly over the Internet Protocol, or they
fetch information about Internet hosts.

boolean checkdnsrr(string host, string type)

The checkdnsrr function checks DNS records for a host. The type argument defines the
type of records for which to search. Valid types are listed in Table 8.16.

If type is not specified, checkdnsrr checks for MX records. You may wish to read the
man page for named, the Internet domain name server daemon.

<?
if (checkdnsrr ("clearink.com", "MX"))

{

print ("clearink.com is a mail exchanger");

}

?>

integer fsockopen(string hostname, integer port, integer
error_number, string error_description, double timeout)

The fsockopen begins a network connection as a file stream, returning a file descriptor
suitable for use by fputs, fgets, and other file-stream functions discussed earlier in this
chapter. A connection is attempted to the hostname at the given port. The hostname may
also be a numerical IP address. The hostname may also be the path to a UNIX domain
socket, in which case port should be set to 0. Some operating systems, specifically
Windows, don't support UNIX domain sockets.

Table 8.16. DNS Record Types

Type | Description

IT-SC book 202

Core PHP Programming

A IP Address

ANY Any records

CNAME Canonical name

MX Mail Exchanger

NS Name Server

SOA Start of a zone of authority

If an error occurs, FaLse is returned and the optional error number and
error description arguments are set. They must be passed by reference, which means
adding an ampersand (&) prior to the dollar sign. If the error number returned is zero, an
error occurred before PHP tried to connect. This may indicate a problem initializing the
socket.

The optional timeout argument will set the number of seconds PHP will wait for a
connection to be established. You may specify fractions of a second as well, if you wish.

The pfsockopen adds persistence to the fsockopen functionality.
//tell browser not to render this
header ("Content-type: text/plain");

//try to connect to Web server,
//timeout after 60 seconds

Sfp = fsockopen ("www.clearink.com", 80,
&Serror number, &Serror description,
60) ;

if (Sfp)

{
//set nonblocking mode
set socket blocking($fp, FALSE);

// tell server we want root document
fputs ($fp, "GET / HTTP/1.0");
fputs ($fp, "\r\n\r\n");

while (! feof ($fp))
{
//print next 4K
print (fgets (S$Sfp, 4096));

//close connection
fclose (Sfp);

}

else

{
//$connect was false
print ("An error occurred
\n");
print ("Number: S$error number
\n");

IT-SC book 203

Core PHP Programming

print ("Description: Serror description
\n");

?>

string gethostbyaddr(string ip_address)

The gethostbyaddr function returns the name of the host specified by the numerical IP
address. If the host cannot be resolved, the address is returned.

<?
print (gethostbyaddr ("207.46.131.30"));
?>

string gethostbyname(string hostname)

The gethostbyname function returns the IP address of the host specified by its name. It is
possible a domain name resolves to more than one IP address. To get each one, use
gethostbynamel.

<?
print (gethostbyname ("www.php.net")) ;
2>

array gethostbynamel(string hostname)

The gethostbynamel function returns a list of IP addresses that a given hostname
resolves to.

<?
Shosts = gethostbynamel ("www.microsoft.com") ;
for($index = 0; $index count (Shosts); S$index++)
{
print ("Shosts[$index] BR>\n");
}
2>

boolean getmxrr(string host, array mxhost, array weight)

The getmxrr function gets mail-exchanger DNS records for a host. Hostnames will be
added to the array specified by the mxhost argument. The optional weight array is

IT-SC book 204

Core PHP Programming

assigned with the weight for each host. The return value signals whether the operation
was successful.

Chapter 18 contains an example of using getmxrr to verify an email address.
//get mail-exchanger records for clearink.com
getmxrr ("clearink.com", Smxrecord, S$Sweight);
//display results

for ($index=0; $index count (Smxrecord); S$index++)
{

print ($Smxrecord[$index]) ;

print(" _ ");

print (Sweight[$index]) ;

print ("BR>\n") ;

?>

integer getprotobyname(string name)

The getprotobyname function returns the number associated with a protocol.
string getprotobynumber(integer protocol)

The getprotobynumber function returns the name of a protocol given its number.
integer getservbyname(string service, string protocol)

The getservbyname function returns the port used by a service. The protocol argument
must be tcp or udp.

//check which port ftp uses
Sport = getservbyname ("ftp", "tcp"):;

print ("port S$port
\n");
?>

string getservbyport(integer service, string protocol)

The getservbyport function returns the name of the service that uses a specified port.
The protocol argument must be tcp or udp.

<?
//check which service uses port 25

IT-SC book 205

Core PHP Programming

Sservice = getservbyport (25, "tcp");

print ("$serviceBR>\n") ;
?>

boolean mail(string recipient, string subject, string body, string
additional_headers)

The mail function sends email. Under UNIX it runs the sendmail shell command. Under
Windows it makes a connection to an SMTP server. The mail is sent to the address
specified in the recipient argument. You may specify multiple recipients by separating
them with commas. You must also provide a subject and a message body.Optionally, you
may provide additional headers in the fourth argument. Each extra header should be
separated by a single newline character. If the mail is sent successfully, true is returned.

On Windows, pate: and From: headers are added to the message automatically, unless
you supply them yourself.

There are a few directives in php.ini for configuring this function. For Windows you can
set the name of the SMTP host using the smTp directive, and you can set the default
From: header with the sendmail from directive. It's valid, of course, to point to an
SMTP server on the localhost. For UNIX, you may specify the path to your sendmail
executable, which may have an acceptable default compiled in already. You can't set up
PHP on UNIX to send mail directly to a remote SMTP host. You can configure sendmail
to relay messages to a specific host, but the instructions are outside the scope of this text.

See Chapter 18 for an example that sends attachments.

//define who is to receive the mail
// (in this case, root of the localhost)
$mailTo = "root@" . S$SSERVER NAME;

//set the subject
SmailSubject = "Testing Mail";

//build body of the message

SmailBody = "This is a test of PHP's mail function. ";
SmailBody .= "It was generated by PHP version ";
SmailBody .= phpversion();

//add a from header
SmailHeaders = "From: php@SSERVER NAME.com\n";

//send mail
if(mail ($mailTo, S$mailSubject, $mailBody, S$mailHeaders))
{

print ("Mail successfull sent to SmailTo.");

}

IT-SC book 206

Core PHP Programming

else

{

print ("Mail could not be sent to S$mailTo.");

}

?>

integer pfsockopen(string hostname, integer port, integer
error_number, string error_description, double timeout)

The pfsockopen function operates identically to fsockopen, except that connections are
cached. Connections opened with pfsockopen are not closed when a script terminates.
They persist with the server process.

boolean set_socket_blocking(integer file_descriptor, boolean
mode)

The set socket blocking function sets whether a file stream is blocking. In
nonblocking mode, calls to functions that get information from the stream will return
immediately with whatever data are in the input buffer. Blocking mode forces execution
to halt until sufficient data are received.

FTP

The functions in this section allow you to make connections to FTP servers. FTP is the
file transfer protocol. While the file functions allow you to open and manipulate remote
files by specifying a URL instead of a local path, these functions operate directly with the
FTP protocol. They offer a greater degree of control. They also allow you to get a list of
files on the server. The FTP functions were added to PHP by Andrew Skalski.M.

boolean ftp_cdup(integer link)

The ftp cdup function changes the working directory to the parent directory.

boolean ftp_chdir(integer link, string directory)

The ftp chdir function moves the working directory to the specified directory.
integer ftp_connect(string host, integer port)

Use ftp connect to begin an FTP connection. The port argument is optional. An FTP
resource identifier will be returned if the connection is successful, FALSE otherwise. This

ID is used in the rest of the FTP commands. Remem- ber that once you connect, you
must log in before you can issue any commands.

IT-SC book 207

Core PHP Programming

<?
//connect to server
if (! ($ftp = ftp connect("localhost")))
{
print ("Unable to connect!BR>\n");
exit () ;

}
print ("Connected.BR>\n") ;

//1log in
if (!ftp login(Sftp, "anonymous", "corephp@localhost"))
{

print ("Unable to login!BR>\n");

exit () ;

}
print ("Logged In.BR>\n");

//print system type
print ("System Type: " . ftp systype($ftp) . "BR>\n");

//make sure passive mode is off
ftp pasv(Sftp, FALSE);

//get working directory
print ("Working Directory: " . ftp pwd(Sftp) . "BR>\n");

//get files in raw format
print ("Raw List:BR>\n");
foreach (ftp rawlist ($ftp, ".") as $line)
{

print ("$1ineBR>\n");
}
print ("BR>\n") ;

//move to pub directory
if (!ftp chdir(Sftp, "pub"))
{
print ("Unable to go to the pub directory!BR>\n");
}

print ("Moved to pub directory.BR>\n");

//get a list of files
print ("Files:BR>\n");
foreach (ftp nlist($ftp, ".") as S$filename)
{

print ("$filenameBR>\n") ;

}
print ("BR>\n") ;

//return to root directory
if (' ftp cdup ($ftp))
{
print ("Failed to move up a directory!BR>\n");

}

IT-SC book 208

Core PHP Programming

?>

//close connection
ftp_quit ($ftp);

boolean ftp_delete(integer link, string path)

The ftp delete function removes a file on the remote server. The 1ink argument is as
returned by ftp connect. The path argument is the path on the remote server to the file
to be deleted. See ftp put for an example of use.

boolean ftp_fget(integer link, integer file, string filename,

integer mode)

The ftp fget function copies a remote file into an open file stream. You must create a
file resource using fopen or a similar function to pass as the second argument. The mode
argument should be set with one of two constants: FTP ASCIT or FTP IMAGE. These are
sometimes referred to as text or binary modes.

2>

//connect to server
if (! ($ftp = ftp connect ("localhost")))
{
print ("Unable to connect!BR>\n");
exit () ;

}

//log in
if (!'ftp login(S$Sftp, "anonymous", "corephp@localhost"))
{

print ("Unable to login!BR>\n");

exit () ;

}

//open local file for writing
$fp = fopen("/tmp/ftp fget.test", "w");

//save remote file in open file stream
if (! ftp fget ($ftp, $fp, "data.txt", FTP ASCII)))
{

print ("Unable to get remote file!BR>\n");

}

//close local file
fclose (Sfp);

//close connection
ftp_quit (Sftp);

IT-SC book

209

Core PHP Programming

boolean ftp_fput(integer link, string remote, integer file,
integer mode)

The ftp fput function creates a file on the remote server from the contents of an open
file stream. The 1ink argument is as returned by ftp connect. The remote argument is
the path to the file to be created on the remote server. The file argument is a file
identifier as returned by fopen or a similar function. The mode argument should be
FTP_ASCII Of FTP IMAGE.

<?
//connect to server
if (! (Sftp = ftp connect ("localhost"))

{
print ("Unable to connect!BR>\n");
exit () ;

}

//log in
if (!ftp login(Sftp, "anonymous", "corephp@localhost"))
{

print ("Unable to login!BR>\n");

exit () ;

}

//open local file

if (! ($fp = fopen ("/tmp/data.txt"™, "r"))

{
print ("Unable to open local file!BR>\n");
exit () ;

}
//write file to remote server
ftp fput(Sftp, "data.txt", $fp, FTP_ASCII);

//close local file
fclose (Sfp);

//close connection
ftp_quit ($ftp);
2>

boolean ftp_get(integer link, string local, string remote, integer
mode)

Use ftp get to copy a file from the remote server to local filesystem. The link argument
is as returned by ftp connect. The local and remote arguments specify paths. The
mode argument should use FTP ASCII Or FTP IMAGE.

IT-SC book 210

Core PHP Programming

<?
//connect to server
if (! ($ftp = ftp connect("localhost")))

{

print ("Unable to connect!BR>\n");
exit () ;

}

//1log in
if(!ftp login(Sftp, "anonymous", "corephp@localhost"))

{
print ("Unable to login!BR>\n");
exit ();

}

//save file to tmp directory
ftp get ($ftp, "/tmp/data.bin”, "/pub/data.bin",FTP IMAGE);

//close connection
ftp quit (Sftp);
2>

boolean ftp_login(integer link, string username, string
password)

Once you make a connection to an FTP server, you must use ftp login to identify
yourself. All three arguments are required, even if you are logging in anonymously. See
ftp connect for an example of use.

integer ftp_mdtm(integer link, string path)

The ftp mdtm function returns the last modification time for the file named in the path
argument.

//connect to server
if (! ($ftp = ftp connect ("localhost")))
{
print ("Unable to connect!BR>\n");
exit () ;

}

//1log in
if (! ftp login(Sftp, "anonymous", "corephp@localhost"))
{

print ("Unable to login!BR>\n");

exit ();

}

//get the size of the README file

IT-SC book 211

Core PHP Programming

print ("Size: " . ftp size($ftp, "README") . "BR>\n");

//get the last modification date

print ("Modified: "

?>

st

date ("Y-m-d", ftp mdtm($ftp, "README"))
"BR>\1’1") H

//close connection
ftp_quit ($ftp);

ring ftp_mkdir(integer link, string directory)

The £tp mkdir function creates a directory on the remote server. FALSE is returned if the
directory cannot be created.

<?

2>

//connect to server
if (! (Sftp = ftp connect ("localhost")))
{
print ("Unable to connect!BR>\n");
exit () ;

}

//log in
if (!'ftp login(S$Sftp, "anonymous", "corephp@localhost"))
{

print ("Unable to login!BR>\n");

exit () ;

}

//create a new directory
Sresult = ftp mkdir (Sftp, "corephp");
if (Sresult)
{
print ("Created directory: S$resultBR>\n");
}
else
{
print ("Unable to create corephp directory!BR>\n");

}

//remove corephp directory
if (! ftp rmdir (Sftp, "corephp"))
{

print ("Unable to remove corephp directory!BR>\n");

}

//close connection
ftp_quit (Sftp);

IT

-SC book

212

Core PHP Programming

array ftp_nlist(integer link, string directory)

The ftp nlist function returns an array of files in the specified directory.
boolean ftp_pasv(integer link, boolean on)

Use ftp pasv to turn passive mode on or off. It is off by default.

boolean ftp_put(integer link, string remote, string local,
integer mode)

The ftp put function copies a file from the local filesystem to the remote server. The
link argument is as returned by ftp connect. The local and remote arguments specify
paths. The mode argument should be either FTP ASCIT or FTP IMAGE.

<?
//connect to server
if (! (S$ftp = ftp connect ("localhost")))
{
print ("Unable to connect!BR>\n");
exit ();

}

//1log in
if(!ftp login($Sftp, "anonymous", "corephp@localhost"))
{

print ("Unable to login!BR>\n");

exit ();

}

//copy local file to remote server
ftp put ($ftp, "/uploads/data.txt", "
/tmp/data.txt", FTP_ASCII);

//remove remote file
ftp delete($ftp, "/uploads/data.txt");

//close connection

ftp quit (Sftp);
2>

string ftp_pwd(integer link)

The ftp_pwd function returns the name of the current directory. See ftp connect for an
example of use.

IT-SC book 213

Core PHP Programming

boolean ftp_quit(integer link)

Use ftp quit to close an FTP connection.

array ftp_rawlist(integer link, string directory)

The ftp rawlist returns the raw output of an 1s -1 command on the given directory.
boolean ftp_rename(integer link, string original, string new)
The ftp rename function changes the name of a file on the remote server.

boolean ftp_rmdir(integer link, string directory)

Use ftp rmdir to remove a directory.

integer ftp_size(integer link, string path)

The ftp size function returns the size of a remote file in bytes. If an error occurs, -1 is
returned.

string ftp_systype(integer link)

The ftp systype function returns the system type of the remote FTP server.

IT-SC book 214

Core PHP Programming

Chapter 9. DATA FUNCTIONS

Data Types, Constants, and Variables
Arrays

Hashing

Strings

Encoding and Decoding

Encryption

Regular Expressions

PERL-compatible Regular Expressions

The functions in this chapter manipulate data. They check the values of variables. They
transform one type of data into another. They also deal with arrays. You may find it
useful to turn back to Chapter 2, "Variables, Operators, and Expressions,”
and read the discussion on data types and variables.

Data Types, Constants, and Variables

These functions check the status of a variable, change its type, or return a value as a
particular data type.

boolean define(string name, value, boolean
non_case_sensitive)

The define function creates a constant, which is essentially a variable that may be set
only once. The value argument may be a string, integer, double, or boolean. It may not
be an array or object. The non case sensitive argument is optional. By default,
constants are case sensitive, which is the same as with variables.

If the constant cannot be created for some reason, FALSE will be returned. If you wish to
check that a constant is defined, use the defined function.

It is customary to name constants using all uppercase letters, as is the practice in C. This
makes them stand out among other identifiers.

Because PHP allows for unquoted string literals, it is possible to write code that uses
constants that do not exist, yet produces no error. When you are using constants to hold
strings to be displayed on the page, this is simply an annoyance, because you can see the
error right away. When used for values not displayed, it can be a frustrating source of

IT-SC book 215

Core PHP Programming

bugs. If you discover a constant mysteriously evaluating to zero, check that the constant
has been defined.

<?
/*
** Database variables
*/
define ("DATABASE HOST", "localhost");
define("DATABASE_USER", "httpd") ;
define("DATABASEiPASSWORD", ",
define ("DATABASE NAME", "freetrade");
print ("Connecting to " . DATABASE HOST . "
\n");
>

boolean defined(string constantname)

The defined function returns TRUE if a constant exists, FALSE otherwise.

<?
define ("THERMOSTAT","72 degrees");
if (defined ("THERMOSTAT"))
{
print ("THERMOSTAT is " . THERMOSTAT) ;
}
2>

double doubleval(expression)

The doubleval function returns its argument as a double. Chapter 2 discusses
converting between data types. Related functions are strval and intval. It is an error to
pass an array or object to doubleval.

<?

SmyNumber = "13.1lcm";

print (doubleval (SmyNumber)) ;
>
ern[)ty

This function is an alias for isset.

string gettype(expression)

IT-SC book 216

Core PHP Programming

The gettype function returns a string that describes the type of the variable or
expression. It will be one of the following values: array, class, double, integer,

object, resource, string, unknown type.

//integer
printf ("$s
\n", gettype(11l));

//double
printf ("$s
\n", gettype(7.3));

//string
printf ("$s
\n", gettype ("hello"));
?>

integer intval(expression, integer base)

The intval function returns its argument as an integer. The optional base argument
instructs intval to use a numerical base other than ten.

Chapter 2 discusses converting between types.

<?
//drop extraneous stuff after decimal point
print (intval ("13.5cm") . "
\n");
//convert from hex
print (intval ("EE", 16));

2>

boolean is_array(expression)

The is array function returns TRUE if the expression is an array, otherwise FALSE is
returned.

<?
Scolors = array("red", "blue", "green");
if (is_array($colors))
{
print ("colors is an array");
}
2>

IT-SC book 217

Core PHP Programming

boolean is_bool(expression)
Use is bool to test whether an expression is a boolean.
boolean is_double(expression)

The is double function returns TRUE if the expression is a double, FALSE otherwise.

<?
STemperature = 15.23;
if (is_double ($Temperature))
{
print ("Temperature is a double");
}
2>
is_float

The is float function is an alias for the is double function.

The is int function is an alias for the is integer function.
boolean is_integer(expression)

The is integer function returns TRUE if the expression is an integer, FALSE otherwise.

<?
$PageCount = 2234;
if (is_integer ($PageCount))
{
print ("$PageCount is an integer");
}
?>
is_long

The is long function is an alias for the is integer function.

boolean is_object(expression)

The is object function returns TRUE if the expression is an object, FALSE otherwise.

IT-SC book 218

Core PHP Programming

<?
class widget
{
var Sname;
var $length;
}
$thing = new widget;
if (is_object (Sthing))
{
print ("thing is an object");
}
?>

boolean is_real(expression)
The is real function is an alias for the is double function.
boolean is_resource(variable)

This function returns TRUE if the given variable is a resource. A resource is an integer
used to identify a system resource. An example is the return value of fopen.

boolean is_string(expression)

The is string function returns TRUE if the expression is a string, FALSE otherwise.

<?
SGreeting = "Hello";
if (is_string($Greeting))
{
print ("Greeting is a string");
}
>

boolean isset(variable)

The isset function returns TRUE if the variable has been given a value, or FALSE if the
variable has never been on the left side of a set operator. In other words, it tests that the
variable has been set with a value.

if (isset ($Name))

{

IT-SC book 219

Core PHP Programming

print ("Your Name is S$Name");
else
print ("I don't know your name");

?>

boolean settype(variable, string type)

The settype function changes the type of a variable. The type is written as a string and
may be one of the following: array, double, integer, object, string. If the type could
not be set, FALSE is returned.

<?
SmyValue = 123.45;
settype ($myValue, "integer");
print ($SmyValue) ;

?>

string strval(expression)

The strval function returns its argument as a string.

<?

SmyNumber = 13;

print (strval (SmyNumber)) ;
?>
unset(variable)

The unset function destroys a variable, causing all memory associated with the variable
to be freed.

<?
$1ist[0] = "milk";
$list[1l] = "eggs";
$list[2] = "sugar";

unset ($list);

if (!isset ($1list))
{

print ("list has been cleared and has ");

IT-SC book 220

Core PHP Programming

print (count ($1list)) ;
print (" elements");

?>

Arrays

The functions in this section operate on arrays. Some of them sort the arrays; some of
them help you find and retrieve values from arrays. Chapter 5, "Arrays," discusses arrays
in depth.

array array(...)

The array function takes a list of values separated by commas and returns an array. This
is especially useful for creating one-off arrays to be passed to functions. Elements will be
added to the array as if you used empty square brackets, which means they are numbered
consecutively starting at zero. You may use the => operator to specify index values.

<?
//create an array
SmyArray = array(
"Name"=>"Leon Atkinson",
"Profession"=>array ("Programmer", "Author"),
"Residence"=>"Martinez, California"
);
?>

array array_count_values(array data)

The array count values function returns counts for each distinct value in the data
argument. The returned array is indexed by the values of the data argument. Although
the example below uses an array of numbers, array count values will count the
appearance of elements that contain any other data type.

Figure 9-1. array count_values.

IT-SC book 221

Core PHP Programming

<3 amay_count_values -... |9 [=] B3

| fie Edt vew Favo > [JE

1: 17 (17%)
2: 22 (22%)
317 (17%)
4: 23 (23%)
5:21 (21%) =

Y

| |8 Intemet

=7
/fgenerate $sample_size random numbers
//between 1 and 5
$sample_size = 100;
srand(time());
for($i=0; Si<$sample_size; Si++)

{
}

Sdata[] = rand(1,5);

{fcount elements
$count = array_count_values(Sdata);

{/sort by keys
ksort(Scount);

[fprint out totals
foreach($count as Skey=>%value)

{
print{"$key: $value (".(100 *
$value/Ssample_size)."%)
\n");

}

=

array array_flip(array data)

The array flip function returns the data argument with the indices and elements
exchanged.

Figure 9-2. array flip.

IT-SC book 222

Core PHP Programming

2} arap_flip - Micr__.

= |

Array

{
(a1
[1]
[2]

)

Array
[

| me Ea vew KRN
=

[ted] => O
[blue] == 1
[green]

=» red
= Bhlus
=> gresn

=» Z

-

|_hﬁlﬂwmm r

<7

7>

//create a test array
Scolors = array("red", "blue",

//show array like [0] => red
print ("<PRE>") ;
print_r(%colors);

print ("</PRE=\n") ;

//flip indices for elements
Scolors = array_flip(Scolors);
//show array like [red] => 0
print ("<PRE>") ;
print_r($colors);

print ("</PRE>\n"} ;

array array_keys(array data, string value)

"green") ;

The array keys function returns an array of the keys used in the data array. If the
optional value argument is supplied, only the subset of indices that point the given
element value are returned.

<?

//create random test data with 0 or 1

IT-SC book

223

Core PHP Programming

srand (time ()) ;
for ($1=0; $1<10; S$Si++)
{
Sdata[] = rand(0,1);
}

//print out the keys to 1's
foreach (array keys($data, 1) as Skey)

{
print ("Skey
\n") ;
}

7>

array array_merge (array data, array data, ...)

The array merge function takes two or more arrays and returns a single array containing
all elements. Elements indexed by integers are added to the new array one at a time, in
most cases renumbering them. Elements indexed by strings retain their index values and
are added as they are encountered in the input arrays. They may replace previous values.
If you are unsure of the indices used in the merged arrays, you can use array values to
make sure all values are indexed by an integer.

<?
function printElement ($element)
{
print ("$Selement
\n") ;
}
//set up an array of color names
S$colors = array("red", "blue", "green");
$more colors = array("yellow", "purple", "orange");
//merge arrays
$all colors = array merge ($colors, Smore colors);
//print out all the values
array walk($all colors, "printElement");
?>

boolean array__multisort(array data, integer direction, ...)

The array multisort function sorts arrays together, as if array were a column in a
table. The data argument is an array and the direction argument is one of two
constants: SORT ASC or SORT DEsC. These stand for ascending and descending,
respectively. If left out, the direction defaults to ascending order, which is smallest to
largest. You may specify any number of arrays, but you must alternate between arrays
and sort order constants as you do.

IT-SC book 224

Core PHP Programming

The way array multisort works is similar to the way a relational database sorts the
results of a join. The first element of each array is joined into a virtual row, and all
elements in a row move together. The arrays are sorted by the first array. In the case
where elements of the first array repeat, rows are sorted on the second row. Sorting
continues as necessary.

Figure 9-3. array multisort.

2 array_multizoit - Microzoft Inter__. B [=] E3
|] Fis Edit View Favoites Took “|

bathroom hand soap green 2.25
bathroom towel white 3

ltchen dish soap blue 2.55
katchen dish soap green 2.5
latchen towel white 1.75

[one | [[ap Intemet 7

f/create data

Seolor = array("green", "green®, "blue", "white", "white");
$item = array|"dish soap", "hand scap®, "dish soap®, "towel",
"towel");

Sdept = array("kitchen®, *bathroom®, *kitchen®, *kitchen®,
"bathroom") ;
sprice = arrayv(2.50, 2.25, 2_.85, 1.75%, 3.00);

/i{sorkt by department, item name, color, price
array_multisort{Sdept, SORT_ASC,

Sitem, SORT_ASC,

scolor, SORT_ASC,

$price, SORT_DESC);

Slprint sorted list
for(5i=0; %i <« count(Sitem); Si++)
{
print("sdept[si] sitem[5i] Scelor(si) Sprice[$il<BR=>Wn");

}

array array_pad(array data, integer size, value padding)

The array pad function adds elements to an array until it has the number of elements
specified by the size argument. If the array is long enough already, no elements are
added. Otherwise, the padding argument is used for the value of the new elements. If the
size argument is positive, padding is added to the end of the array. If the size argument
is negative, padding is added to the beginning.

IT-SC book 225

Core PHP Programming

//create test data
$data = array(1l,2,3);

//add "start" to beginning of array
$data = array pad($data, -4, "start");

//add "end" to end of array
$data = array pad($data, 5, "end");

foreach ($Sdata as S$value)

{
print ("$value
\n") ;

}

?>

value array_pop(array stack)

The array pop function returns the last element of an array, removing it from the array
as well. The array push function compliments it, and array shift and
array unshift add and remove elements from the beginning of an array.

<?
//set up an array of color names
Scolors = array("red", "blue", "green");
$lastColor = array pop($colors);
//prints "green"
print ($lastColor . "
\n");
//shows that colors contains red, blue
print ("<PRE>") ;
print r($colors);
print ("</PRE>\n") ;

?>

boolean array_push(array stack, expression entry, ...)

The array push function adds one or more values to the end of an array. It treats the
array as a stack. Use array pop to remove elements from the stack. The array shift
and array unshift functions add and remove elements to the beginning of an array.

//set up an array of color names
Scolors = array("red", "blue", "green");

//push two more color names
array push(Scolors, "purple", "yellow");

IT-SC book 226

Core PHP Programming

//print out all the values
// (red, blue, green, purple, yellow)
print ("<PRE>") ;
print r($colors);
print ("</PRE>\n".);
?>

array array_reverse(array data)

The array reverse function returns the data argument with the elements in reverse

order. The elements are not sorted in any way. They are simply in the opposite order.

<?
//create test data
$data = array(3, 1, 2, 7, 5);
//reverse order
$data = array reverse(Sdata);
//print in reverse order
//5, 17, 2, 1, 3
print ("<PRE>") ;
print r($data);
print ("</PRE>\n") ;
2>

value array_shift(array stack)

The array shift function returns the first element of an array, removing it as well. This
allows you to treat the array like a stack. The array unshift function adds an element
to the beginning of an array. Use array pop and array push to perform the same

actions with the end of the array.

<?
//set up an array of color names
Scolors = array("red", "blue", "green");
$firstColor = array shift($colors);
//print "red"
print ($firstColor . "
\n");
//dump colors (blue, green)
print ("<PRE>") ;
print r($colors);
print ("</PRE>\n") ;

?>

IT-SC book

227

Core PHP Programming

array array_slice(array data, integer start, integer stop)

The array slice function returns part of an array, starting with the element specified by
the start argument. If you specify a negative value for start, the starting position will
be that many elements before the last element. The optional stop argument allows you to
specify how many elements to return or where to stop returning values. A positive value
is treated as a maximum number of elements to return. A negative stop is used to count
backward from the last element to specify the element at which to stop.

Compare this function to array merge and array splice.

<?
function printElement ($element)

{
print ("$element
\n") ;

}

//set up an array of color names
S$colors = array("red", "blue", "green",
"purple", "Cyan", "yellOW") ;

//get a new array consisting of a slice
//from "green" to "cyan"
$colors slice = array slice($Scolors, 2, 3);

//print out all the values
array walk(Scolors slice, "printElement");
2>

array_splice(array data, integer start, integer stop, array
insert_data)

The array splice function removes part of an array and inserts another in its place. The
array passed is altered in place, not returned. Starting with the element specified by the
start argument, elements are removed until the element specified by the stop argument
is reached. If stop is left out, then removal continues until the end of the array. If stop is
negative, it references from the end of the array backward. It is possible to specify start
and stop values that do not actually remove any values. For instance, the stop value may
be positive and less than start. This is a valid way to use array splice to insert an
array without removing any elements.

In place of any removed elements, the array passed as the insert data argument is
inserted if it is supplied. Declaring it is optional, as you may wish simply to remove some
elements. If you wish to insert a single element into the array, you do not need to supply
an array for insert data.

IT-SC book 228

Core PHP Programming

Compare this function to array merge and array slice.

<?
function printElement ($element)
{
print ("Selement
\n") ;
}
//set up an array of color names
Scolors = array("red", "blue", "green",
"yellow", "orange", "purple");
//remove green
array splice(S$colors, 2, 2);
//insert "pink" after "blue"
array splice(Scolors, 2, 0, "pink");
//insert "cyan" and "black" between
//"orange" and "purple"
array splice(Scolors, 4, 0, array("cyan", "black"));
//print out all the values
array walk($colors, "printElement");
?>

boolean array_unshift(array stack, expression entry, ...)

The array unshift function adds one or more values to the beginning of an array, as if
the array were a stack. Use array shift to remove an element from the beginning of an
array. Compare this function to array pop and array push, which operate on the end of
the array.

<?
function printElement ($element)
{
print ("Selement
\n") ;

}

//set up an array of color names
Scolors = array("red", "blue", "green");

//push two more color names
array unshift ($colors, "purple", "yellow");

//print out all the values
array walk(S$colors, "printElement");
2>

IT-SC book 229

Core PHP Programming

array array_values(array data)

The array values function returns just the array elements, re-indexed with integers.

<?
//set up an array of color names
SUserInfo = array("First Name"=>"Leon",
"Last Name"=>"Atkinson",
"Favorite Language"=>"PHP");
//re-index using integers
$UserInfo = array values (SUserInfo);
//print out all the values and their
//new indices
for ($n=0; $n count ($SUserInfo); S$Sn++)
{
print (" ($n) S$UserInfo[Sn]
\n");
}
2>

boolean array_walk(array data, string function)

The array walk function executes the specified function on each element of the given
array. The function must take exactly one element; otherwise an error message is
generated. The array elements will be passed by reference, so any change made to them
by the specified function will be permanent in the array. The function specified must be
one you create, not a built-in PHP function.

<?
Scolors = array("red", "blue", "green");
function printElement ($element)
{ print ("Selement
\n") ;
}
array walk($colors, "printElement");
?>

arsort(array unsorted_array)

The arsort function sorts an array in reverse order by its values. The indices are moved
along with the values. This sort is intended for associative arrays. Chapter 15, "Sorting,
Searching, and Random Numbers," discusses sorting in depth.

IT-SC book 230

Core PHP Programming

<?
// build array
Susers = array ("bob"=>"Robert",
"steve"=>"Stephen",
"jon"=>"Jonathon") ;
// sort array
arsort (Susers) ;
// print out the values
for (reset (Susers); S$index=key (Susers); next (Susers))
{
print ("$index : Susers[$index]
\n");
}
2>

asort(array unsorted_array)

The asort function sorts an array by its values. The indices are moved along with the
values. This sort is intended for associative arrays. Chapter 15 discusses sorting in depth.

<?
// build array
Susers = array ("bob"=>"Robert",
"steve"=>"Stephen",
"Jon"=>"Jonathon") ;
// sort array
asort (Susers) ;
// print out the values
for (reset (Susers); S$index=key(Susers); next (Susers))
{
print ("$index : Susers[$index]
\n");
}
2>

array compact(...)

The compact function returns an array containing the names and values of variables
named by the arguments. Any number of arguments may be passed, and they may be
single string values or arrays of string values. Arrays containing other arrays will be
recursively explored. The variables must be in the current scope. This function
complements extract, which creates variables from an array.

Figure 9-4. compact.

IT-SC book 231

Core PHP Programming

; compact - Microsoft Int._. !El E

J File Edit View Favorite

Arravy _I
{
[nawe] => Leon
[city] => Martinez
[language] => PHP
[color] = blue

J. |
|:1| 4D Intemnet Y

<7
J/ereate some variables

fname = "Leon";
Slanguage = "PHP";
Scolor = "blue";
Socity = "Martinez";

//get variables as array
Svariable = compact({"name",
array("city", array("language", "color")));

J/print out all the wvalues
print ("<PRE>");
print_r{Svariable);
print("</PRE>\n"};

7=
integer count(variable array)

The count function returns the number of elements in an array. If the variable has never
been set, count returns zero. If the variable is not an array, count returns 1. Despite this
added functionality, you should use the isset and is array functions to determine the
nature of a variable.

Scolors = array("red", "green", "blue");
print (count ($colors));
2>

IT-SC book 232

Core PHP Programming

value current(array arrayname)

The current function returns the value of the current element pointed to by PHP's
internal pointer. Each array maintains a pointer to one of the elements of an array. By
default it points to the first element added to the array until it is moved by a function such
asS next Or reset.

<?
//create test data
Scolors = array("red", "green", "blue");
//loop through array using current
for (reset ($Scolors); S$Svalue = current ($colors); next($colors))
{
print ("S$value
\n") ;
}
2>

array each(array arrayname)

The each function returns a four-element array that represents the next value from an
array. The four elements of the returned array (0, 1, key, and value) refer to the key and
value of the current element. You may refer to the key with 0 or key, and to get the value
use 1 or value. You may traverse an entire array by repeatedly using 1ist and each, as
in the example below.

<?
//create test data
Scolors = array("red", "green", "blue");
//loop through array using each
//output will be like "0 = red"
while (list (Skey, S$value) = each(S$Scolors))
{
print ("S$key = $value
\n");
}
2>

end(array arrayname)

The end function moves PHP's internal array pointer to the array's last element. The reset
function moves the internal pointer to the first element.

Scolors = array("red", "green", "blue");
end (Scolors) ;

IT-SC book 233

Core PHP Programming

print (current (Scolors)) ;
2>

array explode(string delimiter, string data)

The explode function creates an array from a string. The delimiter argument divides
the data argument into elements. This function is safe for use with binary strings. The
implode function will convert an array into a string.

<?
/*
** convert tab-delimited list into an array
*/
$data = "red\tgreen\tblue";
Scolors = explode ("\t", S$data);
// print out the values
for ($index=0; $index < count (Scolors); S$index++)
{
print ("$index : S$colors[$index]
\n");
}
2>

extract(array variables, integer mode, string prefix)

The extract function creates variables in the local scope based on elements in the
variables argument. Elements not indexed by strings are ignored. The optional mode
argument controls whether variables overwrite existing variables or are renamed to avoid
a collision. The valid modes are listed in Table 9.1. If left out, EXTR OVERWRITE mode is
assumed. The prefix argument is required only if EXTR PREFIX SAME oOr
EXTR PREFIX ALL modes are chosen. If used, the prefix argument and an underscore are
added to the name of the extracted variable.

Compare this function to compact, which creates an array based on variables in the local
scope.

<?
$new variables = array('Name'=>'Leon', 'Language'=>'PHP');
$Language = 'English';
extract (Snew variables, EXTR PREFIX SAME, "collision");
//print extracted variables

print ($Name . "
\n");
print ($collision Language . "
\n");

IT-SC book 234

Core PHP Programming

?>

boolean in_array(value query, array data)

The in array function returns TRUE if the query argument is an element of the data
argument.

Table 9.1. extract Modes

Mode Description
EXTR OVERWRITE Overwrite any variables with the same name.
EXTR_SKIP Skip any variables with the same name.
EXTR PREFIX SAME Add prefix to variables with same name.
EXTR PREFIX ALL Prefix all variables.
<?

//create test data

Scolors = array("red", "green", "blue");

//test for the presence of green

if (in _array("green", S$Scolors))

{

print ("Yes, green is present!");

}

7>

string implode(array data, string delimiter)

The implode function transforms an array into a string. The elements are concatenated
with the delimiter string separating them. To perform the reverse functionality, use
explode.

<?
/*
** convert an array into a comma-delimited string
*/
Scolors = array("red", "green", "blue");
Scolors = implode($colors, ",");
print ($Scolors) ;
2>
join

You may use join as an alias to the implode function.

IT-SC book 235

Core PHP Programming

value key(array arrayname)

The xey function returns the index of the current element. Use current to find the value of
the current element.

<?
Scolors = array ("FF0000"=>"red",
"00FFO0Q"=>"green",
"0000FF"=>"blue") ;
for (reset (Scolors); Skey = key(Scolors); next(Scolors))
{
print ("$key is S$colors[$key]
\n");
}
2>

boolean krsort(array data)

The xrsort function sorts an array by its keys in reverse order—that is, largest values
first. The element values are moved along with the keys. This is mainly for the benefit of
associative arrays, since arrays indexed by integers can easily be traversed in order of
their keys.

Scolors = array("red"=>"FF0000",
"green"=>"00FF00",
"blue"=>"0000FF") ;

// sort an array by its keys
krsort ($Scolors) ;

// print out the values
foreach ($colors as S$Skey=>S$Svalue)

{
print ("S$key : S$value
\n");

}

?>

boolean ksort(array data)

The ksort function sorts an array by its keys, or index values. The element values are
moved along with the keys. This is mainly for the benefit of associative arrays, since
arrays indexed by integers can easily be traversed in order of their keys.

IT-SC book 236

Core PHP Programming

Scolors = array("red"=>"FF0000",
"green"=>"00FF0O0",
"blue"=>"0000FF") ;

// sort an array by its keys
ksort (Scolors) ;

// print out the values
foreach ($colors as S$Skey=>S$Svalue)

{
print ("S$key : S$value
\n");
}

?>

list(...)

The 1ist function treats a list of variables as if they were an array. It may only be used
on the left side of an assignment operator. It is useful for translating a returned array
directly into a set of variables.

<?
Scolors = array("red", "green", "blue");
//put first two elements of returned array
//into key and value, respectively
list (Skey, Svalue) = each($Scolors);
print ("$key: $value
\n");

?>

value max(array arrayname) value max(...)

The max function returns the largest value from all the array elements. If all values are
strings, then the values will be compared as strings. If any of the values is a number, only
the integers and doubles will be compared numerically. The alternate version of the max
function takes any number of arguments and returns the largest of them. With this use,
you must supply at least two values.

To find the minimum value, use min.

$colors = array("red"=>"FF0000",
"green"=>"00FFO00",
"blue"=>"0000FF") ;

//prints FF0000
print (max ($Scolors) . "
\n");

IT-SC book 237

Core PHP Programming

//prints 13
print (max ("hello", "55", 13) . "
\n");

//prints 17
print (max (1, 17, 3, 5.5) . "
\n");
2>

value min(array arrayname) value min(...)

The min function returns the smallest value from all the array elements. If all values are
strings, then the values will be compared as strings. If any of the values is a number, only
the integers and doubles will be compared numerically. The alternate version of the min
function takes any number of arguments and returns the smallest of them. You must
supply at least two values.

<?

Scolors = array("red"=>"FF0000",
"green"=>"00FFO00",
"blue"=>"0000FF") ;

//prints 0000FF

print (min ($Scolors) . "
\n");

//prints 13

print (min ("hello", "55", 13) . "
\n");

//prints 1

print (min(1, 17, 3, 5.5) . "
\n");

?>

value next(array arrayname)

The next function moves PHP's array pointer forward one element. It returns the value at
the new element. If the pointer is already at the end of the array, FALSE is returned.

<?
Scolors = array("red", "green", "blue");
$my color = current (Scolors);
do
{
print ("$my color
\n");
}
while (Smy color = next($colors))
2>

IT-SC book 238

Core PHP Programming

pos

You may use pos as an alias to the current function.

value prev(array arrayname)

The prev function operates similarly to the next function with the exception that it
moves backward through the array. The internal pointer to the array is moved back one

element, and the value at that position is returned. If the pointer is already at the
beginning, FALSE is returned.

<?
Scolors = array("red", "green", "blue");
end (Scolors) ;
$my_color = current (Scolors) ;
do
{
print ("$my color
\n");
}
while (Smy color = prev($colors))
?>

array range(integer start, integer stop)

Use range to create an array containing every integer between the first argument and the
second, inclusive.

<?
Snumbers = range (13, 19);
//print out all the wvalues
foreach ($numbers as S$value)
{

print ("$value
\n") ;

}

2>

value reset(array arrayname)

Use the reset function to move an array's internal pointer to the first element. The
element in the first position is returned. Use end to set the pointer to the last element.

//create test data
Scolors = array("red", "green", "blue");

IT-SC book 239

Core PHP Programming

//move internal pointer
next ($Scolors) ;

//set internal pointer to first element
reset ($colors);

//show which element we're at (red)
print (current ($Scolors)) ;
2>

rsort(array unsorted_array)

The rsort function sorts an array in reverse order. As with other sorting functions, the
presence of string values will cause all values to be treated as strings and the elements
will be sorted alphabetically. If all the elements are numbers, they will be sorted
numerically. The difference between rsort and arsort is that rsort discards any key
values and reassigns elements with key values starting at zero. Chapter 15 discusses
sorting in depth.

<?
//create test data
Scolors = array("one"=>"orange", "two"=>"cyan",
"three"=>"purple") ;
//sort and discard keys
rsort (Scolors) ;
//show array
foreach ($colors as S$Skey=>S$value)
{
print ("S$key = $value
\n");
}
2>

shuffle(array data)

The shuffle function randomly rearranges the elements in an array. The srand function
may be used to seed the random number generator, but as with the rand function, a seed
based on the current time will be used if you do not provide a seed.

//create test data
Snumbers = range(l, 10);

//rearrange
shuffle ($numbers) ;

IT-SC book 240

Core PHP Programming

//print out all the values
foreach ($Snumbers as S$Svalue)

{
print ("S$value
\n") ;
}

7>

sizeof
This is an alias for the count function.
sort(array unsorted_array)

The sort function sorts an array by element values from lowest to highest. If any element
is a string, all elements will be converted to strings for the purpose of comparison, which
will be made alphabetically. If all elements are numbers, they will be sorted numerically.
Like rsort, sort discards key values and reassigns elements with key values starting at
zero. Chapter 15 discusses sorting in depth.

//create test data
Scolors = array("one"=>"orange", "two"=>"cyan",
"three"=>"purple") ;

//sort and discard keys
sort ($colors) ;

//show array
foreach (Scolors as Skey=>$value)

{
print ("S$key = $value
\n");

}
7>

uasort(array unsorted_array, string comparison_function)

The uasort function sorts an array using a custom comparison function. The index
values, or keys, move along with the element values, similar to the behavior of the asort
function.

The comparison function must return a signed integer. If it returns zero, then two
elements are considered equal. If a negative number is returned, the two elements are
considered to be in order. If a positive number is returned, the two elements are
considered to be out of order.

IT-SC book 241

Core PHP Programming

<?
/*
** duplicate normal ordering
*/
function compare ($left, $right)
{
return ($left - $right);
}
//create test data
$some numbers = array (
"red"=>6,
"green"=>4,
"blue"=>8,
"yellow"=>2,
"orange"=>7,
"cyan"=>1,
"purple"=>9,
"magenta"=>3,
"black"=>5);
//sort using custom compare
uasort ($some numbers, "compare");
//show sorted array
foreach ($some numbers as Skey=>$value)
{
print ($key . "=" . S$value . "
\n");
}
2>

uksort(array unsorted_array, string comparison_function)

The uksort function sorts an array using a custom comparison function. Unlike usort,
the array will be sorted by the index values, not the elements. The comparison function
must return a signed integer. If it returns zero, then two indices are considered equal. If a
negative number is returned, the two indices are considered to be in order. If a positive
number is returned, the two indices are considered to be out of order.

/*

** duplicate normal ordering
*/

function compare ($left, $right)

{
return ($Sleft - $Sright);

}

//create test data
srand (time ()) ;
for ($1i=0; $i<10; S$i++)

IT-SC book 242

Core PHP Programming

{
Sdatalrand(1,100)] = rand(1,100);

}

//sort using custom compare
uksort ($data, "compare");

//show sorted array
foreach ($data as S$key=>$value)

{
print ($key . "=" . S$value . "
\n");

}

?>

usort(array unsorted_array, string compare_function)

The usort function sorts an array by element values using a custom comparison function.
The function must return a signed integer. If it returns zero, then two elements are
considered equal. If a negative number is returned, the two elements are considered to be
in order. If a positive number is returned, the two elements are considered to be out of
order.

<?
/*
** duplicate normal ordering
*/
function compare ($left, S$right)
{
return (Sleft - Sright);
}
//create test data
srand (time ()) ;
for ($1=0; $i<10; S$i++)
{
Sdata[rand(1,100)] = rand(1l,100);
}
//sort using custom compare
usort ($data, "compare");
//show sorted array
foreach ($data as Skey=>$value)
{
print ($key . "=" . $value . "
\n");
}
2>
Hashing

IT-SC book 243

Core PHP Programming

Hashing is the process of creating an index for a value using the value itself. The index is
called a hash. Sometimes hashes are unique to values, but not always. Hashes can be used
to make fast lookups, a method that PHP uses for keeping track of variables. Other times
hashes are used like encryption. If the hashes of two strings match, you can assume the
two strings match, as long as hash values are unique. In this way you can check
passwords without ever decrypting the original password.

Some of the functions in this section are built into PHP. The others are part of Sascha
Shumann's Mhash library. This library presents a universal interface to many hashing
algorithms. Visit the home site to learn more about it <http://schumann.cx/mhash/>.

string md5(string text)

The md5 function produces a hash as described by RFC 1321. The function takes a string
of any length and returns a 32-character identifier. It is theorized that the algorithm for
the md5 function will produce unique identifiers for all strings.

Figure 9-5. md5.

<3 md5 - Microsoft Internet Explorer - 10] x|

*
m

l:
Y
—
-
—

J File Edit ‘iew Favortes Tools He >

bebcdd657c9c3d62{%e22f2e0730868a
&] Done | |4 Intemet 7

=

<?
print (md5("Who is John Galt?"));
?>

string metaphone(string word)

Use metaphone to produce a string that describes how a word sounds when spoken. This
function is similar to soundex; however, it knows about how groups of letters are
pronounced in English. Therefore it is more accurate. Compare this function to soundex
and similar text.

IT-SC book 244

Core PHP Programming

The metaphone algorithm, invented by Lawrence Philips, was first described in
Computer Language magazine. You may find a discussion of metaphone at Scott Gasch's
Algorithm Archive <http://perl.guru.org/alg/node131.html>.

print ("Atkinson encodes as " . metaphone ("Atkinson"));
2>

string mhash(integer hash, string data)

Use mhash to get a hash for a string. Hashing algorithms available at the time of writing
are shown in Table 9.2.

Refer to the Mhash documentation for more information about each algorithm.

print (mhash (MHASH GOST, "Who is John Galt?"));
2>

Table 9.2. Mhash Algorithms

MHASH_CRC32

MHASH_CRC32B

MHASH_GOST

MHASH_HAVAL

MHASH_MD5

MHASH_RIPEMD128

MHASH_RIPEMD160

MHASH_SHA1

MHASH_TIGER

integer mhash_count()

The mhash count function returns the highest-numbered hash identifier. All hash
algorithms are numbered from zero, so you can use this function and
mhash get hash name to get a complete list.

print ("<TABLE BORDER=\"1\">\n");

print ("<TR>\n") ;
print ("<TH>Algorithm</TH>\n") ;
print ("<TH>Block Size</TH>\n");
print ("</TR>\n") ;

IT-SC book 245

Core PHP Programming

for ($i=0; $i <= mhash count(); $i++)
{
print ("<TR>\n") ;
print ("<TD>MHASH " . mhash get hash name ($i)
"</TD>\n") ;
print ("<TD>" . mhash get block size($i)
"</TD>\n") ;
print ("</TR>\n") ;
}

print ("</TABLE>\n") ;
?>

integer mhash_get_block_size(integer hash)

The mhash get block size function returns the block size used for a hash algorithm.
string mhash_get_hash_name(integer hash)

The mhash get hash name function returns the name for a particular hash identifier.
int similar_text(string left, string right, reference percentage)

The similar text function compares two strings and returns the number of characters
they have in common. If present, the variable specified for the percentage argument will
receive the percentage similarity. Compare this function to metaphone and soundex.

The algorithm used for similar text is taken from a book by Ian Oliver called
Programming Classics: Implementing the World's Best Algorithms. It's published by
Prentice Hall, and you can find out more about it on the Prentice Hall PTR Web site http:
//www.phptr.com/ptrbooks/ptr 0131004131.html>.

Figure 9-6. similar text

IT-SC book 246

Core PHP Programming

'a similar_text - Microsoft Inte... _ O] x|

| Fle Edt View Favoites »|i

9 shared characters j
66.666666666667% similar ;'

§| E| | |@ Internet /4

<7
//create two strings
Sleft = "Leon Atkinson":
Sright = "Vicky Atkinson";

//test to see how similar they are
i = similar_text($Sleft, Sright, &Spercent):

//print results
print (51 . " shared characters
=\n");
print (Spercent . "% similar<BR=\n");

7>

string soundex(string text)

The soundex function returns an identifier based on how a word sounds when spoken.
Similar-sounding words will have similar or identical soundex codes. The soundex code
is four characters and starts with a letter. Compare this function to the similar text and
the metaphone functions.

The soundex algorithm was described by Donald Knuth in Volume 3 of The Art of
Computer Programming.

<?
print (soundex ("lion"));
print ("
") ;
print (soundex ("lying"));
2>
Strings

IT-SC book 247

Core PHP Programming

For the most part, the string functions create strings from other strings or report about the
properties of a string. The exception is the eval function, which executes a string as if it
were a line of code in your PHP script.

array count_chars(string data, integer mode) string
count_chars(string data, integer mode)

The count chars function analyzes a string by the characters present. The mode
argument controls the return value. Modes 0, 1 and 2 return an array. Modes 3 and 4
return a string. If mode is left out, mode 0 is used.

If mode is 0, an array is returned indexed by ASCII codes, 0-255. Each element is set
with the count for that character. If mode is 1, only the elements with count greater than
zero are returned. If mode is 2, only the elements with count equal to zero are returned.
Mode 3 returns a string containing each character appearing in the input string. Mode 4
contains a string containing all characters not appearing in the input string.

//print counts for characters found
foreach (count chars ("Core PHP", 1) as
Skey=>Svalue)
{
print ("Skey:
Svalue
\n") ;
}

//print list of characters found

print ("Characters: '" . count chars("Core
PHP", 3) . "'
\n");
?>

eval(string phpcode)

The eval function attempts to execute the phpcode argument as if it were a line in
your PHP script. As with all strings, double quotes will cause the string to be evaluated
for embedded strings and other special characters, so you may wish to use single quotes
or escape dollar signs with backslashes.

In some ways, eval is like include or require. Beyond the obvious difference that
eval works on strings instead of files, eval starts in a mode where it expects PHP
code. If you need to switch to a mode where plain HTML is passed directly to the
browser, you will need to insert a closing PHP tag (?>). Why would you ever want to

IT-SC book 248

Core PHP Programming

execute eval on a string that contained plain HTML? Probably because the code was
stored in a database.

Be extremely careful when calling eval on any string that contains data that at any time
came from form variables. This includes database fields that were originally set through a
form. When possible, use nested $ operators instead of eval.

//Contrived example

//eval () line could be replaced with
SSvarName = 1;

SvarName = "myValue";

eval ("\$SvarName = 1;");

print (SmyValue . "
\n");

//More realistic simulation of using eval
//on data from a database
$code from database = "<?

print (date (\"Y-m-d\")); ?>";
eval ("?>" . Scode from database);

2>

string sprintf(string format, ...)

The sprintf function operates identically to the printf function, except that instead
of sending the assembled string to the browser, the string is returned. See the description
of printf for a detailed discussion. This function offers an easy way to control the
representation of numbers. Ordinarily PHP may print a double with no fraction

<?
Sx = 3.00;
//print $x as PHP default
print ($x . "
\n");
//format value of $x so that
//1it show two decimals after
//the decimal point
Ss = sprintf("%$.2f", Sx);
print ($s . "
\n");

?>

IT-SC book 249

Core PHP Programming

string str_repeat(string text, integer count)

The str repeat function returns a string consisting of the text argument repeated
the number of times specified by the count argument.

print (str repeat ("PHP!
\n", 10));
?>

integer strcasecmp(string first, string second)

The strcasecmp function operates identically to strcmp with the exception that
upper- and lowercase letters are treated as being identical. Check out soundex,
metaphone, and similar text for alternative ways of comparing strings.

<?
Sfirst = "abc";
Ssecond = "aBc";
if (strcasecmp (Sfirst, S$second) == 0)
{
print ("strings are equal");
}
else
{
print ("strings are not equal');
}
>
strchr

This function is an alias to strstr.

integer strcmp(string first, string second)

The strcmp function compares the first string to the second string. A number less than
zero is returned if the first string is less than the second. Zero is returned if they are equal.
A number greater than zero is returned if the first string is greater than the second string.
Comparisions are made by ASCII values. This function is safe for comparing binary data.

IT-SC book 250

Core PHP Programming

Check out soundex, metaphone, and similar text for alternative ways of
comparing strings.

<?
Sfirst = "abc";
Ssecond = "xyz";
if (strcemp ($first, S$second) == 0)
{
print ("strings are equal");
}
else
{
print ("strings are not equal');
}
?>

integer strcspn(string text, string set)

The strcspn function returns the position of the first character in the text argument
that is part of the set argument. Compare this function to st rspn.

<?
Stext = "red cabbage";
Sset = "abc";
Sposition = strcspn(Stext, S$set);
// prints 'red '
print (substr ($text, 0, Sposition));
2>

string stristr(string text, string substring)

The stristr function is a case-insensitive version of st rstr, below. A portion of the
text argument is returned starting from the first occurrence of the substring
argument to the end.

Stext = "Although he had help, Leon is the author
of

IT-SC book 251

Core PHP Programming

this book.";
print ("Full text: S$text BR>\n");
print ("Looking for 'leon':" . stristr($text,

"leon")) ;:
7>

integer strlen(string text)

Use the strlen function to get the length of a string.

<?

Stext = "a short string";

print ("'Stext' is " . strlen($text) . "
characters long.");
?>

integer strpos(string data, string substring, integer offset)

The strpos function returns the position of the substring argument in the data
argument. If the substring argument is not a string, it will be treated as an ASCII
code. If the substring appears more than once, the position of the first occurrence is
returned. If the substring doesn't exist at all, then FALSE is returned. The optional
of fset argument instructs PHP to begin searching after the specified position. Positions
are counted starting with zero.

This function is a good alternative to ereg when you are searching for a simple string. It
carries none of the overhead involved in parsing regular expressions. It is safe for use
with binary strings.

Stext = "Hello, World!";

//check for a space
if (strpos ($text, 32))
{
print ("There is a
space in '$text'
\n");
}

//find where in the string World appears

IT-SC book 252

Core PHP Programming

print ("World is at position "
strpos ($text, "World") . "
\n");
>

strrchr
This is an alias for strrpos.
integer strrpos(string text, string character)

The strrpos function operates similarly to strpos. It returns the last occurrence of
the second argument in the first. However, only the first character of the second argument
is used. This function offers a very neat way of chopping off the last part of a path, as in
the example below.

//set test string
Spath = "/usr/local/apache";

//find last slash
Spos = strrpos (Spath, "/");

//print everything after the last slash
print (substr ($path, S$pos+l));
2>

integer strspn(string text, string set)

The strspn function returns the position in the first character in the text argument that
is not part of the set of characters in the set argument. Compare this function to
strcspan.

<?

Stext = "cabbage";

Sset = "abc";

Sposition = strspn($Stext, Sset);

// prints 'cabba'

print (substr ($Stext, 0, S$position));
7>

IT-SC book 253

Core PHP Programming

string strstr(string text, string substring)

The strstr function returns the portion of the text argument from the first occurrence
of the substring argument to the end of the string. If substring is not a string, it is
assumed to be an ASCII code. ASCII codes are listed in Appendix B.

An empty string is returned when substring is not found in text. You can use it as a
faster alternative to eregq if you test for an empty string, as in the example below. The
stristr function is a case-insensitive version of this function.

<?

Stext = "Although this is a string, it's not very
long.";

if (strstr(Stext, "it") != "")

{

print ("The string contains 'it'.BR>/n");

}

?>

string strtok(string line, string separator)

The strtok function pulls tokens from a string. The 1ine argument is split up into
tokens separated by any of the characters in the separator string. The first call to
strtok must contain two arguments. Subsequent calls are made with just the
separator argument, unless you wish to begin tokenizing another string. Chapter
16, "Parsing and String Evaluation," discusses this function in depth, including
alternatives like ereg .

<?
// create a demo string
S$line = "leon\tatkinson\tleon@clearink.com";
// loop while there are still tokens
for (Stoken = strtok($line, "\t");
Stoken != "";
Stoken = strtok ("\t"))
{
print ("token: S$tokenBR>\n");
}
>

IT-SC book 254

Core PHP Programming

string substr(string text, integer start, integer length)

Use the substr function to extract a substring from the text argument. A string is
returned that starts with the character identified by the start argument, counting from
zero. If start is negative, counting will begin at the last character of the text
argument instead of the first and work backward.

The number of characters returned is determined by the length argument or the
beginning and end of the string. If 1ength is negative, the returned string will end that
many characters from the end of the string. In any case, if the combination of start and
length calls for a string of negative length, a single character is returned.

This function is safe for use with binary strings.

<?
Stext = "My dog's name is Angus.";
//replace Angus with Gus
print (substr replace(Stext, "Gus", 17, 5));
?>

Encoding and Decoding

The functions in this section transform data from one form to another.
This includes stripping certain characters, substituting some characters
for others, and translating data into some encoded form.

string addcslashes(string text, string characters)

The addcslashes function returns the text argument after escaping characters in the
style of the C programming language. Briefly, this means special characters are replaced
with codes, such as \n replacing a newline character, and other characters outside ASCII
32-126 are replaced with backslash octal codes.

The optional characters argument may contain a list of characters to be escaped,
which overrides the default of escaping all special characters. The characters are
specified with octal notation. You may specify a range using two periods as in the
example below.

<?
$s = addcslashes ($s, "\0..\37");
7>

IT-SC book 255

Core PHP Programming

string addslashes(string text)

The addslashes function returns the text argument with backslashes preceding
characters that have special meaning in database queries. These are single quotes ('),
double quotes ("), and backslashes themselves (\).

<?
// add slashes to text
Sphrase = addslashes ("I don't know");
// build query
SQuery = "SELECT * ";
SQuery .= "FROM comment ";
SQuery .= "WHERE text like '$%S$phrase%'";
print ($Query) ;
?>

string base64__decode(string data)

The base64 decode function translates data from MIME base64 encoding into 8-bit
data. Base64 encoding is used for transmitting data across protocols, such as email, where
raw binary data would otherwise be corrupted.

$Sdata = "VGhpcyBpcyBhIAptdWx0aS1lsaW51IG11c3Nhz2UK";
print (base64 decode ($data));
?>

string base64_encode(string text)

The base64 encode function converts text, such as email, to a form that will pass
through 7-bit systems uncorrupted.

Stext = "This is a \nmulti-line message\n";
print (base64 encode (Stext));

IT-SC book 256

Core PHP Programming

>

string basename(string path)

The basename function returns only the filename part of a path. Directories are
understood to be strings of numbers and letters separated by slash characters (/). When
running on Windows, backslashes (\) are used as well. The flip side to this function is
dirname, which returns the directory.

<?
Spath="/usr/local/bin/1ls";
print (basename ($path)) ;

?>

string bin2hex(string data)

The bin2hex function returns the data argument with each byte replaced by its
hexadecimal representation. The numbers are returned in little-endian style. That is, the
first digit is most significant.

<?
//print book title in hex
//436£7265205048502050726£6772616d6d696e67
$s = "Core PHP Programming";
Ss = bin2hex (S$s);
print (S$s);

2>

string chop(string text)

The chop function returns the text argument with any trailing whitespace removed. If
you wish to remove both trailing and leading whitespace, use the t rim function. If you
wish to remove leading whitespace only, use 1trim. Whitespace includes spaces, tabs,
and other nonprintable characters, including nulls (ASCII 0).

print ("\" 1]
chop ("This has whitespace ")

IT-SC book 257

Core PHP Programming

"\" "),.
7>

string chr(integer ascii_code)

Use chr to get the character for an ASCII code. This function is helpful for situations
where you need to use a nonprinting character that has no backslash code, or the
backslash code is ambiguous. Imagine a script that writes to a formatted text file.
Ordinarily you would use \n for an end-of-line marker. But the behavior may be
different when your script is moved from Windows to Linux, because Windows uses a
carriage return followed by a linefeed. If you wish to enforce that each line end with a
linefeed only, you can use chr (10) as in the example below.

Of course, you may always use a backslash code to specify an ASCII code, as listed in
Appendix A and discussed in Chapter 2. Another alternative to chr is sprintf.
The %c code stands for a single character, and you may specify an ASCII value for the
character. Additionally, some functions, such as ereg replace, accept integers that
are interpreted as ASCII codes.

If you need the ASCII code for a character, use ord. Appendix B lists ASCII codes.

//open a test file
Sfp = fopen ("data.txt", "w");

//write a couple of records that have
//linefeeds for end markers

fwrite ($fp, "data record 1" . chr(10));
fwrite ($fp, "data record 2" . chr(10));

//close file
fclose ($fp);
>

string chunk_split(string data, integer length, string marker)

The chunk split function returns the data argument after inserting an end-of-line
marker at regular intervals. By default a carriage return and a linefeed are inserted every
76 characters. Optionally, you may specify a different length and a different marker
string.

IT-SC book 258

Core PHP Programming

Sascha Schumann added this function specifically to break base64 codes up into 76-
character chunks. Although ereg replace can mimic this functionality,
chunk split is faster. It isn't appropriate for breaking prose between words. That is, it
isn't intended for performing a soft wrap.

<?

$encodedData =
chunck split (base64 encode ($SrawData));
?>

string convert_cyr_string(string text, string from, string to)

Use convert cyr string to convert a text in one Cyrillic character set to another.
The from and to arguments are single-character codes listed in Table 9.3.

Table 9.3. Codes for convert _cyr String

Code Description
a,d x-cp866
i iso8859-5
k koi8-r
m x-mac-cyrillic
w windows-1251
<?

$new = convert cyr string($old, "a", "w");

?>

string dirname(string path)

The dirname function returns only the directory part of a path. The trailing slash is not
included in the return value. Directories are understood to be separated by slashes (/). On
Windows, backslashes (\) may be used, too. If you need to get the filename part of a path,
use basename.

Spath = "/usr/local/bin/1s";
print (dirname ($Spath)) ;
7>

IT-SC book 259

Core PHP Programming

string escapeshellcmd(string command)

The escapeshellcmd function adds a backslash before any characters that may cause
trouble in a shell command. This function should be used to filter user input before it is
used in exec or system. Table 9.4 lists characters escaped by escapeshellcmd.

Figure 9-7. escapeshellcmd.

3 escapeshellcmd - Miciozoft Int._. [[=] B3

| e Edt Vew Favotes Ioo ” [

Tryng echo Vpotenhally', bad te=t!

'potentially; bad text'

&) Dore| | 4D Intemet

S |

<7
Scmd = "echo 'potentially; bad text'";
Scmd = escapeshellcmd($Scmd) ;
print ("Trying $Scmd
\n");
print ("<PRE>") ;
system(Scmd) ;
print ("</PRE>") ;
7>
Table 9.4. Characters Escaped by escapeshellcmd
Character Description

& Ampersand

; Semicolon

! Left Tick

! Single Quote

" Double Quote

| Vertical Bar

* Asterisk

? Question Mark

~ Tilde

< Left Angle Bracket

> Right Angle Bracket

IT-SC book 260

Core PHP Programming

~ Caret

(Left Parenthesis

) Right Parenthesis

[Left Square Bracket
] Right Square Bracket
{ Left Curly Brace

> Right Curly Brace

$ Dollar Sign

\ Backslash

ASCII 10 Linefeed

ASCII 255

string hebrev(string text, integer length)

Unlike English, Hebrew text reads right to left, which makes working with strings
inconvenient at times. The hebrev function reverses the orientation of Hebrew text, but
leaves English alone. Hebrew characters are assumed to be in the ASCII range 224
through 251, inclusive. The optional 1ength argument specifies a maximum length per
line. Lines that exceed this length are broken.

<?
print (hebrev ("Hebrew")) ;
7>

string hebrevc(string text, integer length)

The hebrevc function operates exactly like hebrev, except that BR tags are inserted
before end-of-line characters.

string htmlentities(string text)

The htmlentities function returns the text argument with certain characters
translated into HTML entities. Table 9.5 lists entities supported.

This list conforms to the ISO-8859-1 standard. The nl12br function is similar: it
translates line breaks to BR tags. You can use strip tags to remove HTML tags
altogether.

Stext = "Use <HTML> to begin a document.";
print (htmlentities (Stext));

IT-SC book 261

Core PHP Programming

7>

string htmlispecialchars(string text)

The htmlspecialchars function works like htmlentities, except that a smaller
set of entities are used. They are amp, quot, 1t, and gt.

Stext = "Use <HTML> to begin a document.";
print (htmlspecialchars (Stext)) ;
2>

integer ip2long(string address)

The ip2long function takes an IP address and returns an integer. This allows you to
compress a 16-byte string into a 4-byte integer. Use 1ong2ip to reverse the process.

Table 9.5. HTML Entities

aacute eacute macr raquo
aacute eacute micro reg
acirc ecirc middot sect
acirc ecirc nbsp shy
acute egrave not supl
aelig egrave ntilde sup2
aelig eth ntilde sup3
agrave eth oacute szlig
agrave euml oacute thorn
aring euml ocirc thorn
aring fracl2 ocirc times
atilde fracl4 ograve uacute
atilde frac34 ograve uacute
auml iacute ordf ucirc
auml iacute ordm ucirc
brvbar icirc oslash ugrave
ccedil icirc oslash ugrave
ccedil iexcl otilde uml
cedil igrave otilde uuml
cent igrave ouml| uuml
copy iquest ouml| yacute

IT-SC book

262

Core PHP Programming

curren iuml para yacute
deg iuml plusmn yen
divide laquo pound yuml

string long2ip(integer address)

Use long2ip to get the textual representation of an IP address. Use ip2long to
reverse the process.

string Itrim(string text)

The 1trim function returns the text argument with any leading whitespace removed. If
you wish to remove whitespace on the end of the string, use chop. If you wish to remove
whitespace from the beginng and end, use trim. Whitespace includes spaces, tabs and
other nonprintable characters, including nulls (ASCII 0).

<?
Stext = " Leading whitespace";
print ("<PRE>" . ltrim(Stext) "</PRE>") ;
>

string nl2br(string text)

The n12br function inserts
 before every newline in the text argument and returns
the modified text.

Stext = "linel\nline2\nline3\n";
print (nl2br (Stext)) ;
>

string number_format(double value, integer precision, string
decimal, string thousands)

The number format function returns a formatted representation of the value
argument as an integer with commas inserted to separate thousands. The optional
precision argument specifies the number of digits after the decimal point, which by
default is zero. The optional decimal and thousands arguments must be used
together. They override the default use of periods and commas for decimal points and
thousands separators.

IT-SC book 263

Core PHP Programming

Figure 9-8. number format.

3 number_format - ... [E[=]
| Ele Edt View F>

123,456,789
123,456,789.12
123.456.789,12
=
D Intemet 4

Stest_number = 123456789.1234567809;

f/fadd commas, drop any fraction
print (number_ format(Stest_number) . "
‘\n");

ffadd commas and limit to two digit precision

print({number_ format(Stest_number, 2} . "
“N");

Sl format for Germans
print{number_format {$test_number, 2,

L = =)

=

integer ord(string character)

"
Yn") ;

The ord function returns the ASCII code of the first character in the character argument.
This function allows you to deal with characters by their ASCII values, which often can
be more convenient than using backslash codes, especially if you wish to take advantage
of the order of the ASCII table. Refer to Appendix B for a complete table of ASCII
codes.

If you need to find the character associated with an ASCII code, use the chr function.

<?

/*

** Decompose a string into its ASCII codes.
** Test for codes below 32 because these have
** gpecial meaning and we may not want to

** print them.

*/

Stext = "Line 1\nLine 2\n";

print ("ASCII Codes for 'Stext'
\n");

print ("<TABLE>\n") ;

IT-SC book

264

Core PHP Programming

for($i=0; S$i < strlen(Stext); S$Si++)
{
print ("<TR>") ;

print ("<TH>") ;
if (ord(Stext[S$i]) > 31)
{
print (Stext[$i]);

print (" (unprintable)");
}
print ("</TH> ") ;
print (ord (Stext[$1]));
print ("</TD>") ;

print ("</TR>\n") ;
}

print ("</TABLE>\n") ;
>

string pack(string format, ...)

The pack function takes inspiration from the Perl function of the same name. It allows
you to put data in a compact format readable on all platforms. Format codes in the first
argument match with the arguments that follow it. The codes determine how the values
are stored. An optional number, called the repeat count, may follow the format code. It
specifies how many of the following arguments to use. The repeat count may also be *,
which matches the remaining arguments. Some of the codes use the repeat count
differently. Table 9.6 lists all the format codes and how they use the repeat count.

A string with the packed data is returned. Note that it will be in a
binary form, unsuitable for printing. In the example below, I've printed
out each byte of the packed data as hexadecimal codes.

<?
//create some packed data
SpackedData = pack("calOn", 65, "hello", 1970);

//display ASCII code for each character
print ("<PRE>") ;

IT-SC book 265

Core PHP Programming

for ($i=0; $istrlen($packedData); S$i++)
{
print ("0x" . dechex (ord(SpackedData[$i]))

print ("</PRE>\n") ;

//unpack the data
S$SData = unpack("cOne/al0Two/nThree", S$packedData);

//show all elements of the unpacked array
while (1list (Skey, S$value) = each(S$Dhata))
{
print ("Skey = S$value
\n");
}

?>
Table 9.6. Pack Codes
Data ., .
Code Type Description
Repeat count is the number of characters to take from the string. If
a |String [there are fewer characters in the string than specified by the repeat
count, spaces are used to pad it out.
Repeat count is the number of characters to take from the string. If
A |String |there are fewer characters in the string than specified by the repeat

count, nulls (ASCII 0) are used to pad it out.

C Integer [The integer will be converted to a signed character.

C |Integer|The integer will be converted to an unsigned character.

Double

The double will be stored in double-width floating-point format.
Depending on your operating system, this is probably 8 bytes.

f Double

The double will be converted to a single-width floating-point format.
Depending on your operating system, this is probably 4 bytes.

h |String

The ASCII value of each character of the argument will be saved as two
characters representing the ASCII code in hexadecimal, big-endian. The
repeat count denotes the number of characters to take from the input.

H |String

The ASCII value of each character of the argument will be saved as two
characters representing the ASCII code in hexadecimal, little-endian.
The repeat count denotes the number of characters to take from the
input.

i Integer

The argument will be saved as an unsigned integer. Typically this is 4
bytes.

I Integer

The argument will be saved as a signed integer. Typically this is 4
bytes, with one bit used for sign.

I Integer |The argument is saved as an unsigned long, which is usually 8 bytes.

L Integer

The argument is saved as a signed long, which is usually 8 bytes with
one bit used for sign.

IT-SC book

266

Core PHP Programming

n Integer

The argument is saved as an unsigned short, which is 2 bytes. The
value is saved in a way that allows for safe unpacking on both little-
endian and big-endian machines.

N |Integer

The argument is saved as an unsigned long, which is 8 bytes. The value
is saved in a way that allows for safe unpacking on both little-endian
and big-endian machines.

S Integer

The argument is saved as an unsigned short, which is usually 2 bytes.

The argument is saved as a signed short, which is usually 2 bytes with

S |Integer one bit used for sign.
v |Integer | The argument is saved as an unsigned short in little-endian order.
V |Integer The argument is saved as an unsigned long in little-endian order.
This format directive doesn't match with an argument. It writes a null
X None
byte.
This format directive causes the pointer to packed string to back up 1
X None
byte.
This format directive moves the pointer to the absolute position
@ |None |specified by its repeat count. The empty space is padded with null

bytes.

parse_str(string query)

The parse str function parses the query argument as if it were an HTTP GET
query. A variable is created in the current scope for each field in the query. You may
wish to use this function on the output of parse url.

Squery = "name=Leoné&occupation=Web+Engineer";
parse str(Squery);

print ("$name
\n");

print ("Soccupation BR>\n");

?>

array parse_url(string query)

The parse url function breaks an URL into an associative array with the following
elements: fragment, host, pass, path, port, query, scheme, user. The query
is not evaluated as with the parse str function.

Figure 9-9. parse_url.

IT-SC book

267

Core PHP Programming

2} parse_uil - Microsoft Internet Explorer

| File Edt View Favoites Tooks Help

Arravy

i
[scheme]
[host] =>
[port] =>

[user) =>
[pass] ==

=» http

Wiy, leonatkinson. com

g0
leon
secret

|»

[path] =» ftest/test.php3
[query] => name=Leon&occupation=Veb+Engineer
* E

&] Done [[Intemet /

<7
Squery = "http://leon:secret@www. leonatkinson.com:80";
Squery .= "/test/test.php3?”¥;
Sguery .= "name=Leonkoccupation=Web+Engineer";
furl = parse_url|Squery);

7>

for(reset

{

print{"Sindex:

}

(5url); Sindex =

key{Surl); next(Surl))

surl[Sindex]<BR=>'“n");

string quoted_printable_decode(string text)

The quoted printable decode function converts a quoted string into 8-bit binary
form. It reverses the action of the quotemeta function. That is, it removes backslashes
preceding special characters. Table 9.7 lists these special characters.

Table 9.7. Meta Characters

Character

Description

Period

Backslash

Plus

Asterisk

Question Mark

Left Square Bracket

Right Square Bracket

Caret

Left Parenthesis

\//\>|_||—|-\J *+/-

Right Parenthesis

IT-SC book

268

Core PHP Programming

‘$ ‘DoHarS@n

This function performs the same function as imap gprint but does not require the
IMAP extension.

Scommand = "echo 'hello\?'";
print (quoted printable decode (Scommand)) ;
?>

string quotemeta(string command_text)

The quotemeta function returns the command text argument with backslashes
preceding special characters. These characters are listed in Table 9.7. Compare this
function to addslashes and escapeshellcmd. If your intention is
to ensure that user data will cause no harm when placed
within a shell command, use escapeshellcmd.

The quotemeta function may be adequate for assembling PHP code passed to eval.
Notice in the example below how characters with special meaning inside double quotes
are escaped by quote meta, thus defeating an attempt at displaying the password
variable.

<?
//simulate user input
Sinput = 'Spassword';

//assemble safe PHP command
Scmd = 'Stext = "' . guotemeta ($input) . '";';

//execute command
eval (Scmd) ;

//print new value of S$text

print (Stext) ;
7>

string rawurldecode(string url_text)

IT-SC book 269

Core PHP Programming

The rawurldecode function returns the url text string translated from url format
into plain text. It reverses the action of rawurlencode. This function is safe for use
with binary data. The ur1decode function is not.

print (rawurldecode ("mail%20leon%40clearink.com")) ;
2>

string rawurlencode(string url_text)

The rawurlencode function returns the url text string translated into URL
format. This format uses percent signs (%) to specify characters by their ASCII code, as
required by the HTTP specification. This allows you to pass information in an URL that
includes characters that have special meaning in URLSs, such as the ampersand (&). This
is discussed in detail in RFC 1738.

This function is safe for use with binary data. Compare this to urlencode, which is
not.

<?
print (rawurlencode ("mail leon@clearink.com"));
2>

string serialize(value)

Use serialize to transform a value into an ASCII string that may be later turned back
into the same value using the unserialize function. The serialized value may be
stored in a file or a database for retrieval later. In fact, this function offers a great way to
store complex data structures in a database without writing any special code.

Figure 9-10. serialize

IT-SC book 270

Core PHP Programming

<} sernialize - Microsoft Intemnet Explorer |9 [u] E3

Serialized:
adfrlaz:{t0sd "soap" 1 1,d1.59 11122
{1055 bread"11,d:0 99} 1222
[e0:s4: "milk" 11,4 1.29;}]

Unserahized:

Lrray
(
[O) => Array
{
[0] ==>
[11 ==
)

=» Array
(
[0] ==
[1] ==
1

=> Array

[
(0] ==
[1] ==~

<7
//simulate a shopping basket as
//a multi-dimensional array
SBasket = arrayl|
array("socap", 1.59),
array({"bread”, 0.99),
array("milk", 1.29)
|

//serialize array
SData = serialize($Basket);

IT-SC //print out the data, just for fun 271
print ($Data . "
\n"):

I T L D [S N (., (J T

Core PHP Programming

string sql_regcase(string regular_expression)

The sql regcase function translates a case-sensitive regular expression into a case-
insensitive regular expression. This is unnecessary for use with PHP's built-in regular
expression functions but can be useful when creating regular expressions for external
programs such as databases.

//print [Mm] [Oo] [Zz] [Ii][L1][L1] [Aa]
print (sgl regcase ("Mozilla"));
?>

string str_replace(string target, string replacement, string
text)

The str replace function attempts to replace all occurrences of target in text
with replacement. This function is safe for replacing strings in binary data. It's also a
much faster alternative to ereg replace. Note that str replace is case sensitive.

<?

Stext = "Search results with keywords
highlighted.";

print (str replace ("keywords", "keywords/B>",
Stext)) ;
?>

string strip_tags(string text, string ignore)

The strip tags function attempts to remove all SGML tags from the text
argument. This includes HTML and PHP tags. The optional ignore argument may
contain tags to be left alone. This function uses the same algorithm used by fgetss. If
you want to preserve tags, you may wish touse htmlentities.

<?
//create some test text
Stext = "<P>Paragraph One<P>Paragraph Two";

//strip out all tags except paragraph and break
print (strip tags(Stext, "<P>
"));

IT-SC book 272

Core PHP Programming

7>

string stripcslashes(string text)

The stripcslashes function complements addcslashes. It removes backslash
codes that conform to the C style. See addcslashes, above, for more details.

<?
//create some test text
Stext = "Line 1\x0ALine 2\xO0A";
//convert backslashes to actual characters
print (stripcslashes (Stext));
>

string stripslashes(string text)

The stripslashes function returns the text argument with backslash encoding
removed. It complements addslashes. By default, PHP is configured to add slashes to
user input. Use stripslashes to remove slashes before sending submitted form fields
to the browser.

<?

Stext = "Leon\'s Test String";

print ("Before: $textBR>\n");

print ("After: " . stripslashes(S$Stext) . "BR>\n");
7>

string strrev(string text)

The strrev function returns the text argument in reverse order.
<?

print (strrev ("abcdefg"));
?>

IT-SC book 273

Core PHP Programming

string strtolower(string text)

The strtolower function returns the text argument with all letters changed to
lowercase. Other characters are unaffected. Locale affects which characters are
considered letters, and you may find that letters with accents and umlauts are being
ignored. You may overcome this by using setlocale, discussed in Chapter 11,
"Time, Date, and Configuration Functions."

<?
print (strtolower ("Hello World"));
?>

string strtoupper(string text)

The strtoupper function returns the text argument with all letters changed to
uppercase. Other characters are unaffected. Locale affects which characters are
considered letters, and you may find that letters with accents and umlauts are being
ignored. You may overcome this by using set locale, discussed in Chapter 11.

print (strtoupper ("Hello World")):;
2>

string strtr(string text, string original, string translated)

When passed three arguments, the strtr function returns the text argument with
characters matching the second argument changed to those in the third argument. If
original and translated aren't the same length, the extra characters are ignored.

At the time of writing a second prototype for st rtr was being planned that allows you
to pass two arguments. The second argument must be an associative array. The indices
specify strings to be replaced, and the values specify replacement text. If a substring
matches more than one index, the longer substring will be used. The process is not
iterative. That is, once substrings are replaced, they are not further matched.

This function is safe to use with binary strings.

<?
Stext = "Wow! This 1s neat.";
Soriginal = "!.";

IT-SC book 274

Core PHP Programming

Stranslated = ".?2";

// turn sincerity into sarcasm
print (strtr (Stext, Soriginal, Stranslated));
>

string substr_replace(string text, string replacement, integer
start, integer length)

Use substr replace to replace one substring with another. Unlike str replace,
which searches for matches, substr replace simply removes a length of text and
inserts the replacement argument. The arguments operate similarly to substr. The
start argument is an index into the text argument with the first character numbered
as zero. If start is negative, counting will begin at the last character of the text
argument instead of the first.

The number of characters replaced is determined by the optional 1ength argument or
the ends of the string. If 1ength is negative, the returned string will end as many
characters from the end of the string. In any case, if the combination of start and
length calls for a string of negative length, a single character is removed.

<?
Stext = "My dog's name is Angus.";
//replace Angus with Gus
print (substr replace(Stext, "Gus", 17, 5));
?>

string trim(string text)

The trim function strips whitespace from both the beginning and end of a string.
Compare this function to 1trim and chop. Whitespace includes spaces, tabs and other
nonprintable characters, including nulls (ASCII 0).

Stext = " whitespace ";
print ("™ \" " . trim(Stext) . "\" ");
2>

IT-SC book 275

Core PHP Programming

string ucfirst(string text)

Use the ucfirst function to capitalize the first character of a string. Compare this
function to strtoupper and ucwords. As with these other functions, your locale
determines which characters are considered letters.

<?

print (ucfirst ("1 forgot to capitalize
something.")) ;
?>

string ucwords(string text)
Use the ucwords function to capitalize every word in a string. Compare it to

strtoupper and ucfirst. As with these other functions, your locale determines
which characters are considered letters.

<?
print (ucwords ("core PHP programming"));
?>

array unpack(string format, string data)

The unpack function transforms data created by the pack function into an associative
array. The format argument follows the same rules used for pack except that each
element is separated by a slash to allow them to be named. These names are used as the
keys in the returned associative array. See the pack example.

value unserialize(string data)

Use unserialize to transform serialized data back into a PHP value. The description
of serialize has an example of the entire process.

string urldecode(string url_text)

The urldecode function returns the url text string translated from URL format
into plain text. It is not safe for binary data.

<?

IT-SC book 276

Core PHP Programming

print (urldecode ("mail%20leon%$40clearink.com")) ;
7>

string urlencode(string url_text)

The urlencode function returns the url text string translated into URL format.
This format uses percent signs (%) to specify characters by their ASCII code. This
function is not safe for use with binary data.

<?

print (urlencode ("mail leon@clearink.com"));
2>
Encryption

Encryption is the process of transforming information to and from an unreadable format.
Some algorithms simply scramble text; others allow for reversing the process. PHP offers
a wrapper to C's crypt function, plus an extension that wraps the merypt library.

The mcrypt functions rely on a library of the same name written by Nikos
Mavroyanopoulos, which provides an advanced system for encrypting data. The URI for
the project is <ftp: //argeas.cs-net.gr/pub/unix/mcrypt/>. Sascha Schumann
added mycrypt functionality to PHP.

Cryptography is a topic beyond the scope of this text. Some concepts discussed in this
section require familiarity with advanced cryptographic theories. A great place to start
learning about cryptography is the FAQ file for the sci.crypt Usenet newsgroup. The URI
is < http://www.fags.org/fags/cryptography-fag/>. Another resource is a
book Prentice Hall publishes called Cryptography and Network Security: Principles and
Practice by William Stallings. The PHP manual suggests Applied Cryptography by Bruce
Schneier.

string crypt(string text, string salt)

The crypt function encrypts a string using C's crypt function, which usually uses
standard DES encryption, but depends on your operating system. The text argument is
returned encrypted. The salt argument is optional. PHP will create a random salt
value if one is not provided. You may wish to read the man page on crypt to gain a
better understanding.

Note that data encrypted with the crypt function cannot be decrypted. The function is
usually used to encrypt a password that is saved for when authorization is necessary. At

IT-SC book 277

Core PHP Programming

that time, the password is asked for, encrypted, and compared to the previously encrypted
password.

Depending on your operating system, alternatives to DES encryption may be available.
The salt argument is used to determine which algorithm to use. A two-character salt is
used for standard DES encryption. A nine-character salt specifies extended DES. A
twelve-character salt specifies MDS5 encryption. And a sixteen-character salt specifies the
blowfish algorithm.

When PHP is compiled, available algorithms are incorporated. The following constants
will hold TRUE or FALSE values you can use to determine the availability of the four
algorithms: CRYPT STD DES, CRYPT EXT DES, CRYPT MD5,CRYPT BLOWFISH.

<?
Spassword = "secret";
1f (CRYPT MD5)
{
$salt = "leonatkinson";
print ("Using MD5: ");
}
else
{
Ssalt = "cp";
print ("Using Standard DES: ");
}
print (crypt (Spassword, S$salt));
?>

string mcrypt_create_iv(integer size, integer source)

Use mcrypt create iv to create an initialization vector. The size should match the
encryption algorithm and should be set using mcrypt get block size. The source
argument can be one of three constants. MCRYPT DEV RANDOM uses random numbers
from /dev/random. MCRYPT DEV URANDOM uses random numbers from
/dev/urandom. MCRYPT RAND uses random numbers from the rand function,
which means you ought to seed it first with srand.

string mcrypt_cbc(integer algorithm, string key, string data,
integer mode, string initialization_vector)

IT-SC book 278

Core PHP Programming

The mcrypt cbc function encrypts a string using cipher block chaining. This method
is best suited to encrypting whole files. The algorithm argument is one of the constants
listed in Table 9.8. The mode argument can be either MCRYPT DECRYPT or
MCRYPT ENCRYPT. An initialization vector is optional. Remember that if you encrypt
using one, you must use the same one to decrypt.

//set up test data
Smessage = "This message is sensitive.";
Skey = "secret";

//encrypt message
$code = mcrypt ofb (MCRYPT BLOWFISH 128, Skey,
Smessage, MCRYPT ENCRYPT) ;

//pring decrypted message

print (mcrypt ofb (MCRYPT BLOWFISH 128, s$key, $code,
MCRYPT DECRYPT));
2>

mcrypt_cfb(integer algorithm, string key, string data, integer
mode, string initialization_vector)

The mcrypt cfb function encrypts a string using cipher feedback. This method is best
suited to encrypting streams. However, PHP's mcrypt interface does not support stream
ciphers at the time of this writing. The algorithm argument is one of the constants listed
in Table 9.8. The mode argument can be either MCRYPT DECRYPT or
MCRYPT ENCRYPT. An initialization vector is required. You must use the same one to

decrypt.

mcrypt_ecb(integer algorithm, string key, string data, integer
mode)

The mcrypt ecb function encrypts a string using the electronic codebook method,
which is good for encryption of short, irregular data. The algorithm argument is one of
the constants listed in Table 9.8. The mode argument can be either
MCRYPT DECRYPT or MCRYPT ENCRYPT.

//set up test data
Smessage = "This message is sensitive.";
Skey = "secret";

IT-SC book 279

Core PHP Programming

//encrypt message
$code = mcrypt cbc (MCRYPT BLOWFISH 128, Skey,
$message, MCRYPT ENCRYPT) ;

//pring decrypted message

print (mcrypt cbc (MCRYPT BLOWFISH 128, S$key, $code,
MCRYPT DECRYPT)) ;
2>

integer mcrypt_get_block_size(integer algorithm)

Use mcrypt get block size to find the block size for a given encryption
algorithm. Use one of the constants listed in Table 9.8. See mcrypt
get cipher name for an example of use.

string mcrypt_get_cipher_name(integer algorithm)

Use mcrypt get cipher name to get the name of an encryption algorithm. Use
one of the constants listed in Table 9.8.

//create array of encryption algorithms
Salgorithm = array(
3DES, 3WAY, BLOWFISH 128, BLOWFISH 192,
BLOWFISH 256,
BLOWFISH 448, CAST 128, CAST 256, DES,
GOST, IDEA, LOKIO7,
RC2 1024, RC2 128, RC2 256, RC4, RC6 128,
RC6 192, RC6 256,
RIJNDAEL 128, RIJNDAEL 192, RIJNDAEL 256,
SAFERPLUS,
SAFER 128, SAFER 64, SERPENT 128,
SERPENT 192, SERPENT 256,
TWOFISH 128, TWOFISH 192, TWOFISH 256,
XTEA) ;

print ("<TABLE BORDER=\"1\">\n");

print ("<TR>\n") ;

print ("<TH>Name</TH>\n") ;

print ("<TH>Block Size</TH>\n");
print ("<TH>Key Size<TH>\n");
print ("</TR>\n") ;

IT-SC book 280

Core PHP Programming

//loop over each one
foreach ($Salgorithm as S$value)
{
print ("<TR>\n") ;
print ("<TD>"

mcrypt get cipher name (Svalue) . "</TD>");
print ("<TD>"
mcrypt get block size($value) . "</TD>");
print ("<TD>" . mcrypt get key size($value)
"</TD>") ;

print ("</TR>\n") ;
}

print ("</TABLE>\n") ;
>

integer mcrypt_get_key_size(integer algorithm)

Use mcrypt get key size to find the key size for a given encryption algorithm.
Use one of the constants listed in Table 9.8. See mcrypt get cipher name for
an example of use.

mcrypt_ofb(integer algorithm, string key, string data, integer
mode, string initialization_vector)

The mcrypt ofb function encrypts a string using output feedback. This method is
another method suited to stream ciphers. The algorithm argument is one of the
constants listed in Table 9.8. The mode argument can be either MCRYPT DECRYPT or
MCRYPT ENCRYPT. An initialization vector is required. You must use the same one to

decrypt.

//set up test data

Smessage = "This message is sensitive.";

Skey = "secret";

$iv = mcrypt create iv(
mcrypt get block size (MCRYPT BLOWFISH 128),
MCRYPT DEV_RANDOM) ;

//encrypt message

IT-SC book 281

Core PHP Programming

$code = mcrypt ofb (MCRYPT BLOWFISH 128,

$message, MCRYPT ENCRYPT, $iv);

//pring decrypted message

print (mcrypt ofb (MCRYPT BLOWFISH 128,

MCRYPT DECRYPT, Siv));
7>

Table 9.8. Encryption Algorithms

Scode,

MCRYPT 3DES

MCRYPT 3WAY

MCRYPT BLOWFISH 128

MCRYPT BLOWEFISH 192

MCRYPT BLOWEISH 256

MCRYPT BLOWFISH 448

MCRYPT CAST 128

MCRYPT CAST 256

MCRYPT DES

MCRYPT GOST

MCRYPT IDEA

MCRYPT LOKI97

MCRYPT RC2 1024

MCRYPT RC2_ 128

MCRYPT RC2 256

MCRYPT RC4

MCRYPT RC6 128

MCRYPT RC6 192

MCRYPT RC6 256

MCRYPT RIJNDAEL 128

MCRYPT RIJNDAEL 192

MCRYPT RIJNDAEL 256

MCRYPT SAFERPLUS

MCRYPT SAFER 128

MCRYPT SAFER 64

MCRYPT SERPENT 128

MCRYPT SERPENT 192

MCRYPT SERPENT 256

MCRYPT TWOFISH 128

MCRYPT TWOFISH 192

MCRYPT TWOFISH 256

MCRYPT XTEA

Regular Expressions

IT-SC book

282

Core PHP Programming

Regular expressions offer a powerful way to test strings for the presence of patterns.
They use a language all their own to describe patterns, a language that consists mostly of
symbols. PHP has several functions that use regular expressions. You may wish to turn to
Chapter 16, which describes regular expressions in detail.

boolean ereg(string pattern, string text, array matches)

The ereg function evaluates the pattern argument as a regular expression and attempts
to find matches in the text argument. If the optional matches argument is supplied,
each match will be added to the array. TRUE is returned if at least one match is made,
FALSE otherwise.

The first element in the matches array, with an index of zero, will contain the match for
the entire regular expression. Subsequent elements of matches will contain the matches
for subexpressions. These are the expressions enclosed in parentheses in the example.

This function is discussed in depth in Chapter 16.

<?
// show User Agent
print ("User Agent: SHTTP USER AGENT
\n");
// try to parse User Agent
if (ereg ("~ (.+)/([0-91)\. ([0-9]1+)",
$HTTP_USER_AGENT, Smatches))
{
print ("Full match: Smatches[0]
\n");
print ("Browser: Smatches[1]
\n");
print ("Major Version: Smatches[2]
\n");
print ("Minor Version: Smatches[3]
\n");
}
else
{
print ("User Agent not recognized");
}
2>

string ereg_replace(string pattern, string replacement, string
text)

Use ereg replace to replace substrings within the text argument. Each time the
pattern matches a substring within the text argument, it is replaced with the replacement
argument. The text argument is unchanged, but the altered version is returned.

IT-SC book 283

Core PHP Programming

If the pattern contains subexpressions in parentheses, the replacement argument may
contain a special code for specifying which subexpression to replace. The form is to use
two backslashes followed by a single digit, zero through nine. Zero matches the entire
expression; one through nine each match the first nine subexpressions, respectively.
Subexpressions are numbered left to right, which accounts for nested subexpressions.

Regular expressions are discussed in depth in Chapter 16.

Figure 9-11. ereg_replace.

2} ereg_replace - Mic... 9 [=] B9

| Ele Edit View r;»’ﬁ

Y
—_—

linel
line2
line3

four two one three

| [Intemet

N

<?
[/ swap newlines for break tags
Stext = "linelinline2\nline3\n";
print (ereg_replace("\n", "
", Stext));

print ("<HRE>\n"):

f/mix up these words

Stext = "one two three four";

rint(ereg_replace(" ([a=-z]+) ([a=z]+) ([a=-z]+) ([a=z]+)",

"Ahd A2 ANAWL A3, Stext))

boolean eregi(string pattern, string text, array matches)

The eregi function operates identically to ereg with the exception that letters are
matched with no regard for upper or lower case.

Regular expressions are discussed in depth in Chapter 16.

string eregi_replace(string pattern, string replacement, string
text)

IT-SC book 284

Core PHP Programming

The eregi replace function operates identically to ereg replace with the
exception that letters are matched with no regard for upper or lower case.

array split(string pattern, string text, integer limit)

The split function returns an array of substrings from the text argument. The
pattern argument will be used as a field delimiter. The optional 1imit argument sets
the maximum number of elements to return. There is no case-insensitive version of split.

Compare this function to explode, which uses a simple string to delimit substrings.
Regular expression processing is slower than straight string matching, so use explode
when you can.

<?
Sparagraph = "This is a short paragraph. Each ";
Sparagraph .= "sentence will be extracted by ";
Sparagraph .= "the split function. As a ";
Sparagraph .= "result, you will be amazed!";
$sentence = split ("[\.\!\?]", S$paragraph);
for($index = 0; S$index < count ($sentence);
Sindex++)
{
print ("$index. $sentence[$index]
\n");
}
?>

Perl-Compatible Regular Expressions

Andrei Zmievski added support to PHP for Perl-compatible regular expressions.
Expressions are surrounded by delimiters, which are usually / or | characters, but can be
any printable character other than a number, letter, or backslash. After the second
delimiter, you may place one or more modifiers. These are letters that change the way the
regular expression is interpreted.

For the most part, the functions in this section comply with the way regular expressions
work in Perl 5. There are a few very specific differences. They are narrow enough that
you probably won't run into them, and they may not make much sense without explaining
regular expressions in detail. If you're curious, read the excellent notes in the PHP
manual available online <http://www.php.net/manual/html/ref. pcre.html>.

array preg_grep(string pattern, array data)

IT-SC book 285

Core PHP Programming

The preg grep function compares the elements of the data argument that match the
given pattern.

boolean preg_match(string pattern, string text, array matches)

The preg match function is the equivalent of ereg. It evaluates the pattern argument
as a regular expression and attempts to find matches in the text argument. If the optional
matches argument is supplied, each match will be added to the array. TRUE is returned
if at least one match is made, FALSE otherwise.

The first element in the matches array, with an index of zero, will contain the match for
the entire regular expression. Subsequent elements of matches will contain the matches
for subexpressions. These are the expressions enclosed in parentheses in the example.

<?
// show User Agent
print ("User Agent: SHTTP USER AGENT
\n");
// try to parse User Agent
if (preg match ("/”~(.+4)/([0-9])\. ([0-9]+)/",
SHTTP USER AGENT, S$matches))
{
print ("Full match: Smatches[0]
\n") ;
print ("Browser: Smatches[1]
\n");
print ("Major Version: Smatches[2]
\n");
print ("Minor Version: Smatches[3]
\n");
}
else
{
print ("User Agent not recognized");
}
?>

integer preg_match_all (string pattern, string text, array
matches, integer order)

The preg match all function operates similarly to preg match. A pattern is
evaluated against the text argument, but instead of stopping when a match is found,
subsequent matches are sought. The matches argument is required and will receive a
two-dimensional array. The method for filling this array is determined by the order
argument. It may be set with two constants, either PREG PATTERN ORDER, the default,
or PREG_SET ORDER. The number of matches against the full pattern is returned.

IT-SC book 286

Core PHP Programming

Figure 9-12. preg match_all.

IT-SC book 287

Core PHP Programming

IT-SC

<7

=

‘] preqg mateh_all - Miciosofl Intemel Exploier

| Fle E&t Vew Favoies Tools Hep

Full matches:

=Bz short paragraph. Some <BE>words</BE> and <B=zome
phrases are surround by <E>bold

Subpattern matches:

short paragraph. Some words</E> and some
phrases are surround by <E=bold</B=>

Matches usmg PREG SET ORDER:

<BE>short paragraph. Some words</E> and some
phrases are surround by <E>beold (short paragraph.
Some words and =some phrases are surround by
bold)

@] Dore L[[Intemat

=
Y.

f/fcreate test data

Sparagraph = "This is a <Brshort paragraph. Some ";
Sparagraph .= "<Brwords aml <Hrsome phrases ";
4paragraph .= "are surround by <Bxhold tags. "

r" L

T* uge PREG MATCH ORDER to find bold words

*f

preg_match_all{®|<["=]+>(.*)=/["=]+>|", Sparagraph,
Smatch, PREG_MATCH ORDER) ;

/fprint full matches
priont{"Subpattern matches</Bx:
\n");
for(5i=0: 5i < count(Smatch[0]}: S5i+=)

print{htmlentities(smatch[D][31]) . "<BR=>\n");:
print{*5ubpattern matches:
\n"):

for{$i=0; $%i < count(Smacch(l]}; $i++)
{

print (htmlentities ($match[0][$1]) . *<=BR>\n"]:
}
J,li
** yge PREG_SET _ORDER ko find bold words
L

preg_match_all(®|<["=]+>(.*i</[">]+>|", Sparagraph.
Smatch, PREG _SET ORDER] ;

foreach(Smatch as $m)

{ print{htmlentities (Sm[0]}};
for($i=1; $i =« count(Sm); %i++]
[princ (" (".htmlentities (Sm[sil1)."1"):
H
print ("<BR=n"} ;
}

288

Core PHP Programming

If PREG PATTERN ORDER is used, the first element of the matches array will
contain an array of all the matches against the full pattern. The other elements of the
array will contain arrays of matches against subpatterns.

If PREG_SET ORDER is used, each element of the matches array contains an array
organized like those created by preg match. The first element is the entire matching
string. Each subsequent element contains the match against the subpattern for that match.

string preg_quote(string text)

The preg quote function returns text with backslashes inserted before character that
have special meaning to the functions in this section. The special characters are:

N+ 2 [~ 18 () () =1<>

string preg_replace(string pattern, string replacement, string
text)

The preg replace function is equivalent to ereg replace. Each time the pattern
matches a substring within the text argument, it is replaced with the replacement
argument. The text argument is unchanged, but the altered version is returned.

If the pattern contains subexpressions in parentheses, the replacement argument may
contain a special code for specifying which subexpression to replace. The form is to use
two backslashes followed by a single digit, zero through nine. Zero matches the entire
expression; one through nine each match the first nine subexpressions, respectively.
Subexpressions are numbered left to right, which accounts for nested subexpressions.

// swap newlines for break tags
Stext = "linel\nline2\nline3\n";
print (preg replace("[\n|", "
", Stext));

print ("<HR>\n") ;

//mix up these words
Stext = "one two three four";
print (preg replace ("| ([a-z]+) ([la-z]+) ([a-z]+)
([a=z]+) ",
"\\4 \\2 \\1 \\3", Stext));

7>

IT-SC book 289

Core PHP Programming

array preg_split(string pattern, string text, integer limit)

The preg split function returns an array of substrings from the text argument. The
pattern argument will be used as a field delimiter. The optional 1 imit argument sets
the maximum number of elements to return. This function is equivalent to split.

<?
Sparagraph = "This is a short paragraph. Each ";
Sparagraph .= "sentence will be extracted by ";
$paragraph .= "the preg split function. As a ";
Sparagraph .= "result, you will be amazed!";
$sentence = preg split ("/[\.\!\?]/", Sparagraph);
for($index = 0; S$index < count ($sentence);
Sindex++)
{
print ("$index. $sentence[S$index]
\n");
}
7>

IT-SC book 290

Core PHP Programming

Chapter 10. MATHEMATICAL FUNCTIONS

Common Math
Random Numbers
Arbitrary-Precision Numbers

The math functions fall into three categories: common mathematical operations, random
numbers, and special functions for handling numbers of arbitrary precision.

Common Math

The functions in this section offer most of the common mathematical operations that are
part of arithmetic, geometry, and trigonometry. Most of these functions work on either
doubles or integers. The return type will be the same as the argument. Unless a specific
type is called for, I've written "number" to indicate that either an integer or a double is
expected.

number abs(number value)

The abs function returns the absolute value of a number. This is the number itself if it's
positive, or the number multiplied by negative one (-1) if negative.

<?
//prints 13
print (abs(-13));
2>

double acos(double value)

The acos function returns the arc cosine of the value argument. Trying to find the arc
cosine of a value greater than one or less than negative one is undefined.

Figure 10-1. acos.

IT-SC book 291

Core PHP Programming

3 acos - Microsoft Intemn... 8 [=] E3

| Fle Edt View F_a_vuh”i

F Y

X acos(x)

-1 |3.1415926535898
-0.752.4188584057764
-0.5 |2.0943951023932
-0.25/|1.823476581937

0 1.57079632679489
0.25 11.3181160716528
0.5 |1.0471975511966
0.75 (0.772273424781342

1 0 —
=
| [Intemet 4
=7
// print acos values from -1 to 1
print ("<TABLE BORDER=Y"1\"=\n");
print {"<TR><TH>x<,/TH><TH>acos () </TH></TE>\n") ;
for(dindex = -1; Sindex <= 1; Sindex += 0.25)
{
print {"<TR=>'\n");
print("<TD>S5index</TD=\n") ;
print ("<TD>" . acos($%index) . "</TD>\n"):
print("</TR=\n");
}
print ("</TABLE=\n") ;
=

double asin(double value)

The asin function returns the arc sine of the value argument. Trying to findthe arc sine of
a value greater than one or less than negative one is undefined.

IT-SC book 292

Core PHP Programming

// print asin values from -1 to 1
print ("<TABLE BORDER=\"1\">\n");
print ("<TR><TH>x</TH><TH>asin (x)</TH></TR>\n") ;

for($index = -1; Sindex >= 1; S$index += 0.25)
{
print ("<TR>\n") ;
print ("<TD>$index</TD>\n") ;
print ("<TD>" . asin($index) . "</TD>\n");
print ("<TR>\n") ;
}

print ("/<TABLE>\n") ;
2>

double atan(double value)

The atan function returns the arc tangent of the value argument.

// print atan values from -1 to 1
print ("<TABLE BORDER=\"1\">\n");
print ("<TR><TH>x</TH><TH>atan (x) </TH></TR>\n") ;

for ($index = -1; $index >= 1; S$index += 0.25)
{
print ("<TR>\n") ;
print ("<TD>$index</TD>\n") ;
print ("<TD>" . atan($index) . "</TD>\n");
print ("</TR>\n") ;
}

print ("</TABLE>\n") ;
2>

double atan2(double x, double y)

The atan2 function returns the angle portion in radians of the polar coordinate specified
by the Cartesian coordinates.

<?
//print 0.40489178628508
print (atan2 (3, 7));

?>

IT-SC book 293

Core PHP Programming

string base_convert(string value, int base, int new_base)

The base convert function converts a number from one base to another. Some common
bases have their own functions.

<?

//convert hex CC to decimal

print (base convert("CC", 16, 10));
7>

integer bindec(string binary_number)

The bindec function returns the integer value of a binary number written as a string. PHP
uses 32-bit signed integers. The binary numbers are little-endian, which means the least
significant bit is to the right. The first bit is the sign bit.

Figure 10-2. bindec.

<3 bindec - Microsoft Internet ... [N [=] E3
J File Edit ‘iew Favoites

Largest Integer: 2147485647
Smallest Integer: -2147483648 =
210 | | Intemet /

=7
/4 print largest integer
print ("Largest Integer: ");
print{bindec("11111111112111111311312132112132311111")});

print ("<BR=\n"):;

/f print smallest integer

print("Smallest Integer: ");
print (bindec ("10000000000000000000000000000000")) ;

print {"<BR=\n");
T

integer ceil(double value)

The ceil function returns the ceiling of the argument, which is the smallest integer
greater than the argument.

IT-SC book 294

Core PHP Programming

<?

//print 14

print (ceil(13.2));
7>

double cos(double angle)

The cos function returns the cosine of an angle expressed in radians.

<?
//prints 1
print(cos(2 * pi()));
?>

string decbin(integer value)

The decbin function returns a binary representation of an integer as a string.

<?
//prints 11111111
print (decbin (255)) ;
2>

string dechex(integer value)

The dechex function returns the hexadecimal representation of the value argument as a
string.

<?

//prints ff

print (dechex (255));
7>

string decoct(integer value)

The decoct function returns the octal representation of the value argument as a string.

<?
//prints 377

IT-SC book 295

Core PHP Programming

print (decoct (255)) ;
2>

double deg2rad(double angle)

The deg2rad function returns the radians that correspond to angle argument, specified in
degrees.

<?
//prints 1.5707963267949
print (deg2rad(90)) ;

?>

double exp(double power)

The exp function returns the natural logarithm raised to the power of the argument.

<?
//prints 20.085536923188
print (exp(3));

2>

integer floor(double value)

The floor function returns the floor of the argument, which is the integer part of the
argument.

<?

//prints 13

print (floor(13.2));
2>

integer hexdec(string hexadecimal_number)

The hexdec function converts a string that represents a hexadecimal number into an
integer. Preceding the number with "0x" is optional.

<?
print (hexdec ("FF")) ;
print ("
\n") ;

IT-SC book 296

Core PHP Programming

print (hexdec ("Ox7FAD")) ;
print ("
\n") ;
7>

double log(double value)

The 10g function returns the natural logarithm of the value argument.

<?
//prints 3.0022112396517
print (log(20.13));

?>

double log10(double value)

The 10910 function returns the decimal logarithm of its argument.

<?
//prints 3.2494429614426
print (logl0(1776)) ;

?>

integer octdec(string octal_number)

The octdec function returns the integer value of a string representing an octal number.

<?

//pri