

Core PHP Programming

IT-SC book 1

Core PHP Programming Using PHP to Build
Dynamic Web Sites

Leon Atkinson
Publisher: Prentice Hall PTR
Second Edition August 03, 2000
ISBN: 0-13-089398-6, 800 pages

Master PHP 4 — the open source Web scripting breakthrough!

Contains expert coverage of syntax, functions, design, and
debugging!

Leverage the amazing performance of the new Zend engine!

650+ real-world code examples!

CD-ROM includes source code, plus everything you’ll need to
run PHP 4 implementations on Windows and UNIX!

This is the experienced developer’s guide to PHP. Master PHP
4, the open source, high-performance, cross-platform solution
for server-side scripting!

Core PHP Programming, Second Edition is the #1 practical
guide to PHP 4 for Web developers. With the guidance of top
PHP developer Leon Atkinson, you’ll learn everything you’ll
need to build robust, fast Web applications — and deploy them
on leading Web servers, from Apache to Microsoft Internet
Information Server.

Atkinson covers PHP syntax, the key building blocks of PHP
scripts, and every PHP function, including I/O, data, and math
functions, time, date, configuration, database, graphics, and
network functions. He presents PHP at work in sample code
that demonstrates sorting, searching, parsing, string evaluation,
and more. You’ll even find detailed, real-world insights into
PHP 4 program design and debugging!

Core PHP Programming delivers:

Core PHP Programming

IT-SC book 2

Thorough, easy-to-understand coverage of PHP syntax and
functions

Step-by-step guidance for PHP database integration

Design and optimization techniques for maximum
performance and extensibility

Practical debugging solutions

Companion CD-ROM includes PHP 4 source code and
Windows binaries plus all the code examples from the book!

Core PHP Programming

IT-SC book 3

CORE PHP Programming Using PHP to Build Dynamic Web Sites

Library of Congress Cataloging-in-Publication Date Atkinson, Leon.

Core PHP programming : using PHP to build dynamic Web sites / Leon Atkinson.--2nd
ed.

p. cm.

Includes bibliographical references and index.

1. PHP (Computer program language) 2. Web sites--Design. I. Title.

QA76.73.P22A85 2000

005.2'762--dc21

00-034019

Core PHP Programming

IT-SC book 4

Credits

Editorial/Production Supervision:

Jan H. Schwartz

Acquisitions Editor:

Mark Taub

Editorial Assistant:

Sarah Hand

Marketing Manager:

Kate Hargett

Manufacturing Manager:

Alexis Heydt

Cover Design:

Talar Agasyan

Cover Design Director:

Jerry Votta

Art Director:

Gail Cocker-Bogusz

Series Interior Design:

Meg VanArsdale

Core PHP Programming

IT-SC book 5

© 2001 Prentice Hall PTR

All rights reserved. No part of this book may be reproduced, in any form or by any
means, without permission in writing from the publisher.

All product names mentioned herein are the trademarks or registered trademarks of their
respective owners.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Prentice-Hall International (UK) Limited, London

Prentice-Hall of Australia Pty. Limited, Sydney

Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico

Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

Pearson Education Asia Pte. Ltd.

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Core PHP Programming

IT-SC book 6

Foreword .. 16
Preface.. 18
Acknowledgments .. 20
Part I: PROGRAMMING WITH PHP ... 21
Chapter 1. AN INTRODUCTION TO PHP .. 22

The Origins of PHP ... 22
What Makes PHP Better than Its Alternatives .. 24
Interfaces to External Systems .. 25
How PHP Works with the Web Server .. 26
Hardware and Software Requirements.. 26
Installation on Apache for UNIX ... 27
Installation on IIS for Windows NT ... 29
Editing Scripts.. 30
Algorithms ... 30
What a PHP Script Looks Like ... 31
Saving Data for Later ... 33
Receiving User Input... 35
Choosing between Alternatives .. 38
Repeating Code ... 39
Conclusion ... 40

Chapter 2. VARIABLES, OPERATORS, AND EXPRESSIONS 41
Identifiers .. 41
Data Types .. 41
Variable Creation and Scope.. 45
Assigning Values to Variables.. 49
Retrieving Values ... 51
Freeing Memory .. 52
Constants... 52
Operators... 53
Logical and Relational Operators ... 54
Bitwise Operators ... 55
Miscellaneous Operators.. 56
Assignment Operators.. 59
Expressions... 60

Chapter 3. CONTROL STATEMENTS .. 63
True and False ... 63
The if Statement .. 63
The ? Operator .. 64
The switch Statement ... 68
Loops ... 70
The while Statement ... 70
The break Statement ... 73

Core PHP Programming

IT-SC book 7

The continue Statement .. 73
The do...while Statement ... 76
The for Statement .. 76
The foreach Statement .. 79
exit, die, and return... 79
Evaluation of Boolean Expressions.. 80

Chapter 4. FUNCTIONS.. 81
Declaring a Function ... 81
The return Statement ... 82
Scope and the global Statement ... 83
Arguments... 83
Recursion ... 86
Dynamic Function Calls.. 89

Chapter 5. ARRAYS.. 90
Single-Dimensional Arrays ... 90
Indexing Arrays... 91
Initializing Arrays ... 93
Multidimensional Arrays .. 94
Casting Arrays ... 95
Referencing Arrays Inside Strings ... 98

Chapter 6. CLASSES AND OBJECTS ... 100
Defining a Class .. 101
Creating an Object... 105
Accessing Properties and Methods .. 105

Chapter 7. I/O AND DISK ACCESS.. 109
HTTP Connections .. 109
Writing to the Browser ... 111
Output Buffering ... 112
Environment Variables ... 112
Getting Input from Forms ... 113
Cookies ... 115
File Uploads .. 115
PUT Method Requests... 117
Reading and Writing to Files .. 117
Sessions ... 119
The include and require Functions ... 121

Part II: FUNCTIONAL REFERENCE ... 123
Chapter 8. I/O FUNCTIONS.. 123

Sending Text to the Browser ... 124
Output Buffering ... 126
Files.. 127
Compressed File Functions ... 163
POSIX.. 168

Core PHP Programming

IT-SC book 8

Debugging ... 173
Session Handling .. 195
Shell Commands... 198
HTTP Headers .. 200
Network I/O.. 202
FTP ... 207

Chapter 9. DATA FUNCTIONS ... 215
Data Types, Constants, and Variables ... 215
Arrays.. 221
Hashing .. 243
Strings .. 247
Encoding and Decoding ... 255
Encryption ... 277
Regular Expressions .. 282
Perl-Compatible Regular Expressions .. 285

Chapter 10. MATHEMATICAL FUNCTIONS.. 291
Common Math ... 291
Random Numbers .. 299
Arbitrary-Precision Numbers.. 302

Chapter 11. TIME, DATE, AND CONFIGURATION FUNCTIONS 305
Time and Date ... 305
Alternative Calendars ... 312
Configuration ... 316

Chapter 12. IMAGE FUNCTIONS .. 323
Analyzing Images ... 323
Creating JPEG, PNG, and WBMP Images .. 325

Chapter 13. DATABASE FUNCTIONS .. 356
dBase .. 356
DBM-style Database Abstraction.. 361
filePro .. 366
Informix ... 368
InterBase ... 375
mSQL... 380
ODBC... 406
Oracle.. 417
Postgres ... 436
Sybase .. 445

Chapter 14. MISCELLANEOUS FUNCTIONS ... 454
Apache .. 454
Aspell... 459
COM ... 460
Gettext.. 462
IMAP .. 463
Java.. 485

Core PHP Programming

IT-SC book 9

LDAP .. 486
Semaphores ... 498
Shared Memory... 500
SNMP ... 504
WDDX.. 507
XML .. 510

Part III: ALGORITHMS ... 520
Chapter 15. SORTING, SEARCHING, AND RANDOM NUMBERS 521

Sorting .. 521
Bubble Sort ... 522
Quicksort ... 526
Built-In Sorting Functions ... 528
Sorting with a Comparison Function... 537
Searching... 540
Indexing ... 540
Random Numbers .. 547
Random Identifiers .. 548
Choosing Banner Ads.. 549

Chapter 16. PARSING AND STRING EVALUATION 552
Tokenizing ... 552
Regular Expressions .. 555
Defining Regular Expressions .. 555
Using Regular Expressions in PHP Scripts .. 557

Chapter 17. DATABASE INTEGRATION.. 568
Building HTML Tables from SQL Queries... 568
Tracking Visitors with Session Identifiers... 575
Storing Content in a Database.. 579
Database Abstraction Layers ... 583

Chapter 18. NETWORK... 585
HTTP Authentication.. 585
Controlling Browser Cache ... 587
Setting Document Type ... 589
Email with Attachments... 590
Verifying an Email Address... 594

Chapter 19. GENERATING GRAPHICS.. 600
Dynamic Buttons .. 600
Generating Graphs on the Fly ... 605
Bar Graphs .. 606
Pie Charts .. 609
Stretching Single-Pixel Images... 612

Part IV: SOFTWARE ENGINEERING .. 614
Chapter 20. INTEGRATION WITH HTML.. 615

Sprinkling PHP within an HTML Document ... 615
Using PHP to Output All HTML... 619

Core PHP Programming

IT-SC book 10

Separating HTML from PHP .. 621
Creating <SELECT> Fields .. 622
Passing Arrays in Forms .. 626

Chapter 21. DESIGN ... 629
Writing Requirements Specifications .. 629
Writing Design Documents ... 633
Using CVS.. 634
Modularization Using include... 635
FreeEnergy.. 636
FastTemplate ... 638
Midgard .. 639
Ariadne ... 639
Preserving State and Providing Security... 639
Cloaking ... 640
URLs Friendly to Search Engines ... 641
Running a Script Regularly ... 643

Chapter 22. EFFICIENCY AND DEBUGGING .. 644
Measuring Performance ... 644
Fetching Database Query Results.. 646
When to Store Content in a Database ... 647
In-Line Debugging ... 648
Remote Debugging .. 648
Simulating HTTP Connections ... 649

Appendix A. BACKSLASH CODES... 651
Appendix B. ASCII CODES.. 652
Appendix C. OPERATORS .. 656
Appendix D. PHP TAGS .. 658
Appendix E. PHP COMPILE-TIME CONFIGURATION................................ 660
Appendix F. INTERNET RESOURCES... 663

Portals... 663
Software... 663
Jobs and Services... 664

Appendix G. PHP STYLE GUIDE .. 665
Comments ... 665
Function Declarations ... 666
Compound Statements .. 666
Naming ... 667
Expressions... 669

Core PHP Programming

IT-SC book 11

Foreword

Preface

Acknowledgments

I: PROGRAMMING WITH PHP

1. AN INTRODUCTION TO PHP
 The Origins of PHP
 What Makes PHP Better than Its Alternatives
 Interfaces to External Systems
 How PHP Works with the Web Server
 Hardware and Software Requirements
 Installation on Apache for UNIX
 Installation on IIS for Windows NT
 Editing Scripts
 Algorithms
 What a PHP Script Looks Like
 Saving Data for Later
 Receiving User Input
 Choosing between Alternatives
 Repeating Code
 Conclusion

2. VARIABLES, OPERATORS, AND EXPRESSIONS
 Identifiers
 Data Types
 Variable Creation and Scope
 Assigning Values to Variables
 Retrieving Values
 Freeing Memory
 Constants
 Operators
 Logical and Relational Operators
 Bitwise Operators
 Miscellaneous Operators
 Assignment Operators
 Expressions

3. CONTROL STATEMENTS
 True and False
 The if Statement
 The ? Operator
 The switch Statement
 Loops
 The while Statement
 The break Statement
 The continue Statement
 The do...while Statement
 The for Statement
 The foreach Statement
 exit , die , and return

Core PHP Programming

IT-SC book 12

 Evaluation of Boolean Expressions

4. FUNCTIONS
 Declaring a Function
 The return Statement
 Scope and the global Statement
 Arguments
 Recursion
 Dynamic Function Calls

5. ARRAYS
 Single-Dimensional Arrays
 Indexing Arrays
 Initializing Arrays
 Multidimensional Arrays
 Casting Arrays
 Referencing Arrays Inside Strings

6. CLASSES AND OBJECTS
 Defining a Class
 Creating an Object
 Accessing Properties and Methods

7. I/O AND DISK ACCESS
 HTTP Connections
 Writing to the Browser
 Output Buffering
 Environment Variables
 Getting Input from Forms
 Cookies
 File Uploads
 PUT Method Requests
 Reading and Writing to Files
 Sessions
 The include and require Functions

II: FUNCTIONAL REFERENCE

8. I/O FUNCTIONS
 Sending Text to the Browser
 Output Buffering
 Files
 Compressed File Functions
 POSIX
 Debugging
 Session Handling
 Shell Commands
 HTTP Headers
 Network I/O
 FTP

9. DATA FUNCTIONS
 Data Types, Constants, and Variables

Core PHP Programming

IT-SC book 13

 Arrays
 Hashing
 Strings
 Encoding and Decoding
 Encryption
 Regular Expressions
 Perl-Compatible Regular Expressions

10. MATHEMATICAL FUNCTIONS
 Common Math
 Random Numbers
 Arbitrary-Precision Numbers

11. TIME, DATE, AND CONFIGURATION FUNCTIONS
 Time and Date
 Alternative Calendars
 Configuration

12. IMAGE FUNCTIONS
 Analyzing Images
 Creating JPEG, PNG, and WBMP Images

13. DATABASE FUNCTIONS
 dBase
 DBM-style Database Abstraction
 filePro
 Informix
 InterBase
 mSQL
 ODBC
 Oracle
 Postgres
 Sybase

14. MISCELLANEOUS FUNCTIONS
 Apache
 Aspell
 COM
 Gettext
 IMAP
 Java
 LDAP
 Semaphores
 Shared Memory
 SNMP
 WDDX
 XML

III: ALGORITHMS

15. SORTING, SEARCHING, AND RANDOM NUMBERS
 Sorting
 Bubble Sort

Core PHP Programming

IT-SC book 14

 Quicksort
 Built-In Sorting Functions
 Sorting with a Comparison Function
 Searching
 Indexing
 Random Numbers
 Random Identifiers
 Choosing Banner Ads

16. PARSING AND STRING EVALUATION
 Tokenizing
 Regular Expressions
 Defining Regular Expressions
 Using Regular Expressions in PHP Scripts

17. DATABASE INTEGRATION
 Building HTML Tables from SQL Queries
 Tracking Visitors with Session Identifiers
 Storing Content in a Database
 Database Abstraction Layers

18. NETWORK
 HTTP Authentication
 Controlling Browser Cache
 Setting Document Type
 Email with Attachments
 Verifying an Email Address

19. GENERATING GRAPHICS
 Dynamic Buttons
 Generating Graphs on the Fly
 Bar Graphs
 Pie Charts
 Stretching Single-Pixel Images

IV: SOFTWARE ENGINEERING

20. INTEGRATION WITH HTML
 Sprinkling PHP within an HTML Document
 Using PHP to Output All HTML
 Separating HTML from PHP
 Creating <SELECT> Fields
 Passing Arrays in Forms

21. DESIGN
 Writing Requirements Specifications
 Writing Design Documents
 Using CVS
 Modularization Using include
 FreeEnergy
 FastTemplate
 Midgard
 Ariadne

Core PHP Programming

IT-SC book 15

 Preserving State and Providing Security
 Cloaking
 URLs Friendly to Search Engines
 Running a Script Regularly

22. EFFICIENCY AND DEBUGGING
 Measuring Performance
 Fetching Database Query Results
 When to Store Content in a Database
 In-Line Debugging
 Remote Debugging
 Simulating HTTP Connections

A. BACKSLASH CODES

B. ASCII CODES

C. OPERATORS

D. PHP TAGS

E. PHP COMPILE-TIME CONFIGURATION

F. INTERNET RESOURCES
 Portals
 Software
 Jobs and Services

G. PHP STYLE GUIDE
 Comments
 Function Declarations
 Compound Statements
 Naming
 Expressions

Core PHP Programming

IT-SC book 16

Foreword

For those of you new to PHP, let me begin with a brief recap. PHPstarted in late 1994 as
a quick Perl hack written by Rasmus Lerdorf. Over the next two to three years it evolved
into what we know today as PHP/FI 2.0. Zeev Suraski and Iintroduced a new parser in
the summer of 1997 that led to PHP 3. At that time PHP syntax and semantics were
formalized, thereby establishing a foundation for growth.

Today, PHP3 has established itself as one of the most popular Web scripting languages
available. At the time of this Foreword, PHP has been installed on some 2 million Web
servers. Its salient features include:

Very short development times

Platform independence

Multiple database support

PHP has risen to an even higher level. Featuring the use of the "Zend Engine," PHP 4 is
much faster and more powerful in every respect. The new version supports multithreaded
Web server environments including an ISAPI module (Microsoft's IIS). Other features
include a new Web server abstraction layer, Java connectivity, and a much-improved
build process for better PHP configuration.

Where do we go from here? Today the major concern of entrants into the PHPcommunity
is application support. People know PHP functionality is good, but can it be backed up?
The answer is yes. Zend Technologies has arisen to give commercial backing for PHP,
thereby enabling undecided companies to take the plunge and benefit from superior open-
source software.

Leon's second edition of Core PHP Programming is also serving in a supportive role.
The second edition features:

Coverage of PHP 4's language changes and features, such as the improved include
function and the new NULL and Boolean types.

Coverage of most of PHP 4's extensions.

Tighter typesetting for readers looking for a functional reference.

Added screenshots and comments for new users interested in quickly learning PHP
functionality.

Commercial backing and reference materials will continue to drive PHP's gradual
acceptance as the standard in Web scripting.

Core PHP Programming

IT-SC book 17

Let me take this opportunity to thank everybody for bringing PHP to where it is today.
May we keep on working together to make it even better!

I hope this book will give novices a quick start to PHP and more experienced users a
handy reference manual.

Andi Gutmans

Core PHP Programming

IT-SC book 18

Preface

My first inkling that I might like to write a book about PHP was born out of the
frustration I felt with the original PHP manual. It was a single, large HTML file with all
the functions in alphabetical order. It was also on a Web server thousands of miles away
from me in Canada, so it was slow to show up in my browser, even across a T1
connection. It wasn't long before it was saved on my desktop. After struggling for several
months, it started to dawn on me that I could probably organize the information into a
more usable format. Around that time the next version of PHP began to take shape, and
with it a new manual was developed. It was organized around PHP's source code but was
less complete than the old PHP manual. I contributed descriptions for some of the
missing functions, but I still had the idea to write my own manual. In the spring of 1998
Prentice Hall gave me the opportunity to do so. It is an honor for my book to be among
Prentice Hall classics such as The C Programming Language by Brian Kernighan and
Dennis Ritchie.

This book assumes a certain familiarity with the Internet, the Web, and HTML
programming, but it starts with the most basic ideas of programming. It will introduce
you to concepts common to all programming languages and how they work in PHP. You
can expect this book to teach you how to create rich, dynamic Web sites. You can also
expect it to remain on your desk as a reference for how PHP works, or even as a recipe
book for solving common design problems.

This book is not for dummies, nor is it for complete idiots. That you are considering PHP
is a great indication of your intelligence, and I'd hate to insult it. Some of the ideas in this
book are hard to understand. If you don't quite get them the first time, I encourage you to
reread and experiment with the examples.

If you are uncomfortable writing HTML files, you may wish to develop this skill first.
Marty Hall's Core Web Programming provides an excellent introduction. Beyond HTML,
numerous other topics I touch on fall out of scope. Whenever I can, I suggest books and
Web sites that provide more information. There are even some aspects of PHP that range
too far from the focus on writing PHP scripts. An example is writing extensions for PHP
in C. This involves a healthy knowledge of C programming that I cannot provide here.
Related to this is compiling and installing PHP. I attempt to describe the process of
installing PHP, which can involve compiling the source code, but I can't attempt to
pursue all the different combinations of operating system, Web server, and extensions. If
you are comfortable running make files, you will find the information that comes with the
PHP source code more than adequate.

Along with the explanation text I've provided real-world examples. Nothing is more
frustrating than trying to adapt some contrived academic problem to the Web site you
must have working by the end of the week. Some of the examples are based on code from
live Web sites I have worked on since discovering PHP in 1997. Others are distilled from
the continual discussion being conducted on the PHP mailing lists.

Core PHP Programming

IT-SC book 19

This book is organized into four main sections: an introduction to programming; a
reference for all the functions in PHP; a survey of common programming problems; and
finally a guide for applying this knowledge to Web site development. The first section
deals with the issues involved with any programming language: what a PHP script looks
like; how to control execution; how to deal with data. The second section organizes the
functions by what they do and gives examples of their use. PHP offers many functions, so
this section is larger than the rest. The third section deals with solving common
programming problems such as sorting and generating graphics. The last section offers
advice about how to create a whole Web site with PHP.

I've chosen a few conventions for highlighting certain information, and I'm sure you will
find them obvious, but for the sake of clarity I'll spell them out. Whenever I use a
keyword such as the name of a script or a function, I place itin a monospace font. For
example, I may speak about the print func- tion. Another convention I've used is to
place email addresses and Web addresses inside angle brackets. Examples are the email
address by which youcan contact me, <corephp@leonatkinson.com/>, and my Web site,
<http://www.leonatkinson.com/>.

Core PHP Programming

IT-SC book 20

Acknowledgments

Writing a book requires dedication and sacrifice—mostly from one's family and friends.
There were many weekends when I had to stay home writing, and I'm grateful for the
patience everyone has shown me. This includes my wife, Vicky, my parents, Rhonda and
Leonard, and my grandmother, Afton. It also includes all my buddies who wanted me to
come out and play—especially the ones who wanted me to help out with engineering
gigs.

Once again, I've had a couple of phenomenal technical editors. Vicky read through every
word of the book, including the functional reference. The story gets fairly predictable in
those middle chapters, so I really appreciate her effort. Shannon "JJ" Behrens provided
valuable feedback, including catching some of my "hand-waving".

No PHP book is complete without thanks going out to the PHP developers. It might seem
like a cliché, but Rasmus Lerdorf really is a nice guy. Take the opportunity to hear him
speak if you have it. The contributions of Zeev Suraski and Andi Gutmans are
tremendous. I would like to thank Andi in particular for providing the foreword to this
book. There are too many people to thank individually, but one other person deserves
mention: Egon Schmid. Aside from improving PHP's online manual, he never fails to
answer every query about books on the mailing list with the URL to the books page on
the php.net site.

Working with Prentice Hall has been a pleasure. I've enjoyed the wisdom and guidance of
Mark Taub. The rest of the team were always professional.

Finally, let me thank all the people who bought the first edition of Core PHP
Programming, especially those who took the time to send me email. The response has
been overwhelmingly positive. I'm delighted to have introduced so many people to PHP.

Core PHP Programming

IT-SC book 21

Part I: PROGRAMMING WITH PHP

The first part of this book is a thorough discussion of PHP as a programming language.
You will be introduced to common concepts of computer science and how they are
implemented in PHP. No prior programming experience beyond the use of simple mark-
up languages is necessary. That is, you must be familiar with HTML. These chapters
focus on building a foundation of understanding rather than on how to solve specific
problems. If you have experience programming in a similar language, such as C or Perl,
you may choose to read Chapter 1 and skim the rest, saving it as a reference. In most
situations, PHP treats syntax much as these two languages do.

Chapter 1 is an introduction to PHP—how it began and what it looks like. It may be
sufficient for experienced programmers, since it moves quickly through PHP's key
features. If you are less experienced, I encourage you to treat this chapter as a first look.
Don't worry too much about exactly how the examples work. I explain the concepts in
depth in later chapters.

Chapter 2 introduces the concepts of variables, operators, and expressions. These are the
building blocks of a PHP script. Essentially, a computer stores and manipulates data.
Variables let you name values; operators and expressions let you manipulate them.

Chapter 3 examines the ways PHP allows you to control program execution. This
includes conditional branches and loops.

Chapter 4 deals with functions, how they are called, and how to define them. Functions
are packages of code that you can call upon repeatedly.

Chapter 5 is about arrays—collections of values that are identified by either numbers or
names. Arrays are a very powerful way to store information and retrieve it efficiently.

Chapter 6 is about classes, presenting an object-oriented approach to grouping functions
and data. Although not strictly an object-oriented language, PHP supports many features
found in OO languages like Java.

Chapter 7 deals with how PHP sends and receives data. Files, network connections, and
other means of communication are covered.

Core PHP Programming

IT-SC book 22

Chapter 1. AN INTRODUCTION TO PHP

This chapter will introduce you to PHP. You will learn how it came about, what it looks
like, and why it is the best server-side technology. You will also be exposed to the most
important features of the language.

PHP began as a simple macro replacement tool. Like a nice pair of shoes, it got you
where you needed to go, but you could go only so far. On the hyperspeed development
track of the Internet, PHP has become the equivalent of a 1960s muscle car. It's cheap, it's
fast, and there's plenty of room under the hood for you and your virtual wrench.

You probably don't need convincing that whether it's Internet, intranet, or extranet, the
Web is no longer about plain HTML files. Web pages are being replaced with Web
applications. The issue many Web engineers face is choosing among hundreds of
technologies.

This chapter will let you poke around the PHP engine, get your hands a little dirty, and
take it for a spin. There are lots of small examples you can try immediately. Like all the
examples in this book, you can easily adapt them to provide real solutions. Don't be
intimidated if you don't fully understand the PHP code at first. Later chapters will deal
with all the issues in detail.

This chapter talks about some things that you already know, like what a computer is, just
to make sure we're all on the same page. You may be a wizard with HTML, but not fully
appreciate the alien way computers are put together. Or you may find you learned all
these things in a high school computer class. If you get too bored with the basics, skip to
Chapter 2, "Variables, Operators, and Expressions."

The Origins of PHP

Wonderful things come from singular inspiration. PHP began life as a simple way to
track visitors to Rasmus Lerdorf's online resume. It also could embed SQL queries in
Web pages. But as often happens on the Web, admirers quickly asked for their own
copies. As a proponent of the Internet's ethic of sharing, as well as a generally agreeable
person, Rasmus unleashed upon an unsuspecting Web his Personal Home Page Tools
version 1.0.

"Unleashed upon himself" may be more accurate. PHP became very popular. A
consequence was a flood of suggestions. PHP 1.0 filtered input, replacing simple
commands for HTML. As its popularity grew, people wondered if it couldn't do more.
Loops, conditionals, rich data structures—all the conveniences of modern structured
programming seemed like a next logical step. Rasmus studied language parsers, read
about YACC and GNU Bison, and created PHP 2.0.

PHP 2.0 allowed developers to embed structured code inside HTML tags. PHP scripts
could parse data submitted by HTML forms, communicate with databases, and make

Core PHP Programming

IT-SC book 23

complex calculations on the fly. And it was very fast, because the freely available source
code compiled into the Apache Web server. A PHP script executed as part of the Web
server process and required no forking, often a criticism of Common Gateway Interface
(CGI) scripts.

PHP was a legitimate development solution and began to be used for commercial Web
sites. In 1996 Clear Ink created the SuperCuts site (www. supercuts.com) and used PHP
to created a custom experience for the Web surfer. In January of 1999 the PHP Web site
reported almost 100,000 Web servers were using PHP. By November that figure had
climbed higher than 350,000!

A community of developers grew up around PHP. Feature requests were balanced by bug
fixes and enhancements. Zeev Suraski and Andi Gutmans made a significant contribution
by writing a new parser. They observed that the parser in PHP 2.0 was the source of
many problems. Rasmus decided to begin work on PHP 3.0 and called for developers to
commit to its creation. Along with Zeev and Andi, three others lent their support: Stig
Bakken, Shane Caraveo, and Jim Winstead.

After seven months of developments, PHP version 3.0 was released on June 6, 1998.
Work began immediately on the next version. Originally a 3.1 version was planned, but
thanks to more revolutionary work by Zeev and Andi, work shifted to PHP 4.0, which
used the new Zend library.

On January 4, 1999, Zeev and Andi announced a new framework that promised to
increase dramatically the performance of PHP scripts. They named the new framework
Zend, cleverly combining letters from their names. Early tests showed script execution
times dropping by a factor of one hundred. In addition, new features for compiling scripts
into binary, optimization, and profiling were planned.

Work on Zend and PHP 4.0 continued in parallel with bug fixes and enhancement to PHP
3.0. During 1999, eight incremental versions were released, and on December 29, 1999,
PHP version 3.0.13 was announced. During the same year, Open Source projects written
in PHP flourished. Projects like Phorum tackled long-time Internet tasks such as hosting
online discussion. The PHPLib project provided a framework for handling user sessions
that inspired new code in PHP. FreeTrade, a project I lead, offered a toolkit for building
e-commerce sites.

Writing about PHP increased as well. More than twenty articles appeared on high-traffic
sites such as webmonkey.com and techweb.com. Sites dedicated to supporting PHP
developers were launched. The first two books about PHP were published in May 1999.
Egon Schmid, Christian Cartus, and Richard Blume wrote a book in German called PHP:
Dynamische Webauftritte professionell realisieren. Prentice Hall published the first
edition of my book, Core PHP Programming. Since then several other books have been
published and others planned.

PHP is not a shrink-wrapped product made by faceless drones or wizards in an ivory
tower. PHP started as a simple tool brought into the bazaar described by Eric Raymond in

Core PHP Programming

IT-SC book 24

his essay The Cathedral and the Bazaar
<http://www.tuxedo.org/~esr/writings/cathedral-bazaar/>.

Once it was there, anyone could make improvements, and many did. Their aim seems to
be to achieve solutions of direct, personal interest. If a client comes along that requires a
project use a database not supported by PHP, you simply write an extension. Then you
give it to the PHP project. Soon other people are fixing your bugs.

Yet, the vast majority of PHP users never write an extension. They happily find
everything they need in the contributed works of others. Those who've contributed
thousands of lines of code to PHP perhaps never consider themselves heroes. They don't
trumpet their accomplishments. But because each part of PHP came from a real person, I
would like to point them out. When appropriate, I'll note who added a particular
extension.

You can find an up-to-date list of credits on the PHP site
<http://www.php.net/version4/credits.php>.

What Makes PHP Better than Its Alternatives

The skeptics are asking themselves, "Why should I learn PHP?" The days of static Web
sites built with HTML files and a few CGI scripts are over: Today's sites must be
dynamic. All the stale company brochures littering the streets of the Internet will
transform into 24-hour virtual storefronts or be swept away. The toughest decision facing
the creator of a Web application is choosing from hundreds of technologies.

Perl has adapted well to being a CGI solution and it has been used to drive complex Web
technology like CyberCash and Excite's EWS search engine. Microsoft provides its
Active Server Pages with Internet Information Server. Middleware like Allaire's Cold
Fusion is yet another solution. ServerWatch.com lists hundreds of Web technologies,
some costing tens of thousands of dollars. Why should you choose PHP over any of these
alternatives?

The short answer is that PHP is better. It is faster to code and faster to execute. The same
PHP code runs unaltered on different Web servers and different operation systems.
Additionally, functionality that is standard with PHP is an add-on in other environments.
A more detailed argument follows.

PHP is free. Anyone may visit the PHP Web site <http: //www.php.net/> and
download the complete source code. Binaries are also available for Windows. The result
is easy entry into the experience. There is very little risk in trying PHP, and its license
allows the code to be used to develop works with no royalties. This is unlike products
such as Allaire's Cold Fusion or Everyware's Tango Enterprise that charge thousands of
dollars for the software to interpret and serve scripts. Even commercial giants like
Netscape and IBM now recognize the advantages of making source code available.

Core PHP Programming

IT-SC book 25

PHP runs on UNIX, Windows 98, Windows NT, and the Macintosh. PHP is designed to
integrate with the Apache Web Server. Apache, another free technology, is the most
popular Web server on the Internet and comes with source code for UNIX and Windows.
Commercial flavors of Apache like WebTen and Stronghold support PHP, too. But PHP
works with other Web servers, including Microsoft's Internet Information Server. Scripts
may be moved between server platforms without alteration. PHP supports ISAPI to allow
for the performance benefits of tightly coupling with Microsoft Web servers.

PHP is modifiable. PHP has been designed to allow for future extension of functionality.
PHP is coded in C and provides a well-defined Application Programming Interface
(API). Capable programmers may add new functionality easily. The rich set of functions
available in PHP are evidence that they often do. Even if you aren't interested in changing
the source code, it's comforting to know you can inspect it. Doing so may give you
greater confidence in PHP's robustness.

PHP was written for Web page creation. Perl, C, and Java are very good general
languages and are certainly capable of driving Web applications. The unfortunate
sacrifice these alternatives make is the ease of communication with the Web experience.
PHP applications may be rapidly and easily developed because the code is encapsulated
in the Web pages themselves.

Support for PHP is free and readily available. Queries to the PHP mailing list are often
answered within hours. A custom bug-tracking system on the PHP site shows each
problem along with its resolution. Numerous sites, such as phpbuilder.com and zend.com,
offer original content to PHP developers.

PHP is popular. Internet service providers find PHP to be an attractive way to allow their
customers to code Web applications without the risks exposed by CGIs. Developers
worldwide offer PHP programming. Sites coded in PHP will have the option of moving
from one host to another as well as a choice of developers to add functionality.

Programming skills developed in other structured languages can be applied to PHP. PHP
takes inspiration from both Perl and C. Experienced Perl and C programmers learn PHP
very quickly. Likewise, programmers who learn PHP as a first language may apply their
knowledge toward not only Perl and C, but other C-like languages such as Java. This is
very different from learning to code in a visual editor such as Microsoft Visual InterDev.

Interfaces to External Systems

PHP is somewhat famous for interfacing with many different database systems, but it also
has support for other external systems. Support comes in the form of modules called
extensions. They either compile directly into PHP or are loaded dynamically. New
extensions are added to the PHP project regularly. The extensions expose groups of
functions for using these external systems. As I've said, some of these are databases. PHP
offers functions for talking natively with most popular database systems, as well as
providing access to ODBC drivers. Other extensions give you the ability to send
messages using a particular network protocol, such as LDAP or IMAP. These functions

Core PHP Programming

IT-SC book 26

are described in detail in Section Two, but you might find the highlights listed here
interesting. Because PHP developers are enthusiastic and industrious, you will
undoubtedly find more extensions have been added since I wrote this.

Aspell is a system for checking spelling. An extension provides support for numbers of
arbitrary precision. There is an extension for dealing with various calendar systems. An
extension provides support for DBM-style databases. You can read from filePro
databases. You can interact with Hyperwave. You can use the ICAP, IMAP, and LDAP
protocols. The Interbase and Informix databases are supported natively, as are mSQL,
Mysql, MS SQL, Sybase, Oracle, and Postgres. You can also parse XML or create
WDDX packets.

How PHP Works with the Web Server

The normal process a Web server goes through to deliver a page to a browser is as
follows. It all begins when a browser makes a request for a Web page. Based on the URL,
the browser resolves the address of the Web server, identifies the page it would like, and
gives any other information the Web server may need. Some of this information is about
the browser itself, like its name (Mozilla), its version (4.08), or the operating system
(Linux). Other information given the Web server could include text the user typed into
form fields.

If the request is for an HTML file, the Web server will simply find the file, tell the
browser to expect some HTML text, and then send the contents of the file. The browser
gets the contents and begins rendering the page based on the HTML code. If you have
been programming HTML for any length of time, this will be clear to you.

Hopefully you have also had some experience with CGI scripts. When a Web server gets
a request for a CGI, it can't just send the contents of the file. It must execute the script
first. The script will generate some HTML code, which then gets sent to the browser. As
far as the browser is concerned, it's just getting HTML. The Web server does a bunch of
work that it gets very little recognition for, but Web servers rarely get the respect they
deserve. The medium is definitely not the message.

When a PHP page is requested, it is processed exactly like a CGI, at least to the extent
that the script is not simply sent to the browser. It is first passed through the PHP engine,
which gives the Web server HTML text.

What happens when the user clicks the stop button before the page finishes downloading?
The Web server detects this situation and usually terminates the PHP script. It is possible
to force a script to finish despite an aborted connection. You may also allow the script to
terminate but execute special code first. The functions to allow this functionality are
listed in Chapter 8, "I/O Functions," and Chapter 11, "Time Date, and Configuration
Functions."

Hardware and Software Requirements

Core PHP Programming

IT-SC book 27

One great advantage of Open Source software is that it provides the opportunity for
adaptation to new environments. This is true of PHP. Although originally intended as a
module for the Apache Web server, PHP has since embraced the ISAPI standard, which
allows it to work equally well with Microsoft's Internet Information Server. With regard
to hardware requirements, I have personally witnessed PHP running on 100-MHz
Pentium machines running Slackware Linux and Windows NT, respectively.
Performance was fine for use as a personal development environment. A site expected to
receive thousands of requests a day would need faster hardware, of course. Although
more resources are needed when comparing a PHP-powered site to a flat HTML site, the
requirements are not dramatically different. Despite my example, you are not limited to
Intel hardware. PHP works equally well on PowerPC and Sparc CPUs.

When choosing an operating system, you have the general choice between Windows and
a UNIX-like OS. PHP will run on Windows 95 and 98, although these operating systems
aren't suited for high-traffic Web servers. It will also run on Windows NT and its
successor, Windows 2000. For UNIX operating systems, PHP works well with Linux and
Solaris, as well as others. If you have chosen a PPC-based system, such as a Macintosh,
you may choose LinuxPPC, a version of Linux. You may pursue the commercial
WebTen Web server that runs in the Macintosh OS. Chad Cunningham has contributed
patches for compiling PHP in Apple's OS X. In 1999 Brian Havard added support for
IBM's OS/2.

PHP still works best with the Apache Web server. But it now works very well with IIS. It
also compiles as a module for the fhttpd Web server. You can make PHP work with
almost any Web server using the CGI version, but I don't recommend this setup for
production Web sites. If you are using UNIX, I recommend compiling PHP as an Apache
module. If you are using Windows NT, pursue IIS.

Installation on Apache for UNIX

If you are using Linux, you can easily find an RPM for Apache and PHP, but this
installation may not include every PHP feature you want. I recommend this route as a
very quick start. You can always pursue compiling Apache and PHP from scratch later.
PHP will compile on most versions of UNIX-like operating systems, including Solaris
and Linux. If you have ever compiled software you've found on the Net, you will have
little trouble with this installation. If you don't have experience extracting files from a tar
archive and executing make files, you may wish to rely on your sysadmin or someone
else more experienced. You will need to have root privileges to completely install PHP.

The first step is to download the tar files and unpack them. The CDROM that
accompanies this book has recent versions of both PHP and Apache, but you may wish to
check online for the newest versions, <http://www.php.net/> and
<http://www.apache.org/>, respectively.

After unpacking the tar file, the first step is to configure Apache. This is done by running
the configure script inside the Apache directory:

Core PHP Programming

IT-SC book 28

./configure -prefix=/www

The script will examine your system and prepare a make file for Apache. The prefix
directive will cause a directory to be created in the root of your file system.

Next, configure and compile PHP:

./configure -with-apache=/usr/local/src/apache_1.3.9 -enable-track-vars
make
make install

This is done within the PHP directory. The -with-apache and -enable-track-vars
options are minimal. You might add -with-mysql if you have the MySQL database
installed. PHP can usually find the MySQL libraries on its own. Appendix E, "Compile-
Time Configuration" lists the compile-time configuration directives. Running make will
create the PHP library, and make install will prepare Apache for including the PHP
module. Notice that the call to configure includes a path to your Apache source code
directory. This can be a relative path, as you may have put the Apache source code
parallel to the PHP source code. However, do not make the mistake of using relative
paths for any of the other directives.

Next, you will need to reconfigure Apache and run make. Return to the Apache source
code directory and run configure again, this time with an option that tells Apache to
include the PHP module:

./configure -prefix=/www -activate-module=src/modules/php4/libphp4.a
make
make install

This will create a new make file and then run it. The new httpd binary will be installed in
the /www/bin directory, or wherever you specified the files should be installed.

To supply additional configuration options PHP uses a file called php.ini. This file
should reside in /usr/local/lib, so copy it from the PHP source directory:

cp php.ini-dist /usr/local/lib/php.ini

It is not likely you will need to edit this file, but if you do, there are instructive comments
inside.

Core PHP Programming

IT-SC book 29

The last step is to associate a file extension with PHP. This is done by editing the
httpd.conf file. It can be found in Apache's conf directory, /www/conf/httpd.conf,
for example. Add the following line:

AddType application/x-httpd-php .php

This causes all files with the extension .php to be executed as PHP scripts. You may
choose another, such as phtml. You may also wish to insert index.php as a default
document. When the Apache server is started, it will process PHP scripts. The
documentation for Apache has hints for starting Apache automatically. If you have been
running Apache previously, you will need to restart it, not just use a kill -HUP
command.

Installation on IIS for Windows NT

The first step is to install PHP. You do not need to compile PHP for Windows. A binary
distribution is available on the Web site. Download the zip file and expand it wherever
you wish. I put mine in c:\php4. Next, copy the file php.ini-dist into your system root
directory, which is probably c:\winnt. Rename it php.ini. When PHP is invoked, it
looks first for php.ini in this directory. Although you don't need to, you may wish to
edit it to change configuration parameters, including automatically loading extensions.
Comments in the file explain the purpose of each configuration directive.

The next step is to make sure the required DLL files are in your path. One way is to copy
the two required files to your system directory, such as c:\winnt\system32.
Alternatively, you can click on the system icon in the control panel and add your PHP
directory to the system path.

You need to tell IIS that files ending with a particular extension, such as .php, should be
processed with PHP. IIS calls this process an ISAPI filter. Open the Management
Console that allows you to configure all aspects of IIS. One of the tabs for editing a Web
server allows you to edit ISAPI filters. Add one. You should call it PHP, and point to the
php4isapi.dll file, which should be with the rest of the files you installed with PHP.
This file is really small, but it loads the PHP core from another library, php4ts.dll.

Now that you've added the filter, you need to associate it with an extension. Look for the
home directory configuration button in the properties dialog. Add a new entry to the list
of application mappings. Choose .php for the extension, and find your php4isapi.dll
file again. Leave the text box labeled "method exclusions" blank, and check the script
engine checkbox.

The last step is to restart the Web server. Stopping it from the management console is not
sufficient. You must stop the service itself either from the command line with net stop
w3svc, or by using the services control panel. After stopping it, restart it.

Core PHP Programming

IT-SC book 30

Editing Scripts

PHP scripts are just text files, and you can edit and create them just as you would HTML
files. Certainly, you can telnet into your Web server and start creating files with vi. Or
you can create files with notepad and use ftp to upload them one by one. But these aren't
ideal experiences. One handy feature of newer editors is built-in FTP. These editors can
open files on a remote Web server as if they were on a local drive. A single click saves
them back to the remote Web server. Another feature you may enjoy is syntax
highlighting. This causes PHP keywords to be colored in order to help you read the code
faster.

Everyone has a favorite editor for PHP scripts. I use UltraEdit
<http://www.ultraedit.com/>. I know many Windows users prefer Macromedia's
Dreamweaver <http://www.macromedia.com/software/dreamweaver/> and Allaire's
HomeSite <http://www.allaire.com/products/homesite/> to edit PHP scripts. Quad
Systems offers a free package called phpWeave that allows Dreamweaver to build some
PHP scripts automatically <http://phpweave.quad-sys.com/>. The Macintosh users I
know prefer BBedit <http://www.barebones.com/products/bbedit/bbedit.html>.

On a UNIX operating system, you may prefer emacs or vi, of course. You might also
consider nEdit <ftp://ftp.fnal.gov/pub/nedit/>. A module for PHP is available in the
contrib directory. The topic of which editor is best appears frequently on the PHP mailing
list. Reading the archives can be amusing and informative <http://www.progressive-
comp.com/Lists/?l=php3-general>.

Algorithms

Whenever we interact with a computer, we are instructing it to perform some action.
When you drag an icon into the waste basket on your desktop, you are asking the
computer to remove the file from your hard disk. When you write an HTML file, you are
instructing the computer in the proper way to display some information. There are usually
many incremental steps to any process the computer performs. It may first clear the
screen with the color you specified in the body tag. Then it may begin writing some text
in a particular color and typeface. As you use a computer, you may not be entirely aware
of each tiny step it takes, but you are giving it a list of ordered instructions that you
expect it to follow.

Instructions for baking a cake are called a recipe. Instructions for making a movie are
called a screenplay. Instructions for a computer are called a program. Each of these is
written in its own language, a concrete realization of an abstract set of instructions.
Borrowing from mathematics, computer science calls the abstract instructions an
algorithm.

You may at this moment have in mind an algorithm that you'd like to implement. Perhaps
you wish to display information in a Web browser that changes frequently. Imagine
something simple, such as displaying today's date. You could edit a plain HTML file
once a day. You could even write out a set of instructions to help remind you of each

Core PHP Programming

IT-SC book 31

step. But you cannot perform the task with HTML alone. There's no tag that stands for
the current date.

PHP is a language that allows you to express algorithms for creating HTML files. With
PHP, you can write instructions for displaying the current date inside an HTML
document. You write your instructions in a file called a script. The language of the script
is PHP, a language that both you and the computer can understand.

What a PHP Script Looks Like

PHP exists as a tag inside an HTML file. Like all HTML tags, it begins with a less-than
symbol, or opening angle bracket (<) and ends with a greater than symbol, or closing
angle bracket (>). To distinguish it from other tags, the PHP tag has a question mark (?)
following the opening angle bracket and preceding the closing angle bracket. All text
outside the PHP tag is simply passed through to the browser. Text inside the tag is
expected to be PHP code and is parsed.

To accommodate XML and some picky editors such as Microsoft's Front Page, PHP
offers three other ways to mark code. Putting php after the opening question mark makes
PHP code friendly to XML parsers. Alternatively, you may use a script tag as if you were
writing JavaScript. Lastly, you can use tags that appear like ASP, using <% to start blocks
of code. Appendix D explains how these alternatives work. I use the simple <? and ?>
method for all my examples.

Listing 1.1 shows an ordinary HTML page with one remarkable difference: the PHP code
between the <? and the ?>. When this page is passed through the PHP module, it will
replace the PHP code with today's date. It might read something like, Friday May 1,
1999.

Listing 1.1 Printing Today's Date

Core PHP Programming

IT-SC book 32

Whitespace, that is spaces, tabs, and carriage returns, is ignored by PHP. Used
judiciously, it can enhance the readability of your code. Listing 1.2 is functionally the
same as the previous example, though you may notice more easily that it contains PHP
code.

Listing 1.2 Reformatting for Readability

<HTML>
<HEAD>
<TITLE>Listing 1-2</TITLE>
</HEAD>
<BODY>
Today's Date:
<?
 /*
 ** print today's date
 */
 print(Date("l F d, Y"));
?>
</BODY>
</HTML>

You may also notice that in Listing 1.2 there is a line of code that begins with a slash
followed by an asterisk. This is a comment. Everything between the /* and the */ is

Core PHP Programming

IT-SC book 33

equivalent to whitespace. It is ignored. Comments can be used to document how your
code works. Even if you maintain your own code you will find comments necessary for
all but simple scripts.

In addition to the opening and closing comment statements, PHP provides two ways to
build a single-line comment. Double-slashes or a pound sign will cause everything after
them to the end of the line to be ignored by the parser.

After skipping over the whitespace and the comment in Listing 1.2, the PHP parser
encounters the first word: print. This is one of PHP's functions. A function collects code
into a unit you may invoke with its name. The print function sends text to the browser.
The contents of the parentheses will be evaluated, and if it produces output, print will
pass it along to the browser.

Where does the line end? Unlike BASIC and JavaScript, which use a line break to denote
the end of a line, PHP uses a semicolon. On this issue PHP takes inspiration from C.

The contents of the line between print and ; is a call to a function named date. The text
between the opening and closing parentheses is the parameter passed to date. The
parameter tells date in what form you want the date to appear. In this case we've used the
codes for the weekday name, the full month name, the day of the month, and the four-
digit year. The current date is formatted and passed back to the print function.

The string of characters beginning and ending with double quotes is called a string
constant or string literal. PHP knows that when quotes surround characters you intend
them to be treated as text. Without the quotes, PHP will assume you are naming a
function or some other part of the language itself. In other words, the first quote is telling
PHP to keep hands off until it finds another quote.

Notice that print is typed completely in lowercase letters, yet date has a leading
uppercase letter. I did this to illustrate that PHP takes a very lenient attitude toward the
names of its built-in functions. Print, PRINT, and PrInT are all valid calls to the same
function. However, for the sake of readability, it is customary to write PHP's built-in
functions using lowercase letters only.

Saving Data for Later

Often it is necessary to save information for later use. PHP, like most programming
languages, offers the concept of variables. Variables give a name to the information you
want to save and manipulate. Listing 1.3 expands on our example by using variables.

Listing 1.3 Assigning Values to Variables

Core PHP Programming

IT-SC book 34

The first block of PHP code puts values into some variables. The four variables are
YourName, Today, CostOfLunch, and DaysBuyingLunch. PHP knows they are variables
because they are preceded by a dollar sign ($). The first time you use a variable in a PHP

Core PHP Programming

IT-SC book 35

script, some memory is set aside to store the information you wish to save. You don't
need to tell PHP what kind of information you expect to be saved in the variable; PHP
can figure this out on its own.

The script first puts a character string into the variable YourName. As I noted earlier, PHP
knows it's textual data because I put quotes around it. Likewise I put today's date into a
variable named Today. In this case PHP knows to put text into the variable because the
date function returns text. This type of data is referred to as a string, which is shorthand
for character string. A character is a single letter, number, or any other mark you make by
typing a single key on your keyboard.

Notice that there is an equal sign (=) separating the variable and the value you put into it.
This is the assignment operator. Everything to its right is put into a variable named to its
left.

The third and fourth assignments are putting numerical data into variables. The value 3.5
is a floating-point, or fractional, number. PHP calls this type a double, showing some of
its C heritage. The value 4 in the next assignment is an integer, or whole number.

After printing some HTML code, another PHP code block is opened. First the script
prints today's date as a level-three header. Notice that the script passes some new types of
information to the print function. You can give string literals or string variables to
print and they will be sent to the browser.

When it comes to variables, PHP is not so lenient with case. Today and today are two
different variables. Since PHP doesn't require you to declare variables before you use
them, you can accidentally type today when you mean Today and no error will be
generated. If variables are unexpectedly empty, check your case.

The script next prints Leon, you will be out 14.00 dollars this week. The line
that prints the total has to calculate it with multiplication using the * operator.

Receiving User Input

Manipulating variables that you set within your script is somewhat interesting, but hardly
anything to rave about. Scripts become much more useful when they use input from the
user. When you call PHP from an HTML form, the form fields are turned into variables.
Listing 1.4 is a form that calls Listing 1.5, a further modification of our example script.

Listing 1.4 HTML Form for Lunch Information

Core PHP Programming

IT-SC book 36

Listing 1.4 is a standard HTML form. If you have dealt at all with CGIs, it will look
familiar. There are three form fields that match up with the variables from our previous
example. Instead of simply putting data into the variables, we will provide a form and use
the information the user types. When the user presses the submit button, the script named
in the ACTION attribute will receive the three form fields and PHP will convert them into
variables.

Listing 1.5 Computing the Cost of Lunch from a Form print

Core PHP Programming

IT-SC book 37

Notice that in the first segment of the PHP script, I have eliminated the lines setting the
variables, except for today's date. The rest of the script is unchanged. The script assumes
there will be data in the variables. Try experimenting with the scripts by entering
nonsense in the form fields.

One thing you should notice is that if you put words where the script expects numbers,
PHP seems to just assign them values of zero. The variables are set with a text string, and
when the script tries to treat it as a number, PHP does its best to convert the information.
Entering 10 Little Indians for the cost of lunch will be interpreted as 10.

Core PHP Programming

IT-SC book 38

Listing 1.6 Conditional Daily Message

Choosing between Alternatives

PHP allows you to test conditions and execute certain code based on the result of the test.
The simplest form of this is the if statement. Listing 1.6 showshow you can customize the
content of a page based on the value of a variable.

The Today variable is set with the name of today's weekday. The if statement evaluates
the expression inside the parentheses as either true or false. The == operator compares the

Core PHP Programming

IT-SC book 39

left side to the right side. If Today contains the word Friday, the block of code
surrounded by curly braces ({ and }) is executed. In all other cases the block of code
associated with the else statement is executed.

Repeating Code

The last type of functionality in this brief introduction is looping. Looping allows you to
repeat the execution of code. Listing 1.7 is an example of a for loop. The for statement
expects three parameters separated by semicolons. The first parameter is executed once
before the loop begins. It usually initializes a variable. The second parameter makes a
test. This is usually a test against the variable named in the first parameter. The third
parameter is executed every time the end of the loop is reached.

The for loop in Listing 1.7 will execute three times. The initialization code sets the
variable count to be one. Then the testing code compares the value of count to three.
Since one is less than or equal to three, the code inside the loop executes. Notice that the
script prints the value of count. When you run this script you will find that count will
progress from one to three. The reason is that the third part of the for statement is adding
one to count each time through the loop. The ++ operator increments the variable
immediately to its left.

The first time through the loop count is one, not two. This is because theincrement of
count doesn't occur until we reach the closing curly brace. After the third time through
the loop, count will be incremented to four, but at that point four will not be less than or
equal to three, so the loop will end. Execution continues at the command following the
loop code block.

Listing 1.7 Today's Daily Affirmation

Core PHP Programming

IT-SC book 40

Conclusion

Hopefully this chapter has convinced you of the power of PHP. You have seen some of
the major features of the language and read arguments why PHP is better than its many
competitors. The rest of the book will look at PHP in more detail.

Core PHP Programming

IT-SC book 41

Chapter 2. VARIABLES, OPERATORS, AND
EXPRESSIONS

Everything in PHP is either an identifier or an operator. An identifier can be a function or
variable. An operator is usually one or two symbols that stand for some sort of data
manipulation like addition or multiplication. When identifiers and operators are
combined, they become an expression. This chapter introduces the concepts that form the
basis of all PHP code.

Identifiers

Identifiers give names to the abstract parts of PHP: functions, variables, and classes.
Some of them are created by PHP in the form of built-in functions or environment
variables. Others you create. Identifiers may be of any length and can consists of letters,
numbers, or underscores. The first character of an identifier must be either a letter or an
underscore. Table 2.1 contrasts acceptable identifiers with unacceptable ones.

Upper- and lowercase letters are recognized as different. That is, the variables UserName
and username are two distinct identifiers. The exception is built-in functions. As stated in
Chapter 1, "An Introduction to PHP," functions like print can be called as Print if you
prefer.

Table 2.1. Acceptable and Unacceptable Identifiers

Acceptable Unacceptable
LastVisit Last!Visit
_password ~password
compute_Mean compute-Mean
Lucky7 7Lucky

Variables, discussed in detail below, are always preceded by $. The side effect of this is
that a function and a variable can share a name. You may also create a variable with the
same name as a built-in function. Consider that this can be very confusing to anyone
reading your code, including you. You may never create a function with the same name
as a built-in function.

Data Types

PHP has three elemental types of data: integers, floating-point numbers, and strings of
text. Integers are sometimes referred to as whole or natural numbers; they contain no
decimal point. Floating-point numbers are sometimes called real numbers. They always
contain a decimal point, even when only a zero follows it. PHP refers to these as doubles,
which is short for double-precision floating-point numbers. Strings are collections of

Core PHP Programming

IT-SC book 42

textual data. String constants are always surrounded by double quotes (") or single quotes
(').

In addition to these, PHP has four aggregate data types that use the other three: arrays,
objects and booleans, and resources. An array is a collection of values associated with
indexes. Arrays are discussed in full in Chapter 5, "Arrays." Objects are similar to
arrays, but may also contain functions. They are discussed in Chapter 6, "Classes and
Objects." Boolean values are either true or false. Historically, PHP did not support a
separate type for booleans; instead zero and an empty string were understood to be false,
while any other value was considered to be a true value. With PHP 4, this changed. Now
data may be cast or set to be of boolean type. Resources are integers used to identify
system resources, such as open files or database connections.

As you write PHP code, you will usually be unaware of the distinction between types
because variables are multitype. You do not declare a variable to be a particular type.
You just assign it a value. PHP will remember what type of data you put into the variable.
When you retrieve data from the variable, they are returned with that same type.

There are two ways to override this behavior. The first way is to use the settype
function. This tells PHP that you want to start considering a variable to be a certain type.
The data associated with the variable will be converted to the new type. The alternative is
to use one of the type conversion functions or a cast. Consider Listing 2.1, which
contrasts settype, the type conversion functions, and casts.

Listing 2.1 Experimenting with Type Converstion

Core PHP Programming

IT-SC book 43

Core PHP Programming

IT-SC book 44

Core PHP Programming

IT-SC book 45

When AverageTemperature is first used, PHP marks it internally as a string because it is
assigned the value of a string literal. Setting the type to be double causes the value to be
reevaluated. If you check the output, youwill notice that some information is lost as a
result. The text following the number is dropped off because it has no meaning in the
context of a floating-point number. Likewise, when the script sets the type to be integer,
the fractional part of the number is dropped. Even when we change the type back to
string, the previous information is gone.

In contrast to this, the use of the type conversion commands preserves the value of the
variable because it does the conversion on the fly. The data inside the variable are not
changed.

The settype function is described in full in Chapter 9, "Data Functions," as are the type
conversion functions intval, strval , and doubleval . Casts, identical in operation to
type conversion functions, take the form of preceding an expression with a datatype in
parentheses. Valid casts are (boolean), (integer), (string), (double), (array)
, and (object) . Arrays and objects are discussed in Chapters 5 and 6.

Another type of data sometimes discussed in this text is the bitfield. Rather than a data
type exactly, it is a way of viewing an integer. Instead of a single value, it is viewed as a
sequence of ones and zeroes. Bitfields are discussed later in this chapter in relation to
bitwise operators.

Variable Creation and Scope

Although you've seen variables in the previous pages, you may wonder what they are
exactly. Part of a computer is called RAM, or random access memory. This is a volatile
medium for storing information. That is, it all disappears when you shut off the machine.
The computer sees this memory as a long string of single characters, or bytes, each
numbered. In PHP, however, you cannot actually get to memory at this level. You must
use a variable. You provide a name, and PHP takes care of matching the name to physical
memory.

Listing 2.2 Experimenting with Scope

Core PHP Programming

IT-SC book 46

You do not need to let PHP know about a variable before you use it. Some languages like
C require you to declare every variable along with its type. This is because a specific
amount of memory needs to be set aside. But this is generally a problem associated with
compiled languages, not interpreted ones. The first time you use a variable in PHP, the
engine adds it to the list of variables it knows about and makes a best guess at what type
of data the variable holds.

The first place you use a variable establishes the scope—the range within the code in
which the variable may be seen. Every function you define has its own variable space.
That is, there are variables that exist just for that function, and they are invisible to all
other parts of your script. In addition there is a global scope for variables created outside
any function. In some programming languages global variables are visible inside
functions. This is not the case with PHP. When you create a function in PHP, you must

Core PHP Programming

IT-SC book 47

explicitly tell PHP you want a global variable to be present in the function. Listing 2.2
uses the metaphor of the United States to demonstrate.

The script sets up a function, printCity, that prints out the name of a city. It will be used
to show the contents of the variables named capital. Variables is plural because there
are actually three variables in the script named capital. One is global and the other two
are local to the California and Utah functions.

When you run this script you will find that the cities are printed in the order Washington
DC, Sacramento, Salt Lake City, and Washington DC. Notice that even though we have
given capital a new value inside California, it is not the same variable we set to
Washington DC. The variables inside California and Utah exist within their own space
and are created and destroyed each time the functions are called.

It is important to remember that when you create a variable inside a function, it exists
only while that function is executing. Once execution finishes and control is passed back
the calling process, all the variable space for that function is cleaned up. Sometimes this
is not desirable; sometimes you want the function to remember the values of the variables
between calls. You could implement this by using global variables, but a more elegant
solution is to use the static command.

At the beginning of a function, before any other commands, you may declare a static
variable. The variable will then retain any value it holds, even after leaving the function.
You might wonder why you would ever need to do this. Suppose you'd like to build a
table where the rows alternate in background color. Listing 2.3 does just this.

Listing 2.3 Demonstrations of Static Variables

Core PHP Programming

IT-SC book 48

Core PHP Programming

IT-SC book 49

Listing 2.3 will print out a table with 10 rows. Each row will alternate background colors
between an intense green and a lighter green. I have used this technique in a project
where I pulled data from a database and separated rows with alternating blue and green
lines. Instead of using background colors, I chose between single-pixel images that I
stretched to span the browser window.

There is another way a variable can appear in a function's variable space: as an argument.
Functions are described in detail in Chapter 4, "Functions," but by now you have noticed
functions with variables inside their parentheses. Take another look at Listing 2.2. The
printCity function takes an argument called NameOfCity. When the function is called,
the variable is set with the value passed in the function call. In all other respects the
variable is the same as other local variables.

Assigning Values to Variables

The equal sign (=) is used to set the value of a variable. This is called the assignment
operator. On the left side of the assignment operator is a variable that will receive a value.
On the right side is an expression, which could be a simple string constant or a complex
combination of operators, variables, and constants.

When you assign a value to a variable, its type will change to fit the type of data you put
into it. This is in contrast to C, which tries to convert values to fit the type of the variable.
Assigning an integer to a variable that previously held a string converts the variable to an
integer.

Table 2.2. Examples of Variables Assignments

String Constants Integer Constants Double Constants
$myString = "leon"; $myInteger = 1; $myDouble = 123.456;
$myString = "\n"; $myInteger = -256; $myDouble = -98.76e5;

The simplest form of assignment is from a constant expression. This could be a number
or a string surrounded by quotes. Table 2.2 lists some examples.

By now you have probably noticed \n showing up in most of the examples. When a \
appears inside a string constant surrounded by double quotes, it has special meaning: Do
not print the next character. Instead the code stands for another character. This is so you
can override the special meaning of certain characters, or make certain characters more
visible. Strings surrounded by single quotes are treated literally. Any backslash codes are
ignored, except for escaping single quotes within the string. Table 2.3 lists some
backslash codes. The \n code stands for an end-of-line character.

Though it isn't strictly necessary, I use \n frequently. PHP allows you to create an entire
HTML page on a single line. This is acceptable to browsers, but it's very hard to debug

Core PHP Programming

IT-SC book 50

your PHP script. Put a linefeed where a linefeed would appear if you were coding the
page without PHP. You will spend less time picking through your output.

Related to backslash codes are embedded variables. You may write a variable inside a
string surrounded by double quotes, and its value will appear in its place. This even
works with arrays and objects. Listing 2.3 is an example of this technique. Notice that the
RowColor variable appears within a print statement between double quotes.

Table 2.3. Backslash Codes

Code Description
\" Double Quotes
\\ Backslash Character
\n New Line
\r Carriage Return
\t Horizontal Tab
\x00 - \xFF Hex Characters

Borrowing from Perl, PHP also allows what are sometimes called "here docs". A special
operator allows you to specify your own string of characters that mean the end of a string.
This is helpful when you have large blocks of text that span multiple lines and contain
quotes. Backslash codes and variables are recognized inside the text block, just as they
are with string surrounded by double quotes. To mark an area of text, begin by using the
<<< operator. Follow it by the identifier you'll use to end the string. When that identifier
is found alone on a line, PHP will consider it equivalent to a closing quote character. The
identifier you choose must follow the same rules governing the naming of any other
identifier, as described above. It's customary to use HERE or EOD (end of data). See Listing
2.4 for an example.

Listing 2.4 HERE docs

Core PHP Programming

IT-SC book 51

Retrieving Values

To use the value stored in a variable, use it anywhere where a value is required, such as
the argument to a function or in an expression. For example, if you wish to print the value
to the browser, you can type print($s) to print the value of a variable named s. You can
even set a variable with the value of another, such as $s = $t.

If a variable contains a string, you may refer to each character using square brackets.
Each character is numbered starting with zero. To refer to the seventh character in the s
variable, you would type $s[6]. This notation works both ways, in fact. You can set a
single character of a string with an expression like $s[6] ="x". Only the first character
of the value on the right-hand side will be used to replace the specified character. If the
variable on the left-hand side is not a string, it will be unchanged. Listing 2.5
demonstrates the use of square brackets to reference single characters.

Listing 2.5 Referencing a Single Character

Core PHP Programming

IT-SC book 52

Freeing Memory

Each time you create a variable, system memory is set aside for it. Although there is a
limit to the memory available to any computer, you will rarely need to consider
conserving its use when programming in PHP. Your scripts are likely to use very small
amounts of data. And when your script finishes, the memory needed for variables is freed
for use by other processes.

I am simplifying the process somewhat. There are some ways in PHP to create memory
that persists longer than a single page load, and in modern operating systems physical
memory does not match one-for-one with a program's view of available memory. In most
cases you will be doing fine to consider that memory is a finite but abundant resource.

If you do run into memory shortages, or have some other reason for destroying a variable,
you use the unset statement. This statement completely removes a variable or an array
element from memory. The variable name itself will no longer be recognized. Paired with
this statement is the isset function discussed in Chapter 9. This function returns TRUE
when a variable exists.

Constants

Constants are similar to variables, but they may be set only once. Some of them are
created automatically by PHP; others you will create with the define function discussed
in Chapter 9. You do not use the dollar-sign operator to get the value of a constant, and a

Core PHP Programming

IT-SC book 53

constant may never be used on the left side of an assignment operator. Constants ignore
scope and are therefore visible inside functions without the use of the global statement.

Although it is not necessary, it is customary to name constants exclusively with capital
letters. This helps make them stand out in your script, as in Listing 2.6.

Listing 2.6 Using a Constant

PHP creates several constants upon startup. PHP_VERSION contains the version of PHP
running the script. TRUE is set to 1. FALSE is set to 0. PHP_OS describes the operating
system. E_ERROR, E_WARNING, E_NOTICE, E_PARSE, E_ALL are for use with the
error_reporting function. You can also use __FILE__ and __LINE__ to get the name
of the executing script and the line number, respectively. The value of pi is stored in the
constant M_PI. Some extensions create constants, too.

Operators

An operator is a symbol that tells PHP to perform a mathematical or logical operation.
Some operators expect two arguments, some only one. Most operators fall into three
categories: arithmetic, logical, and bitwise. There are some exceptions, however. Table
2.4 lists the arithmetic operators.

Table 2.4. Arithmetic Operators

Operator Operation It Performs
+ Addition
- Subtraction and Negation
* Multiplication
/ Division
% Modulo Division

Core PHP Programming

IT-SC book 54

++ Increment
-- Decrement

Addition, subtraction, multiplication, and division are familiar concepts. They may be
applied to integers or doubles. Using a string with an arithmetic operator causes the string
to be converted to a number first. Modulo division returns the integer remainder of a
division. The - operator may also be used to swap the sign on a number or variable.

The increment and decrement operators are shorthand for adding or subtracting 1 from a
variable. You might remember that we used it in Listing 2.3 inside the for loop. You
may put an increment or decrement operator before or after a variable. If the variable is
within an expression, you will get one of two behaviors. If an increment operator
precedes the variable, the variable will be incremented prior to evaluation of the
expression; otherwise the variable isn't operated on until after the value of the expression
is computed. Listing 2.7 demonstrates this concept.

Listing 2.7 Comparing Preincrement to Postincrement

<?
 $VisitorsToday = 1;

 // prints 1
 print($VisitorsToday++);

 // VisitorsToday is now 2
 print("
\n");

 // prints 3
 print(++$VisitorsToday);

 print("
\n");
?>

In this first print statement VisitorsToday still contains the value 1 when it is printed,
because the increment operator isn't applied until after the expression is evaluated. In the
third print statement VisitorsToday is incremented before the expression is evaluated;
therefore 3 is sent to the browser.

Logical and Relational Operators

Relational operators compare values and return either TRUE or FALSE. Logical operators
perform logical operations on TRUE and FALSE. Values used with a logical operator are
converted into booleans prior to being evaluated. For numerical values, zero will be
interpreted as FALSE, and other values will be TRUE. Empty strings are considered be
FALSE, and any nonempty string is TRUE. Table 2.5 lists the logical and relational
operators.

Table 2.5. Logical and Relational Operators

Operator Operation Performed

Core PHP Programming

IT-SC book 55

< Is Less Than
> Is Greater Than
<= Is Less Than or Equal To
>= Is Greater Than or Equal To
== Is Equal To
!= Is Not Equal To
AND && And
OR || Or
XOR Exclusive Or
! Not

Notice that the equality operator is very similar to the assignment operator. That's
reasonable. One performs the action of making both sides equal; the right-side value is
copied to the variable on the left side. The other asks the question, "Are both sides
equal?" The inherent danger is that the two can be confused, and it is difficult to discover.
PHP will allow you to put an assignment inside the parentheses of an if statement. If you
have an if statement that always seems to evaluate one way, check to make sure you
haven't typed = when you meant ==.

If you are unfamiliar with logical operations, refer to Table 2.6. The first two columns
enumerate all the possible combined values of p and q, which stand for relational
expressions. The other four columns show the results of performing a logical operation
on p and q.

Table 2.6. Truth Table for Logical Operators

p q p AND q p OR q p XOR q !p
false false false false false true
false true false true true true
true false false true true false
true true true true false false

You might have noticed in Table 2.5 two versions of the logical operators. For instance,
there is both && and AND. Operationally, they are the same, but they differ in
precedence—a topic discussed at the end of this chapter. Aside from precedence, you are
free to use them interchangeably.

Bitwise Operators

A binary digit, which may be 1 or 0, is called a bit. Bitwise operators are similar to
logical operators, but where logical operators work on TRUE and FALSE, bitwise operators
view numbers from a binary perspective. When using logical operators, 1 and 10 are both
TRUE, but to a bitwise operator 1 looks like 0001 and 10 looks like 1010. A logical AND
of 1 and 10 results in TRUE. A bitwise AND of 1 and 10 results in 0. This is because each
bit of the two numbers is compared by a bitwise AND. Table 2.7 lists PHP's bitwise
operators.

Core PHP Programming

IT-SC book 56

See Table 2.8 for an example of a bitwise operation, which shows that (12 & 10) == 8.
Matching bits are operated on. In the rightmost position 0 and 0 are operated on with a
bitwise AND. The result is 0, so a 0 is put in this position of the result.

Bitwise operators are very useful in C, from which PHP takes inspiration, but you rarely
will need to use them in a PHP script. You will find some functions in the reference
chapters (8 through 14) that use bitfields.

Table 2.7. Bitwise Operators

Operator Operation Performed
& And
| Or
^ Exclusive Or
~ One's Complement or NOT
>> Shift all bits to the right
<< Shift all bits to the left

Table 2.8. Bitwise AND of 12 and 10

 1 1 0 0 (12)
& 1 0 1 0 (10)
 1 0 0 0 (8)

Miscellaneous Operators

There are operators that don't fit into any of the previous categories: the concatenation
operator, the variable marker, the reference operator, and others. Table 2.9 lists them.

The concatenation operator is similar to the addition operator except that it joins two
strings. I find this operator indispensable. When issuing a print, it is convenient to
concatenate several strings. I also use the concatenation operator to build database
queries. Listing 2.8 is an example of doing this.

When variables were discussed earlier, it was shown that a dollar sign always precedes
the name of a variable. This is true whether the variable is global, local, or a function
argument. The operator can be taken to mean, "Use the value stored in the named
variable." If an ampersand precedes the dollar sign, it changes the meaning of the
operation to be, "Use the memory set aside to store the data for the variable." This is
similar to the new operator in C++ and other languages. This subtle difference is useful in
declaring and calling functions.

Table 2.9. Miscellaneous Operators

Operator Operation Performed
. Concatenate

Core PHP Programming

IT-SC book 57

$ Reference a Variable
& Reference Variable Storage
-> Reference a Class Method or Property
=> Set Argument Default or Assign Array Element Index
@ Suppress Error Messages
? Tertiary Conditional Expression
{} Variable Embedded in a String

When a function is called with an argument, the value of the argument is passed to the
function and put into the special argument variable in the function declaration. If a
variable is used inside a function call, only the value of the variable is sent to the
function. If you choose to change the value of an argument, the original variable will be
unchanged.

However, if you put an ampersand before the dollar sign in a function declaration, the
function will expect a reference to a variable. Inside the function the argument acts like
an alias to the supplied variable; any change to the argument changes the variable named
in the function call. This behavior is discussed and demonstrated in Chapter 4.

Outside of functions, the ampersand allows you to make more than one variable point to
the same area of memory. This is like making an alias. Operations on either variable will
change the underlying memory, as demonstrated in Listing 2.9.

Listing 2.8 The Concatenation Operator

<?
 $Query = "SELECT LastName, FirstName " .
 "FROM Clients " .
 "WHERE Disposition = 'Pleasant' " .
 "ORDER BY LastName ";

 print($Query);
?>

Listing 2.9 The Reference Operator

Core PHP Programming

IT-SC book 58

The dollar-sign operator may operate on the result of another dollar-sign operator. In the
simplest case a variable holds the name of another variable. This is shown in Listing 2.10

Note that { and } is used for grouping as the parentheses are used for numbers. This
eliminates the ambiguity that can arise when referencing arrays. It also allows you to
specify elements of multidimensional arrays inside strings. But even when not strictly
necessary, it's a good idea to use curly braces as I have in Listing 2.10. It's clear that I
mean to use a variable to name another variable here.

The dollar-sign operator is unique because it is executed when placed inside double
quotes. This allows you to avoid the extra code needed to break from a string to insert the
value of a variable. But dollar signs inside double quotes do not behave exactly like
dollar signs outside double quotes. When two or more dollar signs appear together, all but
the last will be treated as any other character with no meaning. To use one variable to
name another, use curly braces. Listing 2.10 demonstrates the subtleties of this
functionality.

The -> operator is used strictly to reference either methods or properties of classes, which
are discussed in Chapter 6. The left-hand side of the operator is the name of an

Core PHP Programming

IT-SC book 59

instantiated class; the right-hand side is the name of a function or variable inside the
class.

Listing 2.10 Using Variables to Name Variables

<?
 //set variables
 $var_name = "myValue";
 $myValue = 123.456;
 $array_name = "myArray";
 $myArray = array(1,2,3);

 //prints "123.456"
 print($$var_name . "
\n");

 //prints "$myValue"
 //perhaps not what you expect
 print("$$var_name
\n");

 //prints "123.456"
 print("${$var_name}
\n");

 //prints "3"
 print(${$array_name}[2] . "
\n");
?>

The => operator is used in declaring arrays, discussed in Chapter 5. When creating an
array with the array statement, you may specify the index for an element with the =>
operator. The left-hand side of the operator is the index and the right-hand side is the
value. This operator is also used by the foreach statement in much the same way.

The ? operator is equivalent to an if statement. It is called a tertiary operator, because it
takes three parameters: an expression that is evaluated to be TRUE or FALSE, an expression
that's evaluated if the first is true, and an expression that's evaluated if the first is false. A
complete discussion of the ? operator appears in Chapter 3, "Control Statements."

The @ operator suppresses any error messages when it precedes an expression. Normally
when a built-in function encounters an error, text is sent directly to the browser.
Sometimes this is just warning text. If you want to suppress any error or warning
messages, place @ directly before the name of the function. You may also place @ before
an expression if you anticipate an error condition, such as division by zero. Error
messages may also be suppressed for all functions in a script with the error_reporting
function.

Assignment Operators

There really is only one assignment operator, but PHP offers a handful of shortcut
operators for combining assignment with another operator. Table 2.10 lists all the
assignment operators.

Core PHP Programming

IT-SC book 60

All the assignment operators put a value into a variable. Specifically, they put a value on
the right side into a variable on the left side. You may not reverse the order. The
operators that combine another operator with an assignment operator operate on both the
right and left sides and then put the result in the variable on the left. Listing 2.11
demonstrates equivalent statements.

Table 2.10. Assignment Operators

Operator Operation Performed
= Assign right side to left side
+= Add right side to left side
-= Subtract right side from left side
*= Multiply left side by right side
/= Divide left side by right side
%= Set left side to left side modulo right side
&= Set left side to bitwise AND of left side and right side
|= Set left side to bitwise OR of left side and right side
^= Set left side to bitwise XOR of left side and right side
.= Set left side to concatenation of left side and right side

Expressions

Expressions are combinations of identifiers and operators. In most cases, they are the
familiar formulas you learned about in high school algebra. They are executed from left
to right; some operators are processed before others, and you can use parentheses to force
an operation to occur before the rest of the expression. But since the expression may be a
mix of different data types, you must be aware of how types are converted.

Listing 2.11 Using Assignment Operators

<?
 // this assignment
 $Count = $Count + 1;

 // is the same as this assignment
 $Count += 1;
?>

Two general rules are at work when an expression is evaluated. First, some operators
work only on certain data types. Second, if the operation is on a mix of an integer and a
double, the integer will be converted to a double.

Most operators work on numbers. If you attempt to add a string, the string will be
converted to a number. The contents of the string will determine whether it becomes an
integer or a double. PHP will make a good attempt at converting your string to a number.
It will strip leading whitespace and it will strip off all characters after a string of digits. It
will even read doubles with an exponent. But if PHP can't decide on a reasonable
numerical value, it will treat your string as zero.

Core PHP Programming

IT-SC book 61

Listing 2.12 String/Number Conversion

<?
 //1 + 1 == 2
 print((1 + "1") . "
\n");

 //1 + 2 == 3
 print((1 + " 2") . "
\n");

 //1 + 3 == 4
 print((1 + "3extra stuff") . "
\n");

 //1 + 4500000 == 4500001
 print((1 + "4.5e6") . "
\n");

 //1 + 0 == 1
 print((1 + "a7") . "
\n");
?>

Listing 2.12 is a good test of how PHP will convert strings to numbers. All the
commands will produce a number from the string, except the last. Since the string in the
last line begins with a letter, PHP gives up and treats it as zero. Notice that after the
addition the script uses a concatenation operator. This causes the integer created inside
the parentheses to be converted to a string for the purposes of printing. The concatenation
operator forces both sides to be treated as strings.

Listing 2.13 demonstrates the use of parentheses to force the order in which the
expression is evaluated. The first line evaluates to 17, the second to 35. In addition to
evaluation from left to right, operators execute in a specific precedence. For example,
multiplication is resolved before addition.

A programming language must order all its operators, but in practice it is difficult for the
programmer to keep it all straight. The best policy is to use parentheses to explicitly force
the precedence you want on complex expressions. Table 2.11 lists the operators in order
of precedence. Operators on the same line are of equal precedence, therefore falling back
to left-to-right precedence.

Listing 2.13 Using Parentheses

<?
 print ((3 + 2 * 7) . "
\n");
 print (((3 + 2) * 7) . "
\n");
?>

Table 2.11. Precedence of Operators

Highest []
 () {}
 ~ ! ++ -- - $ & @
 (double) (integer) (string) (array) (object)
 * / %
 + - .

Core PHP Programming

IT-SC book 62

 << >>
 < > <= >=
 == !=
 &
 ^
 |
 &&
 ||
 ?:
 = += -= *= /= &= |= ^= .= <<= >>=
 AND
 XOR
 OR
Lowest '

Core PHP Programming

IT-SC book 63

Chapter 3. CONTROL STATEMENTS

Control statements allow you to execute blocks of code depending on conditions. They
also allow you to repeat a block of code, which leads to simpler, more efficient scripts.
This chapter will introduce you to the decision-making statements if and switch. You
will also learn about loops using for and while.

True and False

As you remember from Chapter 2, PHP has the concepts of true and false. Zero and an
empty string are considered to be false. Any other numerical value or string is true. These
concepts were discussed in regard to relational operators, but they are also used in control
statements. Control statements like if expect a boolean value, so any value they are
given will be converted to a boolean.

The if Statement

Figure 3-1 lays out the form of an if statement.

Figure 3-1. The form of an if statement.

The if statement executes a statement if the expression inside the parentheses evaluates
to true; otherwise the code is skipped. It may be a single statement followed by a
semicolon. Usually it's a compound statement surrounded by curly braces. An else
statement may appear immediately after the statement and has a statement of its own. It,
too, may be either single or compound. It is executed only when the previous expression
is false. In between an if statement and an else statement you may put as many elseif
statements as you'd like. Each elseif expression is evaluated in turn, and control skips
past those that are false. If an elseif statement evaluates to true, then the rest of the

Core PHP Programming

IT-SC book 64

code in the greater if statement is skipped. That is to say, only one match will be made.
Listing 3.1 demonstrates an if-elseif-else statement.

Of course, you are not obligated to have an elseif or an else. Sometimes you might
want to build a very simple if statement as in Listing 3.2.

You can use if to build a series of checks that covers all possible cases. Just start by
checking for the first condition with an if; then check for each following condition with
an elseif. If you put an else at the end, you will have accounted for all possible cases.
Listing 3.3 uses this method to print the day of the week in German. The script gets
today's name and then compares it to the days Monday through Saturday. If none of these
match, it is assumed to be Sunday.

Listing 3.1 An if-elseif-else Statement

<?
 if($name == "")
 {
 print("You have no name.");
 }
 elseif(($name == "leon") OR ($name == "Leon"))
 {
 print("Hello, Leon!");
 }
 else
 {
 print("Your name is '$name'.");
 }
?>

Listing 3.2 A Simple if Statement

<?
 if(date("D") == "Mon")
 {
 print("Remember to put the trash out.");
 }
?>

The ? Operator

PHP offers an abbreviated version of the if statement which borrows syntax from C. It
uses the question mark as a tertiary operator. Figure 3-2 outlines the format.

Figure 3-2. The ? operator.

Core PHP Programming

IT-SC book 65

Listing 3.3 Covering All Cases with if-elseif-else

Core PHP Programming

IT-SC book 66

Core PHP Programming

IT-SC book 67

Core PHP Programming

IT-SC book 68

The conditional expression is evaluated to be either true or false. If true, the expression
between the question mark and the colon is executed. Otherwise, the expression after the
colon is executed. The following code fragment

($clientQueue > 0) ? serveClients() : cleanUp();

does the same thing as

if($clientQueue > 0)
 serveClients();
else
 cleanUp();

The similarity is deceiving. Although the abbreviated form seems to be equivalent to
using if-else, at a deeper level it is not. As I said, ? is an operator, not a statement. This
means that the expression as a whole will be evaluated. The value of the matched
expression takes the place of the ? expression. In other words, something like

print(true ? "it's true" : "it's false");

is a valid statement. Since the conditional expression is true, the line will be transformed
into

print("it's true");

which is something you can't do with an if statement.

The ? operator can be confusing to read and is never necessary. It wouldn't be bad if you
never used it. On the other hand it allows you to write very compact code.

The switch Statement

An alternative to if-elseif-else structures is the switch statement, which works on
the assumption that you compare a single expression to a set of possible values. Figure 3-
3 demonstrates the structure of a switch statement.

Core PHP Programming

IT-SC book 69

Figure 3-3. The switch statement.

The root expression inside a switch statement is evaluated and then compared to each
expression following a case statement. At the end of the list of cases you can put a
default statement that works exactly like an else statement; it matches if no other case
matches.

Notice that cases don't have curly braces after them. This reveals an important difference
between if and switch. When an if block matches and is executed, control skips to the
end of the entire if statement. In Listing 3.3, if today is Tuesday, deutsch_Day is set to
Dienstag, and control jumps down to after the closing curly brace closing the else
block.

A case statement serves as a starting point for execution. The root expression is
compared to each case expression until one matches. Each line of code after that is
executed. If another case statement is reached, it is ignored. Sometimes this is useful, but
most often a break statement is used to escape from the switch statement.

Take a look at Listing 3.4. I've recoded Listing 3.3 using a switch statement. The best
argument for using switch is that it can be much easier to understand. Since PHP allows
you to compare strings, the switch statement

Listing 3.4 Covering All Cases with switch

<?
 /*
 ** Get today's weekday name
 */
 $english_Day = date("l");
 /*
 ** Find the today's German name
 */
 switch($english_Day)
 {
 case "Monday":
 $deutsch_Day = "Montag";
 break;
 case "Tuesday":
 $deutsch_Day = "Dienstag";
 break;
 case "Wednesday":
 $deutsch_Day = "Mittwoch";
 break;
 case "Thursday":

Core PHP Programming

IT-SC book 70

 $deutsch_Day = "Donnerstag";
 break;
 case "Friday":
 $deutsch_Day = "Freitag";
 break;
 case "Saturday":
 $deutsch_Day = "Samstag";
 break;
 default:
 // It must be Sunday
 $deutsch_Day = "Sonntag";
 }
 /*
 ** Print today's English and German names
 */
 print("<H2>German Lesson: Day of the Week</H2>\n");
 print("In English: $english_Day.
\n");
 print("In German: $deutsch_Day.
\n");
?>

is much more useful than in other languages. If you have experience with BASIC, you
might wonder if PHP's switch statement allows cases to contain ranges. It doesn't. It's
probably best to code this situation with an if-elseif-else statement.

Loops

Loops allow you to repeat lines of code based on some condition. You might want to read
lines from a file until the end is reached. You might want to print a section of HTML
code exactly ten times. You may even wish to attempt to connect to a database three
times before giving up. You can do all of these things with loops.

The while Statement

The simplest of loops is the while statement. When first reached, the expression is
evaluated. If false, the code block is skipped. If true, the block is executed and then
control returns to the top where, again, the expression is evaluated. Figure 3-4 shows the
structure of a while statement.

Figure 3-4. The while statement.

A while loop is useful when you aren't sure exactly how many times you will need to
iterate through the code—for example, when reading lines from a file or fetching rows
from a database query. For the sake of a simple demonstration, let's examine some code
that prints the days of the week between now and Friday.

Core PHP Programming

IT-SC book 71

The while loop in Listing 3.5 tests that the date stored in currentDate is not a Friday. If
it is, then the loop will be finished, and execution will continue after the closing curly
brace. But if the current date is not a Friday, then a list item with the name of the day is
printed and currentDate is advanced 24 hours. At that point, the end of the code block is
reached, so control jumps back to the beginning of the loop.

Listing 3.5 Using while to Print Day Names

Core PHP Programming

IT-SC book 72

Again the current date is tested for being a Friday. Eventually, currentDate will be a
Friday and the loop will end. But what if I had done something silly such as comparing
the current date to "Workday"? There is no weekday with that name, so the expression
will always be true. That is, date("l", $currentDate) != "Workday" must always be

Core PHP Programming

IT-SC book 73

true. The result is a loop that goes on forever. I might as well write it as while(true)
and make it very clear.

When a loop continues with no end, it's called an infinite loop. If you find your page
loading forever and ever, you may have accidentally written an infinite loop. At times,
you may intentionally create an infinite loop but stop execution somewhere in the middle
of the code block. This is accomplished with the break statement.

The break Statement

When a break statement is encountered, execution jumps outside the innermost loop or
switch statement. You've seen that this is essential to the usefulness of switch
statements. It also has some application for loops. There are cases when you need to
leave a loop block somewhere in the middle. Listing 3.6 shows this in action.

Listing 3.6 Leaving a Loop Using break

<?
 while(true)
 {
 print("This line is printed.");
 break;
 print("This line will never be printed.");
 }
?>

The continue Statement

The continue statement is similar to the break statement except that instead of stopping
the loop entirely, only the current execution of the loop is stopped. Control is returned to
the closing curly brace and the loop continues. Inside for loops, described below,
increments will occur just as if control had reached the end of the loop otherwise.

As you might imagine, this function is used to skip parts of a loop when a condition is
met. Listing 3.7 demonstrates this idea. Random numbers are generated inside a loop
until ten numbers, each greater than the previous, are produced. Most of the time the
body of the loop is skipped due to the if statement that triggers a continue statement.

Listing 3.7 The continue Statement

Core PHP Programming

IT-SC book 74

Core PHP Programming

IT-SC book 75

Core PHP Programming

IT-SC book 76

The do...while Statement

You can delay the decision to continue executing a loop until the end by using a
do...while statement. Listing 3.8 retools Listing 3.7. You won't notice a difference
unless you run the script on a Friday. On Fridays the original will print nothing in its list
of days. The new version will put Friday in the list because the body of the loop is
executed before currentDate is tested. By switching to a do...while loop, the loop
now lists the days until next Friday.

Listing 3.8 Using do...while to Print Day Names

<?
 /*
 ** get the current date in number of seconds
 */
 $currentDate = time();
 /*
 ** print some text explaining the output
 */
 print("Days left before next Friday:\n");
 print("\n");
 do
 {
 /*
 ** print day name
 */
 print("" . date("l", $currentDate) . "\n");
 /*
 ** add 24 hours to currentDate
 */
 $currentDate += (60 * 60 * 24);
 }
 while(date("l", $currentDate) != "Friday");
 print("\n");
?>

The for Statement

Strictly speaking, the for loop is unnecessary. Any for loop can be implemented as
easily as a while loop. What for offers is not new functionality, but a better structure for
building the most common loops. Many loops involve incrementing a counter variable
every time through the loop, iterating until some maximum is reached.

Imagine that you wanted to step through the numbers 1 through 10. Using while, you
would first set a variable to be 1. Then you would make a while loop that tests if your
counter is less than or equal to 10. Inside the code block you would increment your
counter, making sure you do this as the last statement in the block.

Core PHP Programming

IT-SC book 77

The problem is that it is very easy to forget to put the increment in. The result is an
infinite loop. The for loop puts all this functionality in one place. Inside the for
statement you give it three things: an initialization statement, a boolean expression, and
an increment statement. Figure 3-5 defines a for loop.

Figure 3-5. The for statement.

When first encountered, the initialization statement is executed. This traditionally takes
the form of assigning a variable to be 0 or 1. Then, as with a while statement, the
boolean expression is evaluated. If FALSE, control jumps to just after the code block.
Otherwise, the code block is executed. Before the boolean expression is evaluated again,
the increment statement is executed. This puts all the information needed for running the
loop in one place and forces you to think about all the steps. Listing 3.9 is a very simple
for loop but is typical in form.

Listing 3.9 A Typical for Loop

Core PHP Programming

IT-SC book 78

Most for loops look like Listing 3.9. They use a counter that increments by one each
time through the loop. However, the for statement is not particular about what you put in
the three slots. You can use more complex expressions if you wish. The initialization slot
allows a comma-separated list of assignments. This can be used to assign values to two or
more variables. You may also leave a slot blank. Listing 3.10 converts the code in Listing
3.6 into a for loop. I've added line breaks to the for statement to keep the code from
wrapping. It also makes it easier to see the three parts. Although the for statement is
longer and looks more complicated, it really is no different from the simple example in
Listing 3.9. A variable, in this case currentDate, is set to some initial value. That value
is used to test for an end condition. And the value is incremented by the number of
seconds in a day instead of just one.

Listing 3.10 Using for to Print Day Names

Core PHP Programming

IT-SC book 79

<?
 /*
 ** print some text explaining the output
 */
 print("Days left before Friday:\n");
 print("\n");
 for($currentDate = date("U");
 date("l", $currentDate) != "Friday";
 $currentDate += (60 * 60 * 24))
 {
 /*
 ** print day name
 */
 print("" . date("l", $currentDate) . "\n");
 }
 print("\n");
?>

The foreach Statement

I must discuss the foreach statement here, although it is used with arrays, which are
discussed in Chapter 5. An array is a collection of values referenced by keys. The
foreach statement retrieves values from an array, one at a time. Like other looping
structures, the foreach statement may have a simple or compound statement that's
executed each time through the loop. Figure 3-6 shows the structure of a foreach
statement.

Figure 3-6. The foreach statement.

The foreach statement expects an array, the keyword as, and a definition of the
variables to receive each element. If a single value follows as, such as foreach($array
as $value), then with each turn of the loop, the variable named value will be set with
the value of the next array element. You may capture the index of the array element if
you form the foreach statement like foreach($array as $key=>$value). Keep this
statement in mind and I will revisit it in Chapter 5.

exit, die, and return

Like break, the exit statement offers a way to escape from execution, but the exit
statement stops all execution. Not even text outside of PHP tags is sent to the browser.
This is useful when an error occurs and it would be more harmful to continue executing
code than to just abort. This is often the case when preparing database queries. If the SQL
statement cannot be parsed, it makes no sense to try to execute it.

Core PHP Programming

IT-SC book 80

The die statement is similar to exit, except that it may be followed by an expression that
will be sent to the browser just before aborting the script. Using the fact that
subexpressions in an if statement are evaluated left to right and only as necessary, the
idiom in Listing 3.11 is allowed. Notice the parentheses around the string to be printed
when the open fails. They are required.

Listing 3.11 Idiom for Using the die Statement

$fp = fopen("somefile.txt", "r") OR die("Unable to open file");

You will learn about the more traditional use of the return statement in Chapter 4, but
there is an unusual use of return offered by PHP when a script uses the include
function, described in Chapter 7. If called outside of a function, the return statement
stops execution of the current script and returns control to the script that made a call to
include. That is, when a script uses the include function, the included script may return
prematurely. If you use return in a script that was not invoked by include, the script
will simply terminate as if exit were used.

I admit this is a strange concept, and it probably deserves to have its own name instead of
sharing one with the statement for returning from functions. On the other hand, in certain
special cases, it allows for tidy code. One example is to avoid including a file twice, as
described in Chapter 20.

Evaluation of Boolean Expressions

The conditional statements in this chapter may be compound expressions, of course. PHP
will evaluate an expression only to the point of determining its ultimate value. The classic
situation is an expression that uses the or operator. PHP first evaluates the left side of the
or operator. If this subexpression is true, then there is no need to proceed. The entire
expression will be true. This can lead to unexpected functionality if you are embedding
function calls or assignment statements in your boolean expressions, but this isn't a good
idea anyway. However, there are ways to take advantage of this behavior. An example is
testing for something that should be true and calling an error-handling routine on the right
side of an or statement.

Core PHP Programming

IT-SC book 81

Chapter 4. FUNCTIONS

Declaring a Function

The return Statement

Scope and the global Statement

Arguments

Recursion

Dynamic Function Calls

You probably have noticed the use of several functions in the preceding chapters. Date
and print are built-in functions that are always available for you. PHP also allows you to
declare your own functions.

Functions expand the idea of repeating a block of code. They allow you to execute a
block of code arbitrarily throughout your script. You declare a block of code as a function
and then you are able to call the function anywhere. When calling a function, you pass
any number of arguments, and the function, returns a value.

Declaring a Function

When you declare a function, you start with the function statement. Next comes a name
for your function. Inside the parentheses is a list of arguments separated by commas. You
may choose to have no arguments. Figure 4-1 shows you the form of a function
declaration.

Figure 4-1. Declaring a function.

In other languages, including older versions of PHP, you must declare a function above
any call to it. This is not true of PHP 4. You may put a function declaration after calls
made to it. When you call a function, you write its name followed by parentheses, even if
there are no arguments to pass.

Functions allow you to put together a block of code that you will repeat several times
throughout your script. Your motivation may be to avoid typing identical code in two or
more places, or it could be to make your code easier to understand. Consider Listing 4.1.
It declares a function called printBold that prints any text with bold tags around it.

Core PHP Programming

IT-SC book 82

Listing 4.1 A Simple Function

The return Statement

At some point a function will be finished, ready to return control to its caller. This
happens, for example, when execution reaches the end of the function's block of code.
Execution then picks up directly after the point where the function was called. Another
way to stop execution of the function is to use the return statement.

You may have multiple return statements in your function, though you have to consider
how this reduces the readability of your code. Multiple return statements can be a
barrier to understanding the flow of execution. Ideally functions should have one way in
and one way out. In practice there are cases when multiple return statements are
acceptable.

Core PHP Programming

IT-SC book 83

If you follow return with an expression, the value of the expression will be passed back.
Listing 4.2 demonstrates this idea by taking a string and returning it wrapped in bold
tags.

Listing 4.2 A Simple Function Using return

<?
 function makeBold($inputText)
 {
 $boldedText = "";
 $boldedText .= $inputText;
 $boldedText .= "";

 return($boldedText);
 }

 print("This Line is not Bold
\n);
 print(makeBold("This Line is Bold") . "
\n");
 print("This Line is not Bold
\n");
?>

Scope and the global Statement

As discussed in Chapter 2, variables inside a function exist inside a name space separate
from the global name space. Variables inside a function are private property and may
never be seen or manipulated outside the function. However, there are two ways a
function may access variables in the global scope: the global statement and the GLOBALS
array.

The global statement brings a variable into a function's name space. Thereafter the
variable may be used as if it were outside the function. Any changes to the variable will
persist after execution of the function ceases. In the same way, it is possible to refer to
global variables through the array GLOBALS. The array is indexed by variable names, so if
you create a variable named userName you can manipulate it inside a function by writing
$GLOBALS["userName"].

Also noted in Chapter 2 is the idea of static variables. If a variable is declared to be
static, it retains its value between function calls. Listing 2.3 demonstrates the use of static
variables.

Arguments

When declaring a function, you may declare arguments inside the parentheses, each
separated by a comma. The arguments must be preceded by a dollar sign. They become
variables inside the function. When the function is called, it expects values to be passed
that will fill the arguments in the order declared.

Arguments, by default, copy the passed value into the local variable. If the variable is
preceded by the & operator, the variable instead becomes an alias for the passed variable.

Core PHP Programming

IT-SC book 84

This is commonly referred to as a variable reference. Changes made to referenced
variables change the original.

To demonstrate this idea, imagine we wanted a function that stripped commas from
numbers. That way if we got something like "10,000" from an input field we would know
it was ten thousand, not ten. We could build the function by passing a string and returning
it with the commas removed. But in this case we want to just pass the variable and have it
be changed. Listing 4.3 demonstrates this functionality.

It is also possible to make an argument optional. Many built-in functions provide this
functionality. The date function is one you should be familiar with by now. You can pass
one or two arguments to date. The first argument is the format of the return value. The
second argument is the timestamp, a date expressed in seconds since January 1, 1970. If
the second argument is omitted, the current time is used.

You do this in your own functions by providing a default value using the = operator
immediately after the argument. The right side of = is a literal value that the variable will
be assigned. See Listing 4.4. Since arguments are matched up left to right, you must
provide a default value for every argument after the first with a default value.

Listing 4.3 Passing Arguments by Reference

<?
 function stripCommas(&$inputString)
 {
 $inputString = ereg_replace(",", "", $inputString);
 }

 $myNumber = "10,000";

 stripCommas($myNumber);
 print($myNumber);
?>

You may set an argument to be unset by default by making it equal to NULL, a special
constant. Listing 4.5 demonstrates this functionality.

Other than named arguments, you may also access arguments by their position using
three functions, func_get_arg, func_get_args, func_ num_args. These functions
are described in Chapter 8. You may either fetch one argument at a time using
func_get_arg, or fetch them all as an array using func_get_args. To find out how
many arguments were passed, use func_num_args. There is an implication lurking here.
Calling a function with a number of arguments different from the prototype is not an
error unless you write your function that way.

Listing 4.4 Arguments with Default Values

<?
 function printColored($Text, $Color="black")
 {

Core PHP Programming

IT-SC book 85

 print("$Text");
 }

 printColored("This is black text");
 print("
\n");

 printColored("This is blue text", "blue");
 print("
\n");
?>

Listing 4.5 Using unset with a Default Argument

You might wonder why you'd ever want to pull arguments out using the functions
mentioned above instead of naming them in the declaration. It's possible that you do not
know how many arguments you will be given. Consider a function that creates a list,
given any number of items. You could first place those items in an array, then pass the

Core PHP Programming

IT-SC book 86

array to the function, which in turn would pull the items out of the array. Alternatively,
you could write a function that accepted a variable number of arguments, as I have in
Listing 4.6.

Listing 4.6 Function with Variable Number of Arguments

<?
 function makeList()
 {
 print("\n");

 for($i=0; $i <func_num_args(); $i++)
 {
 print("" . func_get_arg($i) . "\n");
 }

 print("\n");
 }

 makeList("PHP", "MySQL", "Apache");
?>

Recursion

Your functions may make calls to other functions, and they may also make calls to
themselves. The process of a function calling itself is recursion. This circular definition
usually leads to elegant algorithms. The problem is broken down into a small task that's
repeated many times.

Recursive definitions are common in mathematics. Consider this definition of an integer:
the sum or difference between one and any other integer, with one being an integer. Is
three an integer? Yes, because one plus one must be an integer, which is two. And the
sum of one and two must also be an integer.

Recursion is a difficult concept to understand, but it usually leads to clearcode. Take a
look at Listing 4.7. The function checkInteger takes a number as input. We know that
the difference between an integer and one is an integer. So if the function gets a number
bigger than one, it simply checks the number minus one. If we start out with a number
less than zero, we multiply it by negative one and check it. Eventually we will reach one
or a number between zero and one, unless we are passed zero, which is an integer.

Listing 4.7 Using Recursion

Core PHP Programming

IT-SC book 87

Core PHP Programming

IT-SC book 88

Core PHP Programming

IT-SC book 89

Dynamic Function Calls

You might find yourself in the position of not knowing which function should be called
when you are writing a script. You want to decide based on data you have during
execution. One way to accomplish this is to set a variable with the name of a function and
then use the variable as if it were a function.

If you follow a variable with parentheses, the value of the variable will betreated as the
name of a function. Listing 4.8 demonstrates this. Keep in mind that you can't refer to
built-in functions in this way. Setting myFunction to be print will cause an error.

Listing 4.8 Dynamically Calling a Function

<?
 function write($text)
 {
 print($text);
 }

 function writeBold($text)
 {
 print("$text");
 }

 $myFunction = "write";
 $myFunction("Hello!");
 print("
\n");

 $myFunction = "writeBold";
 $myFunction("Goodbye!");
 print("
\n");
?>

Core PHP Programming

IT-SC book 90

Chapter 5. ARRAYS

Single-Dimensional Arrays

Indexing Arrays

Initializing Arrays

Multidimensional Arrays

Casting Arrays

Referencing Arrays Inside Strings

Arrays collect values into lists. You refer to an element in an array using an index, which
is often an integer but can also be a string. And the value of the element can be text, a
number, or even another array. When you build arrays of arrays, you get
multidimensional arrays. Arrays are used extensively by PHP's built-in functions, and
coding would be nearly impossible without them. There are many functions designed
simply for manipulating arrays. They are discussed in detail in Chapter 9.

Single-Dimensional Arrays

To refer to an element of an array, you use square brackets. Inside the brackets you put
the index of the element, as in Listing 5.1. This construct may be treated exactly like a
variable. You may assign a value or pass its value to a function. You do not have to
declare anything about the array before you use it. Like variables, any element of an array
will be created on the fly. If you refer to an array element that does not exist, it will
evaluate to be zero or an empty string depending on the context.

Single-dimensional arrays are lists of values under a common name. But you might
wonder, "Why bother?" You could just as easily create variables like "$Cities1,
$Cities2, $Cities3" and not worry about square brackets. One reason is that it's easy
to loop through all values of an array. If you know that all the elements of an array have
been added using consecutive numbers, you can use a for loop to get each element. PHP
makes it easy to create arrays that work this way; if you leave out an index when
assigning an array element, PHP will start at zero and use consecutive integers thereafter.
If you run the code in Listing 5.2, you will discover that the four cities have indexes of 0,
1, 2, and 3.

Listing 5.1 Referencing Array Elements

Core PHP Programming

IT-SC book 91

Indexing Arrays

So far we've only seen arrays indexed by integers, but it is also permissible to use strings.
Sometimes these are called associative arrays, or hashes. They are helpful in situations
where you are collecting different types of information into one array. You could build
into your code a system where element zero is a name, element one is a location, and
element two is an occupation. Listing 5.3 is a more elegant way to accomplish this.

Listing 5.2 Adding to an Array

Core PHP Programming

IT-SC book 92

Since we aren't indexing the array with integers, we can't just pull out each value starting
at zero. If you've turned ahead briefly to skim the array functions in Chapter 9, you may
have noticed functions like reset, next, and current. These functions offer one way to
step through an array, and they are the best way if you need to do more than simply step
through the array in order. You can also use the each function. However, PHP 4 added a
new statement called foreach specifically for stepping through an array. The foreach
statement is discussed in Chapter 3. It is like a for loop, but designed to pull elements
from an array. You may wish to turn back and review it.

Listing 5.3 Indexing Arrays with Strings

Core PHP Programming

IT-SC book 93

Initializing Arrays

In the situations where you want to fill an array with several values before you use it, it
can become cumbersome to write an assignment for each element. PHP offers the array
function to help in this matter. It takes a list of values and returns an array. Listing 5.4
uses array to build an array of the months of the year.

Each value is just as it would be if it were on the right side of the assignment operator.
Commas separate the values. By default, as with using empty brackets, elements will be
numbered starting at zero. You can override this by using the => operator. In Listing 5.4 I
have set January to have the index 1. Each subsequent element is indexed by the next
integer.

You aren't limited to setting the index for the first element, of course. You can assign the
index for every element. And you aren't limited to assigning integers as indexes. Listing
5.5 builds an array for translating various ways to write a month into a single form.

Core PHP Programming

IT-SC book 94

Listing 5.4 Initializing an Array

<?
 $monthName = array(1=>"January", "February", "March",
 "April", "May", "June", "July", "August",
 "September", "October", "November", "December");

 print("Month 5 is $monthName[5]
\n");
?>

Listing 5.5 Using an Array to Translate Values

<?
 $monthName = array(
 1=>"January", "February", "March",
 "April", "May", "June",
 "July", "August", "September",
 "October", "November", "December",
 "Jan"=>"January", "Feb"=>"February",
 "Mar"=>"March", "Apr"=>"April",
 "May"=>"May", "Jun"=>"June",
 "Jul"=>"July", "Aug"=>"August",
 "Sep"=>"September", "Oct"=>"October",
 "Nov"=>"November", "Dec"=>"December",
 "January"=>"January", "February"=>"February",
 "March"=>"March", "April"=>"April",
 "May"=>"May", "June"=>"June",
 "July"=>"July", "August"=>"August",
 "September"=>"September", "October"=>"October",
 "November"=>"November", "December"=>"December"
);

 print("Month 5 is " . $monthName[5] . "
\n");
 print("Month Aug is " . $monthName["Aug"] . "
\n");
 print("Month June is " .
 $monthName["June"] . "
\n");
?>

Multidimensional Arrays

An array element can be any type of data. You've seen numbers and strings, but you can
even put an array inside an array. An array of arrays is also called a multidimensional
array. Imagine a ten-by-ten grid. You've got 100 different squares, each of which can
have its own value. One way to represent this in code is a two-dimensional array: a ten-
element array of ten-number arrays, ten rows of ten columns.

To reference a single element, you first use square brackets to pick the first dimension
(row), then use a second pair of brackets to pick the second dimension (column). Row 3,
column 7, would be written as $someArray[3][7].

Listing 5.6 initializes a multidimensional array using the array function. This shows that
multidimensional arrays are just arrays of arrays.

Core PHP Programming

IT-SC book 95

Listing 5.6 Creating and Referencing a Multidimensional Array

<?
 $Cities = array(
 "California"=>array(
 "Martinez",
 "San Francisco",
 "Los Angeles"
),
 "New York"=>array(
 "New York",
 "Buffalo"
)

 print($Cities["California"][1]);
?>

Casting Arrays

You can cast an array as another data type to get results of various usefulness. When you
cast an array as an integer, double or boolean, you will get a value of 1. When you cast an
array as a string, you will get the word Array. This is useful as an indicator of when you
have mistakenly used an array as a string. An array will be promoted to a string
containing Array if you use it in a context that demands a string, such as in a print
statement. You can't use an array in a context that expects a number, such as with the
addition operator. This will cause an error. Listing 5.7 explores casting an array as other
data types.

The most useful cast of an array you can perform is to an object. The elements of the
array will become properties of the object. However, elements indexed by values illegal
as property names will remain inaccessible. These values are not lost, and if you recast
the variable as an array, they will become available again. Objects are discussed in
Chapter 6.

Listing 5.7 Casting Arrays as Other Data Types

Core PHP Programming

IT-SC book 96

Core PHP Programming

IT-SC book 97

Core PHP Programming

IT-SC book 98

Referencing Arrays Inside Strings

As you know from Chapter 2, you may place a variable inside a string using double
quotes. The variable's value will replace it. A single-dimensional array indexed by
integers will be interpreted correctly inside double quotes, but other uses of arrays are
problematic. To force the use of multidimensional arrays, use curly braces. These
suspend the normal parsing that occurs within a double-quoted string. Of course, you
may always concatenate strings. Listing 5.8 explores some different ways to use arrays
inside strings.

Listing 5.8 Referencing Strings

Core PHP Programming

IT-SC book 99

Core PHP Programming

IT-SC book 100

Chapter 6. CLASSES AND OBJECTS

Defining a Class

Creating an Object

Accessing Properties and Methods

Object-oriented programming was devised as a solution to problems associated with large
software projects where many programmers work on a single system. When source code
grows to be tens of thousands of lines of code or more, each change can cause
unexpected side effects. This happens when modules form secret alliances like nations in
pre-WWI Europe. Imagine a module for handling logins that allows a credit card
processing module to share its database connection. Surely it was done with the best
intentions, probably to save the overhead of acquiring another connection. Some time
later, the login module severs the agreement by changing the variable name. The credit
card processing code breaks; then the module that handles invoices breaks. Soon totally
unrelated modules are dragged into the fray.

So, I'm being a bit dramatic. Most programmers pick up an appreciation for coupling and
encapsulation. Coupling is the measure of how dependent two modules are. Less
coupling is better. We'd like to take modules from existing projects and reuse them in
new projects. We'd like to make wholesale changes to the internals of modules without
worrying about how they affect other modules. The solution is to follow the principle of
encapsulation. Modules are treated as independent states, and exchanges between
modules are done through narrow, structured interfaces. Modules do not spy on each
other by reaching into each other's variables. They ask politely through functions.

Encapsulation is a principle you can apply in any programming language, if you have
discipline. In PHP, and many procedural languages, it's easy to be tempted to be lazy.
Nothing prevents you from building a web of conceit between your modules. Object-
oriented programming is a way of making it nearly impossible to violate encapsulation.

In object-oriented programming, modules are organized into objects. These objects have
methods and properties. From an abstract perspective, methods are things an object does,
and properties are the characteristics of the object. From a programming perspective,
methods are functions and properties are variables. In an ideal object-oriented system,
each part is an object. And the running of the system consists of objects exchanging
objects with other objects using methods.

Each language takes a different approach to objects. PHP borrows from C++ and offers a
data type that may contain functions and variables under a single identifier. When PHP
was first conceived, even when version 3 was created, PHP wasn't intended as capable of
powering projects of 100,000 lines or more of code. Due to recent advances built into
PHP and Zend, this is a reality. But no matter the size of your project, building your

Core PHP Programming

IT-SC book 101

scripts with classes will certainly aid you in writing code that can be reused. This is a
good idea, especially if you wish to share your code.

The idea of objects is one of those mind-blowing concepts in computer science. It's hard
to grasp at first, but I can attest that once you get it, it becomes quite natural to think in its
terms. Never the less, you can ignore objects if you wish and return to this chapter later.
Some built-in functions return objects. You can find alternatives that don't, or you can
cast the objects as arrays, as described at the end of this chapter.

Defining a Class

When you declare a class, you are really making a template for the creation of objects.
You list all the variables the object should have and all the functions it will need.
Sometimes these are called properties and methods, respectively. Figure 6-1 displays the
form of a class declaration. Note that inside the curly braces you can only declare
variables with the var statement or declare functions. Listing 6.1 shows the definition of
a class with three properties and two methods.

Figure 6-1. Defining a class.

When you declare a property, you don't specify a data type. It is a variable like any other,
and it may contain an integer, a string, or even another object. Depending on the
situation, it might be a good idea to add a comment near the declaration of the property
that states its intended use and data type. When you declare a method, you do so just as
you would a function outside a class definition. Both methods and properties exist within
their own scope, or name space. That means you can safely create methods that have the
same name as functions declared outside of class definitions without conflicts. An
exception to this are built-in functions. For example, you cannot have a print method.

Aside from the variables passed as arguments, methods contain a special variable called
this. It stands for the particular instance of the class. You must use this to refer to
properties and other methods of the object. Some object-oriented languages assume an
unqualified variable that refers to a local property, but in PHP any variables referred to
within a method are simply variables local to that scope. Note the use of the this
variable in the constructor for the user class in Listing 6.1.

If you choose to declare a function within a class that has the same name as the class
itself, the function will be considered a constructor and will be executed immediately
upon creating an object from that class. Typically the constructor is used to initialize the
object's properties. Like any other function, the constructor may have parameters and

Core PHP Programming

IT-SC book 102

even default values. You can set up classes that allow you to create an object and set all
its properties in one statement. Unlike other languages, PHP does not allow for
destructors—functions that execute when the instance is deleted. However, if you choose
to use unset on an object, all the memory associated with that object will be freed. In
situations where you must execute some code when you finish using an object, create
your own shutdown function and remember to call it.

One powerful aspect of classes is inheritance, the idea that a class can extend the
functionality of another class. The new class will contain all the methods and properties
of the class it extends, plus any others it lists within its body. You may also override
methods and properties from the extended class. As shown in Figure 6–1, you extend a
class using the extends keyword.

Listing 6.1 Using Classes

Core PHP Programming

IT-SC book 103

Core PHP Programming

IT-SC book 104

Core PHP Programming

IT-SC book 105

One issue you might wonder about is whether and how constructors are inherited. While
they are inherited along with all other methods, they cease to have the property of being
called when an object is created from the class. If you require this functionality, you must
write it explicitly by calling the parent class's constructor within the child class's
constructor.

Creating an Object

Once you have defined a class, you use the new statement to create an instance of the
class, an object. If the definition of the class is the blueprint, the instance is the widget
rolling off the assembly line. The new statement expects the name of a class and returns a
new instance of that class. If a constructor with parameters has been declared, you may
also follow the class name with parameters inside parentheses. Look for the line in
Listing 6.1 that uses the new statement.

When you create an instance, memory is set aside for all the properties. Each instance has
its own set of properties. However, the methods are shared by all instances of that class.

As you recall, PHP allows you to create variables without explicitly declaring the type.
Objects are no different. You can create an object simply by using it in the proper
context. That is, using the -> operator on a variable will make it an object. You can create
as many properties as you wish on this new object just by referring to them.
Unfortunately, you will not be able to attach methods to an object this way.

Another way to create an object is to change the type of an array. When an array becomes
an object, all the elements indexed by strings become properties. Elements indexed by
numbers will remain with the variable but will be inaccessible. If the variable later
returns to being an array, the numbered elements will be accessible again. This is similar
to what happens when an object is cast as an array. All properties will be available as
array elements, but methods are not. When an object is created through casting or
inference, it is of type stdClass.

Accessing Properties and Methods

The properties of an instance are variables, just like any other PHP variable. To refer to
them, however, you must use the -> operator. You do not use a dollar sign in front of the
property name. For an example, refer to the line in Listing 6.1 that prints the name
property of the currentUser object.

Use of -> can be chained. If an object's property contains an object itself, you can use
two -> operators to get to a property on the inner object. The parser in PHP 3 was unable
to deal with complex expressions like this. In PHP 4 you are not limited this way. You

Core PHP Programming

IT-SC book 106

may even place these expressions within double-quoted strings. See Listing 6.2 for an
example of an object that contains an array of objects.

Unlike object-oriented languages, such as C++, PHP does not allow properties of classes
to be private. Any code may reach into the instance and change or read the values of
properties.

Accessing methods is similar to accessing properties. The -> operator is used to point to
the instance's method. This is shown in Listing 6.1 in the call to getLastLogin. Methods
behave exactly as functions defined outside classes.

If a class extends another, the properties and methods of all ancestor classes are available
in the child class, despite not being declared explicitly. As mentioned previously,
inheritance is very powerful. If you wish to access an inherited property, simply refer to it
as you would any other local property.

Three functions allow you to get information about a class as your script runs:
get_class, get_parent_class, and method_exists. These functions are described in
Chapter 8.

Listing 6.2 Objects Containing Other Objects

Core PHP Programming

IT-SC book 107

Core PHP Programming

IT-SC book 108

Core PHP Programming

IT-SC book 109

Chapter 7. I/O AND DISK ACCESS

HTTP Connections

Writing to the Browser

Output Buffering

Environment Variables

Getting Input from Forms

Cookies

File Uploads

PUT Method Requests

Reading and Writing to Files

Sessions

The include and require Functions

Ultimately, in order to be useful, a script must communicate with the outside world.
We've seen PHP scripts that send text to the browser and get some information from
functions like date. In this chapter we will examine all the ways a PHP script can
exchange data without using special interfaces. This includes reading from local disk
drives, connecting to remote machines on the Internet, and receiving form input.

PHP is similar to other programming environments—with one notable exception: User
input generally comes from HTML forms. The fields in forms are turned into variables.
You can't stop your script in the middle and ask the user a question. This situation
provides unique challenges. Each time a script runs, it is devoid of context. It is not aware
of what has gone on before unless you make it so.

HTTP Connections

It will be helpful to review how data travels between a browser and a Web server. I will
review it simply for purposes of illustration, but you may wish to refer to detailed
descriptions, such as those found on the W3C Web site
<http://www.w3.org/Protocols/>.

When you type a URL into the location box on your browser, the first task of the browser
is to break it up into important parts, the first of which is the protocol, HTTP. Next is the

Core PHP Programming

IT-SC book 110

name of the Web server, to which the browser makes a connection. The browser must tell
the Web server which document it wants, and it does so using the HTTP protocol. Before
completing the request, the browser may provide lines of extra information called
headers. These headers let the server know the brand of the browser, the type of
documents the browser can accept, perhaps even the URL of a referring page.

The Web server places these headers into environment variables to conform with the
Common Gateway Interface (CGI). When a PHP script begins, the environment variables
are converted into PHP variables. One of the most useful headers describes the brand and
version of the Web browser. This header is sent by the browser as User-agent. The Web
server creates an environment variable called HTTP_USER_AGENT that holds the value of
the header. PHP in turn creates a variable with this same name. You can refer to it using
$, just as for any other variable. If you are using Apache, you also have the option of
using the getallheaders function. It returns an array of all headers exchanged between
the browser and the server.

As a PHP script begins to execute, the HTTP exchange is in the stage where some
headers have been sent to the browser, but no content has. This is a window of
opportunity to send additional headers. You can send headers that cause the browser to
ask for authentication, headers that request that the browser cache a page, or headers that
redirect the browser to another URL. These are just some of the many HTTP headers you
can send using the header function. The most common tasks are described in the last
section of this book.

Headers are placed on a stack, which is a data structure that resembles a literal stack of
dinner plates. Imagine that each plate is a header. Each new plate is placed atop the
previous plate. When it's time to send the headers, they are removed from the top, one at
a time. This has the effect of sending the headers to the browser in the reverse of the
order in which they were added. Usually this has no effect. HTTP doesn't define any
special meaning to the order of headers. However, if you send the same header twice, the
later header may overwrite the value of the earlier. This means that if you try resending a
header, the browser most likely will ignore it. My advice is to write your scripts so they
send headers only when they are certain of the value.

Once any content is sent, the opportunity to send headers is lost. This includes any text
outside of PHP tags, even if it's just a linefeed. If you try to send a header after content is
sent, an error message is generated. You can use the headers_sent function to test
whether it's safe to add more headers to the stack, or too late. Cookies, described below,
use headers, and therefore are limited in the same way.

As a script runs and sends content, the output is buffered. There is a bit of overhead to
every network action, so a small amount of memory temporarily stores the information to
be sent out in batches. This buffer is owned by the Web server, so PHP does not have
control of it. However, you may request that the buffer be flushed—immediately sent to
the browser—by using the flush function. This is most useful in long scripts. Both
browsers and people have limits to how long they wait for a response, so you can let them

Core PHP Programming

IT-SC book 111

know you're making progress by flushing the output. I've written scripts that print a single
period and then flush the buffer each time through a long loop.

There are two ways a script may halt unexpectedly: when the script runs too long, and
when the user clicks the stop button. By default, scripts are limited to a number of
seconds specified in php.ini. This is usually 30 seconds, but you can change it. Look for
the max_execution_time directive. But 30 seconds is a good setting. In case you write a
script that could run forever, you want PHP to stop it. Otherwise a few errant scripts
could slow your server to a crawl. For the same reason, you usually want to allow users
to be able to abort a page request.

There are times when you do want a script to run to completion, and you can instruct
PHP to ignore time limits and user aborts. The set_time_limit function resets PHP's
timer. See Chapter 11 for a complete description and example. I've written some scripts
that run on their own once a night, perhaps doing a lot of work. These scripts I allow to
run for an hour or more. Likewise, ignore_user_abort tells PHP to continue even when
the user has clicked the stop button.

Instead of just letting a script run, you may wish it to halt, but deal with the reason it
halted with special code. To do this, you must first tell PHP to execute a special function
whenever a script ends. This is done with register_shutdown_function. This function
will execute regardless of why a script ended. It even executes when the script ends
normally. You can test for the reason with two functions: connection_aborted and
connection_timeout. These are described in Chapter 8.

Writing to the Browser

Three functions in PHP will send text to the browser: echo, print, and printf. Each
does the same thing: They take values and print them to the browser. The printf
function allows you to specify the format of the output rather than sending values as-is.
I've used print so far in my examples, mostly out of personal preference. I don't usually
need the formatting that printf provides. Many older PHP examples you will find on the
Web use echo because it existed in PHP2. I avoid it, because it behaves more like an
operator than a function. All three functions are discussed in Chapter 8.

It is important to remember everything you write is in the context of a Web browser.
Unless you take measures to make it otherwise, your output will be treated as HTML
text. If you send text that is HTML code, it will be decoded by the browser into its
intended form. I've been sending
 via print throughout the book so far, but Listing
7.1 is a more dramatic example of this concept.

Listing 7.1 Sending HTML with print

<?
 print("You're using ");
 print($HTTP_USER_AGENT);
 print(" to see this page.
\n");

Core PHP Programming

IT-SC book 112

?>

Of course, anything outside PHP tags is sent directly to the browser. This is undoubtedly
the fastest and least flexible way to send content. You might wonder at this point when
it's appropriate to use print and when you should place text outside PHP tags. There are
issues of efficiency and readability to worry about, but put them aside for now. The final
section of the book deals with this issue at length.

Output Buffering

As stated above, the Web server buffers content sent to the browser, and you can request
that the buffer be flushed. PHP4 introduced a new mechanism for buffering output you
can control completely. Four functions control PHP's output buffer: ob_start,
ob_end_flush, ob_end_clean, and ob_ get_contents. These are described in detail in
Chapter 8, complete with examples, but I would like to give an overview here.

When you call the ob_start function, anything you send to the browser is placed into a
buffer. This includes text outside of PHP tags. The Web server will not receive this
content until the ob_end_flush function is called. There are several powerful
applications of these functions. One is to avoid the problem associated with sending
headers. Because all headers are sent at once, before any content, you have to take care
when using the header function. This results in a script design where early parts of a
script are declared a "no output" zone, which can be annoying. If you use output
buffering, you can safely add headers to the stack where you wish, and delay sending
content until the last line of your script.

Another application of these functions is in building HTML tables. Imagine creating a
table filled with data from a database. You first print the opening tags for the table. You
execute a query and loop over the results being returned. If everything executes without
error, you print a closing table tag. If an error occurs within the loop, you may have to
abort, and the code that closes the table is never reached. This is bad because of the
behavior of Netscape Navigator: It won't display information inside an unclosed table.
The solution is to turn on output buffering before assembling the table. If assembly
completes successfully, you can flush the buffer. Otherwise you can use ob_end_clean,
which throws away anything in the buffer.

Environment Variables

PHP also makes environment variables available. These are the variables that are created
when you start a new shell. Some are the standard variables like PATH. Others are
variables defined by the CGI. Examples are REMOTE_ADDR and HTTP_USER_AGENT. These
are turned into PHP variables for your convenience. Listing 7.2 tells you which browser
someone is using to surf your page.

Similar to environment variables are the variables the PHP itself creates for you. The first
is GLOBALS, which is an associative array of every variable available to the script.

Core PHP Programming

IT-SC book 113

Exploring this array will reveal all the environment variables as well as a few other
variables. Similar to GLOBALS are HTTP_GET_VARS, HTTP_POST_VARS, and
HTTP_COOKIE_VARS. As their names suggest, these are associative arrays of the variables
created by the three methods the browser may use to send information to the server.

The combination of Web server and operating system will define the set of environment
variables. You can always write a script to dump the GLOBALS array to see which are
available to you. Alternatively, you can simply view the output of the phpinfo function.

Listing 7.2 Viewing Environment Variables

<?
 /*
 ** make a multiplication table
 */

 // start table
 print("<TABLE BORDER=\"1\">\n");

 for($Row=1; $Row=12; $Row++)
 {
 //start row
 print("<TR>\n");

 //do each column
 for($Column=1; $Column <= 12; $Column++)
 {
 print("<TD>");
 print($Row * $Column);
 print("</TD>");
 }

 //end row
 print("</TR>\n");
 }

 //end table
 print("</TABLE>\n");
?>

Getting Input from Forms

Sending text to the browser is easy to understand. Getting input from forms is a little
tricky. HTML offers several ways to get information from the user via forms. There are
text fields, text areas, selection lists, and radio buttons among others. Each of these
becomes a string of text offered to the Web server when the user clicks the submit button.

When a form is submitted, PHP turns each form field into a variable. The variables
created this way are like any other variable. You may even change their values. They are
created as if you had written the PHP code to put values into the variables. This means
that if you put two form variables on a page with the same name, the second one may

Core PHP Programming

IT-SC book 114

overwrite the value of the first. Other CGI solutions might create an array in this
situation. If you wish to pass arrays through form fields, you can define form fields with
square brackets. This issue is dealt with in more detail in later chapters.

Listing 7.3 is an example of using variables created from form fields. The script expects a
variable named inputColor. The first time this page is viewed, inputColor will be
empty, so the script sets it to be six Fs, the RGB code for pure white. On subsequent calls
to the page, the value of the text box will be used to set the background color of the page.
Notice that inputColor is also used in the INPUT field to prepopulate it. This way, each
time you submit the form, you remember what you entered. As an aside, you should also
take note of the technique used here, in which a page calls itself.

Listing 7.3 Getting Form Input

<?
 print("<HTML>\n");
 print("<HEAD>\n");
 print("<TITLE>Listing 7.3</TITLE>\n");
 print("</HEAD>\n");

 /*
 ** if here for the first time
 ** use white for bgcolor
 */
 if($inputColor == "")
 {
 $inputColor = "FFFFFF";
 }

 /*
 ** open body with background color
 */
 print("<BODY BGCOLOR=\"#$inputColor\">\n");

 /*
 ** start form, action is this page itself
 */
 print("<FORM ACTION=\"$PHP_SELF\" METHOD=\"post\">\n");

 /*
 ** get color
 */
 print("Enter HTML color: ");
 print("<INPUT ");
 print("TYPE=\"text\" ");
 print("NAME=\"inputColor\" ");
 print("VALUE=\"$inputColor\">\n");

 /*
 ** show submit button
 */
 print("<INPUT ");
 print("TYPE=\"submit\" ");
 print("NAME=\"Submit_Button\" ");

Core PHP Programming

IT-SC book 115

 print("VALUE=\"Try It\">\n");

 print("</FORM>\n");

 print("</BODY>\n");
 print("</HTML>\n");
?>

Cookies

Cookies are small strings of data created by a Web server but stored on the client. In
addition to having names and values, cookies have an expiration time. Some are set to
last for only a matter of minutes. Others persist for months. This allows sites to recognize
you without requiring a password when you return. To learn more about cookies, you
may wish to visit Netscape's site
<http://developer.netscape.com/docs/manuals/communicator/jsguide4/cookies.htm
>.

Using cookies with PHP is almost as easy as using form fields. Any cookies passed from
the browser to the server are converted automatically into variables. In addition, cookies
are stored in the HTTP_COOKIE_VARS array.

If you wish to send a cookie, you use the setcookie function, described in Chapter 8. A
cookie is sent to the browser as a header. Just like other headers, you must set cookies
before sending any content. When you do set a cookie, the browser may refuse to accept
it. Many people turn off cookies. So, you cannot count on the cookie being present the
next time a user requests a page.

Setting a cookie does not create a variable—not immediately. When setting a cookie, you
are asking the browser to store information that it will return when it next requests a
page. Subsequent page requests will cause the cookie to be created as a variable for your
use. If you write a script that requires the cookie variable always be set, set it
immediately after sending the cookie.

Cookies are a sensitive topic. Some people view them as intrusive. You are asking
someone to store information on their computer, although each cookie is limited in size.
My advice with cookies is to keep them minimal. In most cases it is practical to use a
single cookie for your entire site. If you can identify that user with a unique ID, you can
use that ID to look up information you know about them, such as preferences. Keep in
mind that each page load causes the browser to send the cookie. Imagine an extreme case
where you have created ten 1K cookies. That's 10K of data the browser must send with
each page request.

File Uploads

A file upload is a special case of getting form input. Half of the story is putting together
the correct HTML. File uploads are specified in RFC 1867. They are supported by
Netscape Navigator 2 and above, as well as Internet Explorer 4 and above. Placing an

Core PHP Programming

IT-SC book 116

input tag inside an HTML form with the type attribute set to file causes a text box and a
button for browsing the local file system to appear on the Web page. Browsers that do not
support uploads will likely render this as a text box, so it's best to present uploading
forms only to capable browsers. The forms must use the post method to allow for
uploads, and they must also contain the enctype attribute with a value of
multipart/form-data. A hidden form variable, MAX_FILE_SIZE, must precede the file
input tag. Its value is the maximum file size in bytes to be accepted.

When the form is submitted, PHP will detect the file upload. The file will be placed in a
temporary directory on the server, such as /var/tmp. Several variables will be created
based on the name of the file field. A variable with the same name as the file field will
contain the complete path to the file in the local file system. A variable with _name
appended to the file field name will contain the original file name as provided by the
browser. A variable with _size appended to the file field name will contain the size of
the file in bytes. Finally, a variable with _type appended to the file field name will
contain the MIME type of the file, if it was offered by the browser.

Listing 7.4 File Upload

<?
 //check for file upload
 if(isset($UploadedFile))
 {
 unlink($UploadedFile);
 print("Local File: $UploadedFile
\n");
 print("Name: $UploadedFile_name
\n");
 print("Size: $UploadedFile_size
\n");
 print("Type: $UploadedFile_type
\n");
 print("<HR>\n");
 }
?>
<FORM ENCTYPE="multipart/form-data"
 ACTION="<? $PHP_SELF ?>" METHOD="post">
<INPUT TYPE="hidden" name="MAX_FILE_SIZE" value="4096">
<INPUT NAME="UploadedFile" TYPE="file">
<INPUT TYPE="submit" VALUE="Upload">

If you plan on using the file later, move the new file into a permanent spot. If you do not,
PHP will delete the file when it finishes executing the current page request. Listing 7.4 is
an example script that accepts uploads and immediately deletes them.

File uploads are limited in size by a directive in php.ini, upload_ max_filesize. It
defaults to two megabytes. If a file exceeds this limit, your script will execute as if no file
were uploaded. A warning will be generated, as well.

Like other form fields, the upload form field is treated like setting the value of a variable.
If you place square brackets at the end of the field name, an array will be created. As you
would expect, the size and type values will be placed in similarly named arrays. You can
take advantage of this to allow for multiple file upload fields.

Core PHP Programming

IT-SC book 117

PUT Method Requests

The PUT method is an HTTP request for a file to be placed on the remote server. It's like
a file upload that doesn't come from a form and tells you where to place the file in your
document tree. You might guess that this is a very dangerous thing to allow for
anonymous users. It's especially dangerous when users could be uploading PHP scripts.

Not all browsers support PUT requests, and neither do all servers. Netscape Composer
and the W3C's Amaya browsers reportedly allow PUT requests. Apache for UNIX will
accept them if configured to do so. To configure Apache to allow PUT requests, you use
the Script directive inside a configuration file. See the Apache site for more information
<http://www.apache. org/docs/mod/mod_actions.html#script>. You could tell
Apache to run all PUT requests through a PHP script with a line like Script PUT
/handle_put.php in httpd.conf.

The PHP_UPLOADED_FILE_NAME variable will be set with the path to the uploaded file,
which will be in a temporary directory. Just as with file uploads using the POST method,
this file will be automatically deleted when your script ends if you don't move it. If you
need to know the requested URI, look in the REQUEST_URI variable.

Reading and Writing to Files

Communication with files follows the pattern of opening a stream to a file, reading from
or writing to it, and then closing the stream. When you open a stream, you get an integer
that refers to the open stream. Each time you want to read from or write to the file, you
use this stream identifier. Internally PHP uses this integer to refer to all the necessary
information for communicating with the file.

To open a file on the local file system, you use the fopen function. It takes a name of a
file and a string that defines the mode of communication. This may be r for read-only or
w for write-only, among other modes. It is also possible to specify an Internet address by
starting the file name with http:// or ftp:// and following it with a full path including
a host name. The file functions are fully defined in Chapter 8.

Two other functions create file streams. You may open a pipe with the popen function or
you may open a socket connection with the fsockopen function. If you have much
experience with UNIX, you will recognize pipes as temporary streams of data between
executing programs. A common Perl method for sending mail is to open a pipe to
sendmail, the program for sending mail across the Internet. Because PHP has so many
built-in functions, it is rarely necessary to open pipes, but it's nice to know it's an option.

You can open a file stream that communicates through TCP/IP with fsockopen. This
function takes a hostname and a port and attempts to establish a connection. It is
described in Chapter 8, along with the rest of the I/O functions.

Core PHP Programming

IT-SC book 118

Once you have opened a file stream, you can read or write to it using commands like
fgets, and fputs. Listing 7.5 demonstrates this. Notice that a while loop is used to get
each line from the example file. It tests for the end of the file with the feof function.
When you are finished with a file, end of file or not, you call the fclose function. PHP
will clean up the temporary memory it sets aside for tracking an open file.

Keep in mind that PHP scripts execute as a separate user. Frequently this is the "nobody"
user. This user probably won't have permission to create files in your Web directories.
Take care with allowing your scripts to write in any directory able to be served to remote
users. In the simple case where you are saving something like guest book information,
you will be allowing anyone to view the entire file. A more serious case occurs when
those data files are executed by PHP, which allows remote users to write PHP that could
harm your system or steal data. The solution is to place these files outside the Web
document tree.

Listing 7.5 Writing and Reading from a File

<?
 /*
 ** open file for writing
 */
 $filename = "data.txt";
 if(!($myFile = fopen($filename, "w")))
 {
 print("Error: ");
 print("'$filename' could not be created\n");
 exit;
 }

 //write some lines to the file
 fputs($myFile, "Save this line for later\n");
 fputs($myFile, "Save this line too\n");

 //close the file
 fclose($myFile);

 /*
 ** open file for reading
 */
 if(!($myFile = fopen($filename, "r")))
 {
 print("Error:");
 print("'$filename' could not be read\n");
 exit;
 }

 while(!feof($myFile))
 {
 //read a line from the file
 $myLine = fgets($myFile, 255);
 print("$myLine
\n");
 }

Core PHP Programming

IT-SC book 119

 //close the file
 fclose($myFile);
?>

Sessions

If you build a Web application, it's likely you will have information to associate with
each user. You may wish to remember the user's name from page to page. You may be
collecting information on successive forms. You could attempt to pass the growing body
of information from page to page inside hidden form fields, but this is impractical. An
elegant solution is to use the idea of a session. Each visitor is assigned a unique identifier
with which you reference stored information, perhaps in a file or in a database.

In the past, PHP developers were required to create their own code for handling sessions,
but Sascha Schumann and Andrei Zmievski added new functions for session handling to
PHP 4. The concept is as follows. You register global variables with the session handler.
The values of these variables are saved in files on the server. When the user requests
another page, these variables are restored to the global scope.

The session identifier is a long series of numbers and letters and is sent to the user as a
cookie. It is possible that the user will reject the cookie, so a constant is created that
allows you to send the session identifier in a URL. The constant is SID and contains a full
GET method declaration, suitable for attaching to the end of a URL.

Consider Listing 7.6, a simple script that tracks a user's name and the number of times
they've visited the page. The first step is to call the session_start function. This sends
the cookie to the browser, and therefore it must be called before sending any content.
Next, two variables are registered with the session, Name and Count. The former will be
used to track the user's name, and the latter to count the number of times the user
redisplays the page. Once registered, the values of these variables will be preserved in the
session. Before starting the HTML document, the example script sets Name with input
from a form submission if present, and then it increments the page counter.

The first bit of content the page provides is diagnostic information about the session. The
session name is set inside php.ini, along with several other session parameters. It is used
to name the cookie holding the session identifier. The identifier itself is a long string of
letters and numbers, randomly generated. By default, PHP stores sessions in /tmp using a
built-in handler called files. This directory isn't standard on Windows, and if it is not
present, sessions will not work correctly.

It's likely that other handlers will be added for storing sessions in relational databases, but
you do have the option of creating your own handler in PHP code using the
session_set_save_handler function. You can read about how you'd do that in Chapter
17. Sessions are encoded using serialization, a method for compacting variables into a
form suitable for storing as text strings. If you examine the files saved in /tmp, you will
find they match the strings returned by session_encode.

Core PHP Programming

IT-SC book 120

Listing 7.6 Using Sessions

<?
 //Start the session.
 //This must be called before
 //sending any content.
 session_start();

 //Register a couple of variables
 session_register("Name");
 session_register("Count");

 //Set variable based on form input
 if($inputName != "")
 {
 $Name = $inputName;
 }

 //Increment counter with each page load
 $Count++;
?>
<HTML>
<HEAD>
<TITLE>Listing 7.6</TITLE>
</HEAD>
<BODY>
<?
 //print diagnostic info
 print("Diagnostic Information
\n");
 print("Session Name: " . session_name() . "
\n");
 print("Session ID: " . session_id() . "
\n");
 print("Session Module Name: " . session_module_name() . "
\n");
 print("Session Save Path: " . session_save_path() . "
\n");
 print("Encoded Session:" . session_encode() . "
\n");

 print("<HR>\n");

 if($Name != "")
 {
 print("Hello, $Name!
\n");
 }

 print("You have viewed this page $Count times!
\n");

 //show form for getting name
 print("<FORM ACTION=\"$SCRIPT_NAME?".SID."\" METHOD=\"POST\">");
 print("<INPUT TYPE=\"text\" NAME=\"inputName\"
VALUE=\"$Name\">
\n");
 print("<INPUT TYPE=\"submit\" VALUE=\"Change Name\">
\n");
 print("</FORM>");

 //use a link to reload this page
 print("Reload
\n");
?>
</BODY>

Core PHP Programming

IT-SC book 121

</HTML>

As stated earlier, session identifiers are sent by cookies, but a browser may refuse them.
As a backup, you may use the SID constant. It will contain a string consisting of the
session name, an equal sign, and the session identifier. This is suitable for placing in a
URL, as I have done in both the form action and the anchor tag below it. If the browser
returns a session cookie to the script, the SID constant will be empty.

All the session functions are described in Chapter 8.

The include and require Functions

The include and require functions take the path to a file. The file is parsed as if it were
a stand-alone PHP script. This is similar to the include directive in C and the require
directive in Perl. There is a subtle difference between the two functions. When the
require function is processed, it is replaced with the file it points to. The include
function acts more like a function call.

The difference is most dramatic inside a loop. Imagine having three files you wanted to
execute one after the other. You could put an include inside a for loop, and if the files
were named something like include1.php, include2.php, and include3.php, you
would have no problem. You could just build the name based on a counter variable.

If you used require, however, you would execute the first file three times. That's
because on the first time through the loop, the call to require would be replaced with the
contents of the file. As I said, the difference is subtle but can be very dramatic.

Listings 7.7 and 7.8 show one possible use of the include function. Here we revisit an
example from the chapter on arrays. I've taken the definition of the array from the main
file and put it into its own file. All the code that matches ways to refer to months with a
preferred output form is not necessarily interesting to the main script. It is enough to
know that we've included the translation array. This makes the script in Listing 7.8 a lot
easier to understand.

This strategy of modularization will enhance the readability of your code. It gives the
reader a high-level view. If more detail is needed, it takes a few clicks to open the
included file. But more than enhancing readability, coding in this way tends to help you
write reusable code. Today you may use the translation array for a catalog request form,
but in a week you may need it for displaying data from a legacy database. Instead of
cutting out the array definition, you can simply copy the file.

Listing 7.7 Included File

<?
 /*
 ** Build array for referencing months
 */
 $monthName = array(

Core PHP Programming

IT-SC book 122

 1=>"January", "February", "March",
 "April", "May", "June",
 "July", "August", "September",
 "October", "November", "December",

 "Jan"=>"January", "Feb"=>"February",
 "Mar"=>"March", "Apr"=>"April",
 "May"=>"May", "Jun"=>"June",
 "Jul"=>"July", "Aug"=>"August",
 "Sep"=>"September", "Oct"=>"October",
 "Nov"=>"November", "Dec"=>"December",

 "January"=>"January", "February"=>"February",
 "March"=>"March", "April"=>"April",
 "May"=>"May", "June"=>"June",
 "July"=>"July", "August"=>"August",
 "September"=>"September", "October"=>"October",
 "November"=>"November", "December"=>"December"
);
?>

Listing 7.8 Including a File

<?
 /*
 ** Get monthName array
 */
 include("7-7.php");

 print("Month 5 is " . $monthName[5] . "
\n");
 print("Month Aug is " . $monthName["Aug"] . "
\n");
 print("Month June is " . $monthName["June"] . "
\");
?>

Core PHP Programming

IT-SC book 123

Part II: FUNCTIONAL REFERENCE

The chapters in this section of the book, Chapters 8 through 14, are a functional
reference. They describe how each PHP function works: what arguments are expected,
what value is returned, and how they ought to be used. The functions are grouped
generally by what they do.

Chapter 8 is concerned with I/O—input and output. Input functions send and receive
information to the browser, and output functions read and write to the file system or to
the network. Chapter 9 is all about manipulating data. There are functions for handling
arrays, functions for searching for information inside strings, and functions for encoding
and decoding information. Chapter 10 is concerned with mathematics. Aside from the
standard mathematical functions you expect, PHP offers some unique features for
handling arbitrarily large or small numbers. Chapter 11 is a bit of a catch-all chapter that
deals with time-related functions and functions that affect the configuration of PHP.
There are functions for normal dates and times, but there are also functions for working
with obscure calendars. In addition, there are plenty of functions for changing the
operation of PHP itself. Chapter 12 is a short but important chapter on graphics
functions. The GD library allows you to create and manipulate images on the fly.
Chapter 13 is a long chapter about all the different database functions. If PHP can boast
of one great achievement, it is certainly support for many databases. In this chapter, you
will find native support for popular commercial databases such as Oracle and Sybase, as
well as support for free technologies like MySQL. Chapter 14 contains miscellaneous
functions, most of which interface with specialized libraries, such as functions for
communicating with LDAP and IMAP servers.

Throughout this section I've used a standard format for showing how a function works.
The form I've chosen is compact yet clear. Each description begins with a prototype for
the function. This tells you what type of data the function returns and what type of data is
expected to be passed. When a function returns nothing, it will not be preceded with a
datatype. Likewise, if a function takes no arguments, the parentheses following the
function's name will be empty.

Some functions are part of PHP's basic functions and are always available. Others are
part of an extension which must be loaded through special files, or added when you
compile PHP. Without doing either of these things, you will get an error reporting an
unrecognized function. There are more extensions than I cover here. Some may have
been written after this text went to press. Others are very specialized.

A lot of effort went into checking for bugs in the functional reference, but it's possible
some will slip through. As I did with the first edition, I will make an errata page available
on my Web site http://www. leonatkinson. com. If an example doesn't work as you
expect, check there first.

Chapter 8. I/O FUNCTIONS

Core PHP Programming

IT-SC book 124

Sending Text to the Browser

Output Buffering

Files

Compressed Files

POSIX

Debugging

Session Handling

Shell Commands

HTTP Headers

Network I/O

FTP

No useful program can be useful in a vacuum. The functions described in this chapter are
concerned with I/O (Input and Output), whether it's to the browser, files, or across a
network. Some of them perform very specialized duties such as manipulating files.
Others are simply for debugging or reporting information about the environment.

If you are experienced in traditional application development, you may be challenged by
the unique characteristics of a stateless operating environment. Your script can't sit in a
loop and get input from the user until the quit button is clicked. Although there are ways
to force the preservation of state—that is, a collection of variables for each user—I
encourage you to work within PHP's world. You may come to find what at first were
limitations are refreshing opportunities.

Sending Text to the Browser

Any text outside PHP tags is automatically sent to the browser. This is as you would
expect. Chapter 18, "Network" deals with the decision to send text via a PHP function.
PHP offers three functions that simply send text to the browser: echo , print , and
printf .

The echo string first, string second, . . ., string last

The echo function sends any number of parameters, separated by commas, to the
browser. Each will be converted to a string and printed with no space between them.
Unlike most other PHP functions, the echo function does not require parentheses. In fact,
echo is more of a statement than a function.

Core PHP Programming

IT-SC book 125

<?
 echo "First string", 2, 3.4, "last string";
?>

flush()

As text is sent to the browser via functions like print and echo, it may be stored in a
memory buffer and written out only when the buffer fills. The flush function attempts to
force the buffer to be dumped to the browser immediately. Since the Web server
ultimately controls communication with the browser, the flush may not be effective.

If your script takes a long time to execute, it's a good idea to output a status message and
flush the buffer. This keeps the user from clicking away.

<?
 //simulate long calculation
 //flush output buffer with each step
 for($n=0; $n5; $n++)
 {
 print("Calculating...
");
 flush();
 sleep(3);
 }
 print("Finished!
");
?>

print(string output)

The output argument of print is sent to the browser.

<?
 print("hello world!BR>\n");
?>

printf(string format, . . .)

The printf function converts and outputs arguments to the browser based on a format
string. The format string contains codes, listed in Table 8. 1, for different data types.
These codes begin with a percentage sign, %, and end with a letter that determines the
type of data. The codes match up with a list of values that follow the format string in the
argument list. Any text outside these codes will be sent unchanged to the browser.

Core PHP Programming

IT-SC book 126

You also have the option of placing characters between the % and the type specifier that
control how the data is formatted. Immediately following the % you may place any
number of flags. These flags control padding and alignment. They are listed in Table 8.2.

After any flags, you may specify a minimum field length. The converted output will be
printed in a field at least this wide, longer if necessary. If the output is shorter than the
minimum width, it will be padded with a padding character, a space by default. The
padding will normally be placed to the left but, if the - flag is used, it will be placed to the
right.

Next, you may specify a precision. It must start with a period to separate it from the
minimum field length. For strings, the precision is taken to mean a maximum field
length. For doubles, the precision is the number of digits that appear after the decimal
point. Precision has no meaning for integers.

Table 8.1. printf Type Specifiers

Type
Specifier Description

d Integer, decimal notation.
o Integer, octal notation.

x, X Integer, hexadecimal notation. "x" will use lowercase letters; "X" will use
uppercase letters.

b Integer, binary notation.

c Character specified by integer ASCII code. See Appendix B for a complete
list of ASCII codes.

s String.
f Double.
e Double, using scientific notation such as 1.2e3.
% Print a percentage sign. This does not require a matching argument.

<?
 printf("%-10s %5d %05.5f
\n", "a string", 10, 3.14);
?>

Output Buffering

The output buffering commands add a layer of buffering controlled by PHP in addition to
whatever buffering the Web server uses. Some performance penalty may be incurred by
adding another layer of buffering, but you may decide the greater control you have is
worth the price.

When ob_start is called, all output by functions such as print and echo are held back
in a buffer, a large area of memory. The contents of the buffer may be sent to the browser
using ob_end_flush, or it may be thrown away using ob_end_clean. As you recall from
Chapter 7, "I/O and Disk Access," headers cannot be sent after the first content is sent.

Core PHP Programming

IT-SC book 127

Therefore, these functions allow you to avoid errors created by sending headers after
content.

ob_start()

The ob_start function begins output buffering. All text sent by print and similar
functions is saved in a buffer. It will not be sent to the browser until ob_end_flush is
called. The buffer will also be flushed when the script ends.

<?
 //begin output buffering
 ob_start();
?>
<HTML>
<HEAD>
<TITLE>ob_start</TITLE>
</HEAD>
<BODY>
<?
 print("At this point ");
 print(strlen(ob_get_contents()));
 print("characters are in the buffer.
\n");
?>
</BODY>
</HTML>
<?
 //add a test header
 header("X-note: COREPHP");

 //dump the contents
 ob_end_flush();
?>

ob_end_flush()

The ob_end_flush function halts output buffering and sends the contents of the buffer to
the browser.

ob_end_clean()

The ob_end_clean function halts output buffering and eliminates the contents of the
buffer. Nothing is sent to the browser.

string ob_get_contents()

The ob_get_contents function returns the contents of the output buffer.

Files

Core PHP Programming

IT-SC book 128

These functions manipulate or return information about files. Many of them are wrappers
for the commands you execute in a UNIX or Windows command shell.

When the functions in this section call for a filename or a directory, you may name a file
in the same directory as the script itself. You may also use a full or relative path. The .
and .. directories are valid in both UNIX and Windows. You may also specify drive
letters on a Windows machine. Backslashes can delimit directories and filenames when
running under Windows, but forward slashes are interpreted correctly, so you stick with
them.

boolean chdir(string directory)

When a PHP script begins to execute, its default path is the path to the script itself. That
is, if the fully qualified path to the script were /users/leon/
public_html/somescript.php, then all relative paths would work off
/users/leon/public_html/. You may change this default path with the chdir
function. It returns TRUE if the change was made, FALSE if the script was unable to change
directories.

<?
 if(chdir("/tmp"))
 {
 print("current directory is /tmp");
 }
 else
 {
 print("unable to change to /tmp");
 }
?>

boolean chgrp(string filename, string group)

The chgrp function invokes the UNIX idea of changing the group to which a file
belongs. If successful, TRUE is returned. If the group cannot be changed, FALSE is
returned. Under Windows this function always returns TRUE and leaves the file
unchanged. Two similar functions are chmod and chown. If you want to find the group to
which a file is currently assigned, use the filegroup function.

You may wish to refer to the UNIX man page for the shell command of the same name.

<?
 if(chgrp("log.txt", "editors"))
 {
 print("log.txt changed to editors group");
 }
 else

Core PHP Programming

IT-SC book 129

 {
 print("log.txt not changed to editors group");
 }
?>

boolean chmod(string filename, integer mode)

The chmod function sets the UNIX permissions for the given file based on the mode
supplied. The mode is interpreted like the UNIX shell command, except that it is not
converted to octal. Unless prefixed with a 0, mode is treated as a decimal number.

Under UNIX, three octal numbers specify access privileges for owner, group, and others,
respectively. The modes may be added in order to combine privileges. For example, to
make a file readable and executable, use mode 5. Refer to Table 8.3. You also may wish
to refer to the man page for chmod on your UNIX system.

Under Windows, chmod has limited use. The modes described in Table 8.4 are defined by
Microsoft. They may be combined with the bitwise-or (|), but in practice only write
permission has any meaning. All files in Windows are readable and the file extension
determines whether the file will execute.

Table 8.3. File Modes

Mode Description
0 No access
1 Execute
2 Write
4 Read

Table 8.4. Windows File Modes

Mode Description
0000400 read permission, owner
0000200 write permission, owner
0000100 execute/search permission, owner

This function is part of a group of three functions that change similar information about
files. The other two are chgrp and chown. The fileperms function will tell you the file's
current modes.

<?
 /*
 ** allow everyone to read and write to file
 ** when running PHP under UNIX
 */

Core PHP Programming

IT-SC book 130

 if(chmod("data.txt", 0666))
 {
 print("mode change successful");
 }
 else
 {
 print("mode change unsuccessful");
 }
?>

boolean chown(string filename, string user)

The owner of the named file is changed by the chown function. If successful, TRUE is
returned. Otherwise the function returns FALSE. Under Windows this function does
nothing and always returns TRUE. This function is similar to chgrp and chmod. If you
need to know the current owner of a file, use the fileowner function.

<?
 /*
 ** change owner to leon
 */
 if(chown("data.txt","leon"))
 {
 print("owner changed");
 }
 else
 {
 print("couldn't change owner");
 }
?>

closedir(integer directory_handle)

The closedir function closes a directory after it has been opened with the opendir
function. PHP will close a directory connection for you when the script ends, so use of
this function is not strictly necessary.

Figure 8-1. closedir.

Core PHP Programming

IT-SC book 131

Core PHP Programming

IT-SC book 132

boolean copy(string source, string destination)

The copy function copies a file specified by the source argument into the file specified by
the destination argument. This results in two separate and identical files. A similar
function is link, which is described below.

<?
 if(copy("data.txt", "/tmp/data.txt"))
 {
 print("data.txt copied to /tmp");
 }
 else
 {
 print("data.txt could not be copied");
 }
?>

float diskfreespace(string path)

The diskfreespace function returns the number of free bytes for the given path.

<?
 print(diskfreespace("/"));
 print(" bytes free");
?>

object dir(string directory)

The dir function creates a directory object to be used as an alternative to the group of
functions that includes opendir and closedir. The returned object has two properties:
handle and path. The handle property can be used with other directory functions such as
readdir as if it were created with opendir. The path property is the string used to create
the directory object. The object has three methods: read, rewind, and close. These
behave exactly like readdir, rewinddir, and closedir.

boolean fclose(integer file_handle)

The fclose function closes an open file. When a file is opened, you are given an integer
that represents a file handle. This file handle is used to close the file when you are
finished using it. The functions used to open files are: fopen and fsockopen. To close a
pipe, use pclose.

<?

Core PHP Programming

IT-SC book 133

 // open file for reading
 $myFile = fopen("data.txt","r");

 // make sure the open was successful
 if(!($myFile))
 {
 print("file could not be opened");
 exit;
 }

 while(!feof($myFile))
 {
 // read a line from the file
 $myLine = fgets($myFile, 255);
 print("$myLine
\n");
 }

 // close the file
 fclose($myFile);
?>

boolean feof(integer file_handle)

As you read from a file, PHP keeps a pointer to the last place in the file you read. The
feof function returns TRUE if you are at the end of the file. It is most often used in the
conditional part of a while loop where a file is being read from start to finish. See the
description of fclose, above, for an example of use. If you need to know the exact
position you are reading from, use the ftell function.

string fgetc(integer file_handle)

The fgetc function returns a single character from a file. It expects a file handle as
returned by fopen, fsockopen, or popen. Some other functions for reading from a file
are: fgetcsv, fgets, fgetss, fread, gzgetc.

<?
 // open file and print each character
 if($myFile = fopen("data.txt", "r"))
 {
 while(!feof($myFile))
 {
 $myCharacter = fgetc($myFile);
 print($myCharacter);
 }

 fclose($myFile);
 }
?>

Core PHP Programming

IT-SC book 134

array fgetcsv(integer file_handle, integer length, string
separator)

The fgetcsv function is used for reading comma-separated data from a file. It requires a
valid file handle as returned by fopen, fsockopen, or popen. It also requires a maximum
line length. The optional separator argument specifies the character to separate fields. If
left out, a comma is used. Fields may be surrounded by double quotes, which allows
embedding of commas and line breaks in fields.

Figure 8-2. fgetcsv.

Core PHP Programming

IT-SC book 135

string fgets(integer file_handle, integer length)

Core PHP Programming

IT-SC book 136

The fgets function returns a string it reads from a file specified by the file handle, which
must have been created with fopen, fsockopen, or popen. It will attempt to read as many
characters as specified by the length argument less one. A linebreak character is treated
as a stopping point as is the end of the file. It will be included in the returned string.

Some other functions for reading from a file are: fgetc, fgetcsv, fgetss, fread,
gzgets.

<?
 // open file and print each line
 if($myFile = fopen("data.txt", "r"))
 {
 while(!feof($myFile))
 {
 $myLine = fgets($myFile, 255);
 print($myLine);
 }
 fclose($myFile);
 }
?>

string fgetss(integer file_handle, integer length, string ignore)

The fgetss function is in all respects identical to fgets except that it attempts to strip
any HTML or PHP code before returning a string. The optional ignore argument
specifies tags that are allowed to pass through unchanged. Note that if you wish to ignore
a tag, you need only specify theopening form. Some other functions for reading from a
file are: fgetc, fgetcsv, fgetss, fread, gzgets. If you wish to preserve HTML
butprevent it from being interpreted, you can use the htmlentities function.

<?
 // open file and print each line,
 //stripping HTML except for anchor tags
 if($myFile = fopen("index.html", "r"))
 {
 while(!feof($myFile))
 {
 $myLine = fgetss($myFile, 1024, "<A>);
 print($myLine);
 }
 fclose($myFile);
 }
?>

array file(string filename)

Core PHP Programming

IT-SC book 137

The file function returns an entire file as an array. Each line of the file is a separate
element of the array, starting at zero. If it would be more convenient to work with the file
as one string, use the implode function, as I have in the following example. If you are
planning on sending a file directly to the browser, use readfile instead.

<?
 // open file
 $myFile = file("data.txt");

 //fold array elements into one string
 $myFile = implode($myFile, "");

 //print entire file
 print($myFile);
?>

boolean file_exists(string filename)

The file_exists function returns TRUE if the specified file exists and FALSE if it does
not. This function is a nice way to avoid errors with the other file functions. The example
below tests that a file exists before trying to send it to the browser.

<?
 $filename = "data.txt";

 //if the file exists, print it
 if(file_exists($filename))
 {
 readfile($filename);
 }
 else
 {
 print("'$filename' does not exist");
 }
?>

integer fileatime(string filename)

The fileatime function returns the last access time for a file in standard timestamp
format, the number of seconds since January 1, 1970. False is returned if there is an error.
A file is considered accessed if it is created, written, or read. Unlike some other file-
related functions, fileatime operates identically on Windows and UNIX.

Two other functions for getting timestamps associated with files are filectime and
filemtime.

Core PHP Programming

IT-SC book 138

<?
 $LastAccess = fileatime("data.txt");
 print("Last access was ");
 print(date("l F d, Y", $LastAccess));
?>

integer filectime(string filename)

When running on UNIX, the filectime function returns the last time a file was changed
in standard timestamp format, the number of seconds since January 1, 1970. A file is
considered changed if it is created or written to or its permissions have been changed.
When running on Windows, filectime returns the time the file was created. If an error
occurs, FALSE is returned.

Two other functions for getting timestamps associated with files are fileatime and
filemtime.

<?
 $LastChange = filectime("data.txt");
 print("Last change was ");
 print(date("l F d, Y", $LastChange));
?>

integer filegroup(string filename)

The filegroup function returns the group identifier for the given file, or FALSE when
there is an error. This function always returns FALSE under Windows. Other functions
that return information about a file are file-inode, fileowner, and fileperms. To
change a file's group, use chgrp.

<?
 print(filegroup("data.txt"));
?>

integer fileinode(string filename)

The fileinode function returns the inode of the given file, or FALSE on error. This
function always returns FALSE under Windows. Similar functions are filegroup,
fileowner, and fileperms.

<?

Core PHP Programming

IT-SC book 139

 print(fileinode(data.txt));
?>

integer filemtime(string filename)

The filemtime function returns the last time a file was modified in standard timestamp
format, the number of seconds since January 1, 1970. FALSE is returned if there is an
error. A file is considered modified when it is created or its contents change. Operation of
this function is identical under any operating system. There are two other functions
related to timestamps on files: fileatime and filectime.

<?
 $LastMod = filemtime("data.txt");
 print("Last modification was ");
 print(date("l F d, Y", $LastMod));
?>

integer fileowner(string filename)

The fileowner function returns the user identifier of the owner, or false if there is an
error. This function always returns FALSE under Windows. If you need to change the
owner of a file, use the chown function. Similar functions for getting information about a
file are filegroup, fileinode and fileperms.

<?
 print(fileowner("data.txt"));
?>

integer fileperms(string filename)

The fileperms function returns the permission number for the given file, or false when
there is an error. If you are using UNIX, you may wish to refer to the man page for the
stat system function. You may be surprised to find that printing this number in octal, as is
customary, produces six digits. The first three give you information about the file that
don't actually refer to read/write/execute permissions. You may wish to filter that
information out, as I have in the example, by performing a logical AND operation. If you
need to change the mode of a file, use the chmod function.

<?
 printf("%o", (fileperms("data.txt") & 0777));
?>

Core PHP Programming

IT-SC book 140

integer filesize(string filename)

The filesize function returns the size of the given file in bytes.

<?
 print(filesize("data.txt"));
?>

string filetype(string filename)

The filetype function returns the type of the given file as a descriptive string. Possible
values are block, char, dir, fifo, file, link, and unknown. This function is an
interface to C's stat function, whose man page may be helpful in understanding the
different file types.

<?
 print(filetype("data.txt"));
?>

boolean flock(integer file_handle, integer mode)

Use the flock function to temporarily restrict access to a file. PHP uses its own system
for locking, which works across multiple platforms. However, all processes must be
using the same locking system, so the file will be locked for PHP scripts, but likely not
locked for other processes.

The file_handle argument must be an integer returned by fopen. The mode argument
determines whether you obtain a lock that allows others to read the file (1), you obtain a
lock that doesn't allow others to read the file (2), or you release a lock (3). When
obtaining a lock, the process may block. That is, if the file is already locked, it will wait
until it gets the lock to continue execution. If you prefer, you may turn off blocking using
modes 5 and 6. Table 8.5 lists the modes in a table.

Table 8.5. flock Modes

Mode Operations Allowed
1 Allow reads
2 Disallow reads
3 Release lock
5 Allow reads, do not block

Core PHP Programming

IT-SC book 141

<?
 $fp = fopen("log.txt", "a");

 //get lock
 flock($fp, 2);

 //add a line to the log
 fputs($fp, date("h:i A l F dS, Y\n"));

 //release lock
 flock($fp, 3);

 fclose($fp);

 //dump log
 print("<PRE>");
 readfile("log.txt");
 print("</PRE>\n");
?>

integer fopen(string filename, string mode)

The fopen function opens a file for reading or writing. The function expects the name of
a file and a mode. It returns an integer, which is called a file handle. Internally, PHP uses
this integer to reference a block of information about the open file. The file handle is used
by other file-related functions, such as fputs and fgets.

Ordinarily, the filename argument is a path to a file. It can be fully qualified, or relative
to the path of the script. If the filename begins with http:// or ftp://, the file will be
opened using HTTP or FTP protocol over the Internet.

Table 8.6. File Read/Write Modes

Mode Operations Allowed
r[b] reading only [binary]
w[b] writing only, create if necessary, discard previous contents if any [binary]
a[b] append to file, create if necessary, start writing at end of file [binary]
r+[b] reading and writing [binary]

w+[b]
reading and writing, create if necessary, discard previous contents if any
[binary]

a+[b] reading and writing, create if necessary, start writing at end of file [binary]

The mode argument determines whether the file is to be read from, written to, or added to.
Modes with a plus sign (+) are update modes that allow both reading and writing. If the
letter b appears as the last part of the mode, the file is assumed to be a binary file, which
means no special meaning will be given to end-of-line characters. Table 8.6 lists all the
modes.

Core PHP Programming

IT-SC book 142

While it is an error to open a file for writing when an HTTP URL is specified, this is not
the case with FTP. You may upload an FTP file by using write mode. However, this
functionality is limited. You can create remote files, but you may not overwrite existing
files. With either HTTP or FTP connections, you may only read from start to finish from
a file. You may not use fseek or similar functions.

Sometimes files on HTTP and FTP servers are protected by usernames and passwords.
You can specify a username and a password exactly as popular Web browsers allow you
to do. After the network protocol and before theserver name you may insert a username, a
colon, a password, and an at-symbol (@).

Three other ways to open a file are the fsockopen, gzopen, popen functions.

<?
 print("<H1>HTTP</H1>\n");

 //open a file using http protocol
 //Use username and password
 if(!($myFile = fopen("http://leon:password@www.clearink.com/", "r")))
 {
 print("file could not be opened");
 exit;
 }

 while(!feof($myFile))
 {
 // read a line from the file
 $myLine = fgetss($myFile, 255);
 print("$myLine
\n");
 }

 // close the file
 fclose($myFile);

 print("<H1>FTP</H1>\n");
 print("<HR>\n");

 // open a file using ftp protocol
 if(!($myFile = fopen("ftp://ftp.php.net/welcome.msg", "r")))
 {
 print("file could not be opened");
 exit;
 }

 while(!feof($myFile))
 {
 // read a line from the file
 $myLine = fgetss($myFile, 255);
 print("$myLine
\n");
 }

 // close the file
 fclose($myFile);

Core PHP Programming

IT-SC book 143

 print("<H1>Local</H1>\n");
 print("<HR>\n");

 // open a local file
 if(!($myFile = fopen("data.txt", "r")))
 {
 print("file could not be opened");
 exit;
 }
 while(!feof($myFile))
 {
 // read a line from the file
 $myLine = fgetss($myFile, 255);
 print("$myLine
\n");
 }

 // close the file
 fclose($myFile);
?>

boolean fpassthru(integer file_handle)

The fpassthru function prints the contents of the file to the browser. Data from the
current file position to the end are sent, so you can read a few lines and output the rest.
The file is closed after being sent. If an error occurs, fpassthru returns false. The
gzpassthru function offers the same functionality for compressed files.

<?
 /*
 ** Get a Web page, change the title tag
 */

 // open a file using http protocol
 if(!($myFile = fopen("http://www.clearink.com/", "r")))
 {
 print("file could not be opened");
 exit;
 }

 $KeepSearching = TRUE;

 while(!feof($myFile) AND $KeepSearching)
 {
 // read a line from the file
 $myLine = fgets($myFile, 1024);

 //watch for body tag
 if(eregi("<body", $myLine))
 {
 //no chance to find a title tag
 //after a body tag

Core PHP Programming

IT-SC book 144

 $KeepSearching = FALSE;
 }

 //try adding some text after the title tag
 $myLine = eregi_replace("<title>",
 "<title>(fpassthru example)", $myLine);

 //send line to browser
 print("$myLine");
 }

 // send the rest of file to browser
 fpassthru($myFile);
?>

integer fputs(int file_handle, string output)

The fputs function writes data to an open file. It expects a file handle as returned by
fopen, fsockopen, or popen. The number of bytes written is returned, or -1 when an
error occurs. The gzputs function performs the same task on compressed files.

<?
 // open file for writing
 $myFile = fopen("data.txt","w");

 // make sure the open was successful
 if(!($myFile))
 {
 print("file could not be opened");
 exit;
 }

 for($index=0; $index<10; $index++)
 {
 // write a line to the file
 fputs($myFile, "line $index\n");
 }

 // close the file
 fclose($myFile);
?>

string fread(integer file_handle, integer length)

The fread function is a binary-safe version of the fgets function. That means it does not
pay attention to end-of-line characters. It will always return the number of bytes specified
by the length argument, unless it reaches the end of the file. This function is necessary if
you wish to read from binary files, such as jpeg image files.

Core PHP Programming

IT-SC book 145

<?
 /*
 ** Check that a file is a GIF89
 */

 $filename = "php.gif";

 $fp = fopen($filename, "r");

 //get first 128 bytes
 $data = fread($fp, 128);

 //close file
 fclose($fp);

 //check for GIF89
 if(substr($data, 0, 5) == "GIF89")
 {
 print("$filename is a GIF89 file.\n");
 }
 else
 {
 print("$filename isn't a GIF89 file.\n");
 }
?>

integer fseek(integer file_handle, integer offset)

To change PHP's internal file pointer, use fseek. It expects a valid file handle as created
by fopen. It also expects an offset, the number of bytes past the beginning of the file. If
an error occurs, fseek returns negative one (-1); otherwise it returns zero (0). Take note
that this is different from most other PHP functions.

Seeking past the end of the file is not an error; however, using fseek on a file opened by
fopen if it was used with http:// or ftp:// is forbidden.

If you need to know where the file pointer points, use the ftell function.

<?
 // open a file
 if($myFile = fopen("data.txt", "r"))
 {
 // jump 32 bytes into the file
 fseek($myFile, 32);

 // dump the rest of the file
 fpassthru($myFile);
 }
 else
 {

Core PHP Programming

IT-SC book 146

 print("file could not be opened");
 }
?>

array fstat(integer file_handle)

The fstat function gets information from C's stat function about an open file and
returns it in an associative array. The elements of the array are atime, blksize, blocks,
ctime, dev, gid, ino, mode, mtime, nlink, rdev, size, uid. This function returns the
same information returned by stat and lstat.

integer ftell(integer file_handle)

Given a valid file handle, ftell returns the offset of PHP's internal file pointer. If you
wish to move the file pointer, use the fseek function.

<?
 // open a file
 if($myFile = fopen("data.txt", "r"))
 {
 //read characters until we find a space
 $c = "";
 while(!(feof($myFile)) AND ($c != " "))
 {
 $c = fgetc($myFile);
 }

 print("File pointer at " . ftell($myFile) . " bytes");
 }
 else
 {
 print("file could not be opened");
 }
?>

integer ftruncate(integer file_handle, integer size)

The ftruncate function truncates a file to a specified size, expressed in number of bytes.

integer fwrite(integer file_handle, string data, integer length)

The fwrite function writes a string to a file. It is similar to fputs, except that it is
binary-safe. The file_handle argument must be an integer returned by fopen,
fsockopen, or popen. The length argument is optional, but if present will cause the
magic quotes functionality to be suspended. This means backslashes inserted into the
string by PHP to escape quotes will not be stripped before writing.

Core PHP Programming

IT-SC book 147

<?
 // open file for writing
 $myFile = fopen("data.txt","w");

 // make sure the open was successful
 if(!($myFile))
 {
 print("file could not be opened");
 exit;
 }

 for($index=0; $index<10; $index++)
 {
 // write a line to the file
 fputs($myFile, "line $index\n");
 }

 // close the file
 fclose($myFile);
?>

array get_meta_tags(string filename, boolean
use_include_path)

The get_meta_tags function opens a file and scans for HTML meta tags. The function
assumes it is a well-formed HTML file that uses native line breaks. An array indexed by
the name attribute of the meta tag is returned. If the name contains any characters illegal
in identifiers, they will be replaced with underscores. This helps if you wish to make all
the elements of the ar-ray into variables using extract, a function discussed in Chapter
9, "Data Functions."

The optional use_include_path will cause get_meta_tags to look for the file in the
include path instead of the current directory. The include path is set in php.ini and
normally is used by the include function.

Like many of the file functions, get_meta_tags allows specifying a URL instead of a
path on the local filesystem.

Figure 8-3. get_meta_tags.

Core PHP Programming

IT-SC book 148

include(string filename)

The include function causes the PHP parser to open the given file and execute it. The
file is treated as a normal PHP script. That is, text is sent directly to the browser unless
PHP tags are used. You may use a variable to specify the file, and if the call to include is
inside a loop, it will be reevaluated each time.

Core PHP Programming

IT-SC book 149

You may also specify files by URL by starting them with http:// or ftp://. PHP will
fetch the file via the stated protocol and execute it as if it were in the local filesystem.

Use of this function is discussed in detail in Chapter 7. Compare this function to
require.

boolean is_dir(string filename)

The is_dir function returns TRUE if the given filename is a directory; otherwise it returns
FALSE. Similar functions are is_file and is_link.

<?
 $filename = "data.txt";

 if(is_dir($filename))
 {
 print("$filename is a directory");
 }
 else
 {
 print("$filename is not a directory");
 }
?>

boolean is_executable(string filename)

The is_executable function returns true if a file exists and is executable; otherwise it
returns false. On UNIX this is determined by the file's permissions. On Windows this is
determined by the file extension. Two related functions are is_readable and
is_writeable.

<?
 $filename = "data.txt";

 if(is_executable($filename))
 {
 print("$filename is executable");
 }
 else
 {
 print("$filename is executable");
 }
?>

boolean is_file(string filename)

Core PHP Programming

IT-SC book 150

The is_file function returns true if the given filename is neither a directory nor a
symbolic link; otherwise it returns false. Similar functions are is_dir and is_link.

@CPO # above:?
 $filename = "data.txt";

 if(is_file($filename))
 {
 print("$filename is a file");
 }
 else
 {
 print("$filename is not a file");
 }
?>

boolean is_link(string filename)

The is_link function returns true if the given filename is a symbolic link; otherwise it
returns false. Similar functions are is_dir and is_file.

<?
 $filename = "data.txt";

 if(is_link($filename))
 {
 print("$filename is a link");
 }
 else
 {
 print("$filename is not a link");
 }
?>

boolean is_readable(string filename)

The is_readable function returns true if a file exists and is readable; otherwise it
returns false. On UNIX this is determined by the file's permissions. On Windows, true
is always returned if the file exists. This function is similar to is_executable and
is_writeable.

<?
 $filename = "data.txt";

 if(is_readable($filename))
 {

Core PHP Programming

IT-SC book 151

 print("$filename is readable");
 }
 else
 {
 print("$filename is not readable");
 }
?>

boolean is_writeable(string filename)

The is_writeable function returns true if a file exists and is writeable; otherwise it
returns false. Similar functions are is_executable and is_readable.

<?
 $filename = "data.txt";

 if(is_writeable($filename))
 {
 print("$filename is writeable");
 }
 else
 {
 print("$filename is not writeable");
 }
?>

boolean link(string source, string destination)

The link function creates a hard link. A hard link may not point to a directory, may not
point outside its own filesystem, and is indistinguishable from the file to which it links.
See the man page for link or ln for a full description. The link function expects a
source file and a destination file. On Windows this function does nothing and returns
nothing. You can create a symbolic link with the symlink function.

<?
 link("/www/htdocs/index.php", "/www/htdocs/index2.php");
?>

integer linkinfo(string filename)

The linkinfo function calls the C function lstat for the given filename and returns the
st_dev field lstat generates. This may be used to verify the existence of a link. It
returns false on error. You can read more about lstat on the man page, or in the help
file for Microsoft Visual C++.

Core PHP Programming

IT-SC book 152

<?
 print(linkinfo("data.txt"));
?>

array lstat(string filename)

The lstat function executes C's stat function and returns an array. The array contains
13 elements, numbered starting with zero. If the filename argument points to a symbolic
link, the array will reflect the link, not the file to which the link points. To get
information about the files to which the link points, use the stat function. Table 8.7 lists
the contents of the array.

Figure 8-4. lstat.

Core PHP Programming

IT-SC book 153

Core PHP Programming

IT-SC book 154

boolean mkdir(string directory, integer mode)

The mkdir function creates a new directory with the supplied name. Permissions will be
set based on the mode argument, which follows the same rules as chmod. On Windows the
mode argument is ignored. You can use the rmdir function to remove a directory.

<?
 if(mkdir("myDir", 0777))
 {
 print("directory created");
 }
 else
 {
 print("directory cannot be created");
 }
?>

integer opendir(string directory)

The opendir function requires a directory name and returns a directory handle. This
handle may be used by readdir, rewinddir, and closedir. The dir function described
above provides an alternative to this group of functions.

<?
 // print the current directory in a table
 print("<TABLE BORDER=\"1\">\n");

 // create header row
 print("<TR>\n");
 print("<TH>Filename</TH>\n");
 print("<TH>File Size</TH>\n");
 print("</TR>\n");

 // open directory
 $myDirectory = opendir(".");

 // get each entry
 while($entryName = readdir($myDirectory))
 {
 print("<TR>");
 print("<TD>$entryName</TD>");
 print("<TD ALIGN=\"right\">");
 print(filesize($entryName));
 print("</TD>");
 print("</TR>\n");
 }

 // close directory
 closedir($myDirectory);

Core PHP Programming

IT-SC book 155

 print("</TABLE>\n");
?>

integer pclose(integer file_handle)

The pclose function closes a file stream opened by popen. The return value of the
process called in the call to popen is returned.

integer popen(string command, string mode)

The popen function opens a pipe to an executing command that may be read from or
written to as if it were a file. A file handle is returned that is appropriate for use with
functions such as fgets. Pipes work in one direction only, which means you can't use
update modes with popen.

When you open a pipe, you are executing a program in the local filesystem. As with the
other functions that execute a command (exec, passthru, and system), you should
consider both the high cost of starting a new process and the security risk if user input is
included in the command argument. If you must pass user-supplied data to a command,
pass the information through the escapeshellcmd function first.

Figure 8-5. popen.

Core PHP Programming

IT-SC book 156

string readdir(integer directory_handle)y

The readdir function returns the name of the next file from a directory handle created by
opendir, or FALSE when no entries remain. You can place readdir in the conditional
expression of a while loop to get every entry in a directory. Keep in mind that . and .. are
always present and will be returned. See closedir for an example of use.

integer readfile(string filename)

The file given is read and sent directly to the browser by the readfile function, and the
number of bytes read is returned. If an error occurs, false is returned. If the filename
begins with http:// or ftp://, the file will be fetched using HTTP or FTP,
respectively. Otherwise the file is opened in the local filesystem. If you need to send a
compressed file to the browser, use readgzfile. If you'd rather read a file into a
variable, use the file function.

<?
 print("Here is some data BR>\n");
 readfile("data.txt");
?>

string readlink(string filename)

The readlink function returns the path to which a symbolic link points. It returns false
on error. Another function that gets information about a link is linkinfo.

<?
 print(readlink("data.txt"));
?>

boolean rename(string old_name, string new_name)

The rename function changes the name of a file specified by the old_name argument to
the name specified in the new_name argument. The new and old names may contain
complete paths, which allows you to use rename to move files.

<?
 //move data.txt from local directory
 //to the temp directory
 rename("./data.txt", "/tmp/data.dat");
?>

Core PHP Programming

IT-SC book 157

boolean rewind(integer file_handle)

The rewind function moves PHP's internal file pointer back to the beginning of the file.
This is the same as using fseek to move to position zero.

<?
 /*
 ** print a file, then print the first line again
 */

 // open a local file
 $myFile = fopen("data.txt", "r");

 while(!feof($myFile))
 {
 // read a line from the file
 $myLine = fgetss($myFile, 255);
 print("$myLine
\n");
 }
 rewind($myFile);
 $myLine = fgetss($myFile, 255);
 print("$myLine
\n");

 // close the file
 fclose($myFile);
?>

boolean rewinddir(integer handle)

The rewinddir function resets PHP's internal pointer to the beginning of a directory
listing. It returns TRUE unless an error occurs, in which case it returns FALSE. The handle
is an integer returned by opendir.

<?
 /*
 ** print the current directory in a table
 */
 print("<TABLE BORDER=\"1\">\n");

 // open directory
 $myDirectory = opendir(".");

 print("<TR>\n");
 print("<TH>Filename</TH>\n");

 // get each entry
 while($entryName = readdir($myDirectory))
 {
 print("<TD>$entryName</TD>\n");
 }

Core PHP Programming

IT-SC book 158

 print("</TR>\n");

 // Go back to beginning
 rewinddir($myDirectory);

 print("<TR>\n");
 print("<TH>Size</TH>\n");

 // get each entry
 while($entryName = readdir($myDirectory))
 {
 print("<TD ALIGN=\"right\">");
 print(filesize($entryName));
 print("</TD>\n");
 }
 print("</TR>\n");

 // close directory
 closedir($myDirectory);
 print("</TABLE>\n");
?>

boolean rmdir(string directory)

Use the rmdir function to remove a directory. The directory must be empty. To remove a
file, use unlink.

<?
 if(rmdir("/tmp/leon"))
 {
 print("Directory removed");
 }
 else
 {
 print("Directory not removed"):
 }
?>

set_file_buffer(integer file_handle, integer size)

Use set_file_buffer to set the size of the write buffer on a file stream. It requires a
valid file handle as created by fopen, fsockopen, or popen. The size argument is a
number of bytes, and if you set a buffer size of zero, no buffering will be used. You must
call set_file_buffer before making any reads or writes to the file stream. By default,
file streams start with 8K buffers.

Core PHP Programming

IT-SC book 159

<?
 // open file for writing
 $myFile = fopen("data.txt","w");

 // make sure the open was successful
 if(!($myFile))
 {
 print("file could not be opened");
 exit;
 }

 //use 1K buffer
 print(set_file_buffer($myFile, 1024));

 for($index=0; $index<10; $index++)
 {
 // write a line to the file
 fwrite($myFile, "line $index\n");
 }

 // close the file
 fclose($myFile);
?>

array stat(string filename)

The stat function executes C's stat function and returns an array. The array contains 13
elements, numbered starting at zero. If the filename argument points to a symbolic link,
the array will reflect the file to which the link points. To get information about the link
itself, use the lstat function. Table 8.7 lists the contents of the array.

<?
 /*
 ** print stat information based on OS
 */

 // get stat information
 $statInfo = stat("data.txt");

 if(eregi("windows", $OS))
 {
 // print useful information for Windows
 printf("Drive: %c
\n", ($statInfo[0]+65));
 printf("Mode: %o
\n", $statInfo[2]);
 print("Links: $statInfo[3]
\n");
 print("Size: $statInfo[7] bytes
\n");
 printf("Last Accessed: %s
\n",
 date("H:i:s F d, Y", $statInfo[8]));
 printf("Last Modified: %s
\n",
 date("H:i:s F d, Y", $statInfo[9]));
 printf("Created: %s
\n",

Core PHP Programming

IT-SC book 160

 date("H:i:s F d, Y", $statInfo[10]));
 }
 else
 {
 // print UNIX version
 print("Device: $statInfo[0]
\n");
 print("INode: $statInfo[1]
\n");
 printf("Mode: %o
\n", $statInfo[2]);
 print("Links: $statInfo[3]
\n");
 print("UID: $statInfo[4]
\n");
 print("GID: $statInfo[5]
\n");
 print("Device Type: $statInfo[6]
\n");
 print("Size: $statInfo[7] bytes
\n");
 printf("Last Accessed: %s
\n",
 date("H:i:s F d, Y", $statInfo[8]));
 printf("Last Modified: %s
\n",
 date("H:i:s F d, Y", $statInfo[9]));
 printf("Last Changed: %s
\n",
 date("H:i:s F d, Y", $statInfo[10]));
 print("Block Size: $statInfo[11]
\n");
 print("Blocks: $statInfo[12]
\n");
 }
?>

Table 8.7. Array Elements Returned by the stat Function

Element Name Description

0 Device or
Drive Letter

This is a number identifying the device of the filesystem. On
Windows this number denotes the drive letter the file is on,
with the A drive being zero.

1 Inode A unique identifier for the file, always zero on Windows. This is
the same value you will get from the fileinode function.

2 Mode This is the same value you will get from fileperms, the
read/write/execute permissions.

3 Number of
Links

Number of links to file. On Windows, this will always be 1 if the
file is not on an NTFS partition.

4 User User ID of the owner, Always zero on Windows. This is the
same value you will get from the fileowner function.

5 Group Group ID, always zero on Windows. This is the same value you
will get from the filegroup function.

6 Device Type This is the type of the device. On Windows it repeats the device
number.

7 Size Size of the file in bytes, which is the same as reported by
filesize.

8 Last
Accessed

Last time the file was accessed, as defined in the description of
fileatime.

9 Last Modified Last time the file was modified, as defined in the description of
filemtime.

10 Last
Changed

Last time the file was changed, as defined in the description of
filectime.\ On Windows this is the time the file was created.

Core PHP Programming

IT-SC book 161

11 Block Size Suggested block size for I/O to file, -1 under Windows.

12 Number of
Blocks Number of blocks used by file, -1 under Windows.

boolean symlink(string source, string destination)

The symlink function creates a symbolic link to the source argument with the name in
the destination argument. To create a hard link, use the link function.

<?
 //link moredata.txt to existing file data.txt
 if(symlink("data.txt", "moredata.txt"))
 {
 print("Symbolic link created");
 }
 else
 {
 print("Symbolic link not created");
 }
?>

integer tmpfile()

The tmpfile function opens a new temporary file and returns its file handle. This handle
may be used in the same way as one returned by fopen using anupdate mode. When you
close the file, or your script ends, the file will beremoved. This function is a wrapper for
the C function of the same name. If for some reason a temporary file cannot be created,
FALSE is returned.

<?
 //open a temporary file
 $fp = tmpfile();

 //write 10K of random data
 //to simulate some process
 for($i=0; $i<10240; $i++)
 {
 //randomly choose a letter
 //from a range of printables
 fputs($fp, chr(rand(ord(' '), ord('z'))));
 }

 //return to start of file
 rewind($fp);

 //dump and close file,
 //therefore deleting it
 fpassthru($fp);

Core PHP Programming

IT-SC book 162

?>

boolean touch(string filename, integer time)

The touch function attempts to set the time the file was last modified to thegiven time,
expressed in seconds since January 1, 1970. If the time argument is omitted, the current
time is used. If the file does not exist, it willbe created with zero length. This function is
often used to create empty files.

To find out when a file was last modified, use filemtime.

<?
 touch("data.txt");
?>

integer umask(integer umask)

The umask function returns the default permissions given files when they are created. If
the optional umask argument is given, it sets the umask to a logical-and (&) performed on
the given integer and 0777. Under Windows this function does nothing and returns
false. To find out the permissions set on a particular file, use fileperms.

<?
 printf("umask is %o", umask(0444));
?>

boolean unlink(string filename)

The unlink function removes a file permanently. To remove a directory, use rmdir.

<?
 if(unlink("data2.txt"))
 {
 print("data2.txt deleted");
 }
 else
 {
 print("data2.txt could not be deleted");
 }
?>

Core PHP Programming

IT-SC book 163

Compressed File Functions

The functions in this section use the zlib library to work with files compressed with GNU
compression tools, such as gzip. The library was written by Jean-loup Gaill and Mark
Adler. The two are authors of the gzip tool, in fact. You can obtain more information and
the library itself from the zlib home page <http://www.cdrom.com/pub/infozip/zlib/>.

In order to activate these functions, you must include the zlib extension. On a UNIX
operating system, you configure PHP to use zlib as you compile it. On Windows you may
activate the php_zlib.dll extension either in php.ini or using the dl function.

Most of the functions for reading and writing files are duplicated here and they operate
similarly. One difference is the lack of support for specifying files using HTTP or FTP
protocol.

boolean gzclose(integer file_handle)

The gzclose function closes a file opened with gzopen. TRUE is returned if the file closed
successfully. FALSE is returned if the file cannot be closed. See gzgets for an example of
use.

boolean gzeof(integer file_handle)

As you read from a compressed file, PHP keeps a pointer to the last place in the file you
read. The gzeof function returns TRUE if you are at the end of the file. See gzgets for an
example of use.

array gzfile(string filename, boolean use_include_path)

The gzfile function reads an entire file into an array. The file is first uncompressed.
Each line of the file is a separate element of the array, starting at zero. The optional
use_include_path argument causes gzfile to search for the file within the include path
specified in php.ini.

<?
 // open file and print each line
 $myFile = gzfile("data.gz");
 for($index = 0; $index < count($myFile); $index++)
 {
 print($myFile[$index]);
 }
?>

string gzgetc(integer file_handle)

Core PHP Programming

IT-SC book 164

The gzgetc function returns a single character from a compressed file. It expects a file
handle as returned by gzopen.

<?
 // open compressed file and print each character
 if($myFile = gzopen("data.gz", "r"))
 {
 while(!gzeof($myFile))
 {
 $myCharacter = gzgetc($myFile);
 print($myCharacter);
 }

 gzclose($myFile);
 }
?>

string gzgets(integer file_handle, integer length)

The gzgets function returns a string it reads from a compressed file specified by the file
handle, which must have been created with gzopen. It will attempt to read as many
characters as specified by the length argument less one (presumably this is PHP
showing its C heritage). A linebreak is treated as a stopping point, as is the end of the file.
Linebreaks are included in the return string.

<?
 // open file and print each line
 if($myFile = gzopen("data.gz", "r"))
 {
 while(!gzeof($myFile))
 {
 $myLine = gzgets($myFile, 255);
 print($myLine);
 }

 gzclose($myFile);
 }
?>

string gzgetss(integer file_handle, integer length, string
ignore)

The gzgetss function is in all respects identical to gzgets except that it attempts to strip
any HTML or PHP code before returning a string. The optional ignore argument may
contain tags to be ignored.

Core PHP Programming

IT-SC book 165

<?
 // open compressed file and print each line
 if($myFile = gzopen("data.gz", "r"))
 {
 while(!gzeof($myFile))
 {
 $myLine = gzgetss($myFile, 255);
 print($myLine);
 }

 gzclose($myFile);
 }
?>

integer gzopen(string filename, string mode, boolean
use_include_path)

The gzopen function is similar in operation to the fopen function, except that it operates
on compressed files. If the use_include_path argument is TRUE, the include path
specified in php.ini will be searched. See gzgets and gzputs for examples of use.

The mode argument accepts a few extra parameters compared to fopen. In addition to the
modes listed in Table 8.6, you may specify a compression level and a compression
strategy if you are creating a new file. Immediately following the write mode, you may
place an integer between zero and nine that specifies the level of compression. Zero
means no compression, and nine is maximum compression. After the compression level,
you may use h to force Huffman encoding only, or f to optimize for filtered input.
Filtered data is defined by the zlib source code as being small values of somewhat
random distribution. In almost all cases the default settings are a good choice and the
extra mode settings are unnecessary.

It is possible to open an uncompressed file with gzopen. Reads from the file will operate
as expected. This can be convenient if you do not know ahead of time whether a file is
compressed.

boolean gzpassthru(integer file_handle)

The gzpassthru function prints the contents of the compressed file to the browser,
exactly like the fpassthru function.

<?
 // open a compressed file
 if(!($myFile = gzopen("data.html.gz", "r")))
 {
 print("file could not be opened");
 exit;
 }

Core PHP Programming

IT-SC book 166

 // send the entire file to browser
 gzpassthru($myFile);
?>

boolean gzputs(int file_handle, string output, integer length)

The gzputs function writes data to a compressed file. It expects a file handle as returned
by gzopen. It returns TRUE if the write was successful, FALSE if it failed. The optional
length argument specifies a maximum number of input bytes to accept. A side effect of
specifying length is that the magic_ quotes_runtime configuration setting will be
ignored.

<?
 // open file for writing
 // use maximum compress and force
 // Huffman encoding only
 $myFile = gzopen("data.gz","wb9h");

 // make sure the open was successful
 if(!($myFile))
 {
 print("file could not be opened");
 exit;
 }

 for($index=0; $index<10; $index++)
 {
 // write a line to the file
 gzputs($myFile, "line $index\n");
 }

 // close the file
 gzclose($myFile);
?>

gzread

The gzread function is an alias to gzgets.

boolean gzrewind(integer file_handle)

The gzrewind function moves PHP's internal file pointer back to the beginning of a
compressed file. It returns TRUE on success, FALSE if there is an error.

<?

Core PHP Programming

IT-SC book 167

 /*
 ** print a file, then print the first line again
 */

 // open a local file
 if(!($myFile = gzopen("data.gz", "r")))
 {
 print("file could not be opened");
 exit;
 }

 while(!gzeof($myFile))
 {
 // read a line from the file
 $myLine = gzgetss($myFile, 255);
 print("$myLine
\n");
 }

 gzrewind($myFile);
 $myLine = gzgetss($myFile, 255);
 print("$myLine
\n");

 // close the file
 gzclose($myFile);
?>

integer gzseek(integer file_handle, integer offset)

This function works exactly like fseek, except that it operates on compressed files.

<?
 // open a file
 if(!($myFile = gzopen("data.gz", "r")))
 {
 print("file could not be opened");
 exit;
 }

 // jump 32 bytes into the file
 gzseek($myFile, 32);

 $myLine = gzgets($myFile, 255);
 print($myLine);

 // dump the rest of the file
 gzpassthru($myFile);
?>

integer gztell(integer file_handle)

Core PHP Programming

IT-SC book 168

Given a valid file handle, gztell returns the offset of PHP's internal file pointer.

<?
 // open a file
 if(!($myFile = gzopen("data.gz", "r")))
 {
 print("file could not be opened");
 exit;
 }

 $myLine = gzgets($myFile, 255);
 print($myLine);

 print("<HR>\n");
 print("File pointer at " . gztell($myFile) . " bytes");

 // close file
 gzclose($myFile);
?>

gzwrite

The gzwrite function is an alias to gzputs.

integer readgzfile(string filename, boolean use_include_path)

The readgzfile function operates identically to the readfile function, except that it
expects the file to be compressed. The file is uncompressed on the fly and sent directly to
the browser.

<?
 //dump uncompressed contents of
 //data.gz to browser
 readgzfile("data.gz");
?>

POSIX

Kristian Koehntopp added a module to PHP to support the POSIX.1 standard, also known
as IEEE 1003.1. This standard describes functionality provided to user processes by an
operating system. A few functions in this section are not part of the standard, but are
commonly available in System V or BSD UNIX systems.

Many of these functions are available only to the root user. PHP scripts are executed by
the owner of the Web server process, which is usually a special user for just this purpose.
Running the Web server as root is unusual and dangerous. Anyone able to view a PHP

Core PHP Programming

IT-SC book 169

file through the Web server would have arbitrary control over the system. Keep in mind,
however, that PHP can be compiled as a stand-alone executable. In this case it can be
used like any other scripting language.

These functions are wrappers for underlying C functions, usually named by the part after
the posix_ prefix. If you require detailed information, I suggest reading the man pages.

string posix_ctermid()

The posix_ctermid function returns the terminal path name.

<?
 print("Terminal Path Name: " . posix_ctermid() . "
\n");
?>

string posix_getcwd()

The posix_getcwd function returns the current working directory.

<?
 print ("Current Working Directory: " . posix_getcwd() . "
\n");
?>

integer posix_getegid()

The posix_getegid function returns the effective group ID of the calling process.

integer posix_geteuid()

The posix_geteuid function returns the effective user ID for the process running the
PHP engine.

integer posix_getgid()

The posix_getgid function returns the ID of the current group.

array posix_getgrgiarray posix_getgrgid(integer
group)d(integer group)

The posix_getgrgid function returns an array describing access to the group database.
The elements of the returned array are gid, members, name, and an entry of each member
of the group.

Core PHP Programming

IT-SC book 170

<?
 $group = posix_getgrgid(posix_getgid());
 print("Group: {$group['name']}
\n");
?>

array posix_getgrnam(string group)

The posix_getgrnam function returns an array describing access to the group database.
The elements of the returned array are gid, members, name, and an entry of each member
of the group.

array posix_getgroups()

The posix_getgroups function returns supplementary group IDs.

string posix_getlogin()

Use posix_getlogin to get the login name of the user executing the PHP engine.

integer posix_getpgid()

The posix_getpgid function returns the group ID for the user executing the PHP engine.

integer posix_getpgrp()

The posix_getpgrp function returns the current process group ID.

integer posix_getpid()

The posix_getpid function returns the process ID.

integer posix_getppid()

The posix_getppid function returns the process ID of the parent process.

array posix_getpwnam(string user)

The posix_getpwnam function returns an array describing an entry in the user database.
The elements of the array are dir, gecos, gid, name, passwd, shell, and uid.

array posix_getpwuid(integer user)

Core PHP Programming

IT-SC book 171

The posix_getpwuid function returns an array describing an entry in the user database
based on a given user ID. The elements of the array are dir, gecos, gid, name, passwd,
shell, and uid. These are the same elements returned by posix_getpwnam.

array posix_getrlimit()

The posix_getrlimit function returns an array describing system resource usage. The
array contains elements that begin with hard or soft followed by a space and one of the
following limit names: core, cpu, data, filesize, maxproc, memlock, openfiles, rss,
stack, totalmem, virtualmem.

Figure 8-6. posix_getrlimit.

integer posix_getsid()

Core PHP Programming

IT-SC book 172

The posix_getsid function returns the process group ID of the session leader.

integer posix_getuid()

The posix_getuid function returns the user ID of the user executing the PHP engine.

boolean posix_isatty (integer descriptor)

The posix_isatty function returns TRUE if the given file descriptor is a TTY.

boolean posix_kill(integer process, integer signal)

The posix_kill function sends a signal to a process.

boolean posix_mkfifo(string path, integer mode)

The posix_mkfifo function creates a FIFO file. The mode argument follows the same
rules as chmod.

boolean posix_setgid(integer group)

Use posix_setgid to change the group for the current process. Only the root user may
switch groups.

integer posix_setpgid(integer process, integer group)

The posix_setpgid function sets the process group ID for a given process.

integer posix_setsid()

The posix_setsid function creates a session and returns the process groupID.

boolean posix_setuid(integer user)

Use posix_setuid to change the user for the current process. Only the root user may
change the user ID.

array posix_times()

The posix_times function returns an array of values on system clocks. The elements of
the array are cstime, cutime, stime, ticks, and utime.

<?
 foreach(posix_getrlimit() as $key=>$value)
 {

Core PHP Programming

IT-SC book 173

 print("$key: $value
\n");
 }
?>

string posix_ttyname(integer descriptor)

The posix_ttyname function returns the name of the terminal device.

array posix_uname()

The posix_uname function returns an array of information about the system. The
elements of the array are machine, nodename, release, sysname, and version.

Figure 8-7. posix_uname.

Debugging

The debugging functions help you figure out just what the heck is going on with the
inevitable broken script. Some of these functions make diagnostic information available

Core PHP Programming

IT-SC book 174

to you inside your script. Others communicate with either a system log or a remote
debugger. Practical approaches to debugging are addressed in Chapter 21, "Design."

assert(expression)

The assert function tests an expression. If the assertion is true, no action is taken and the
script continues. If the assertion is false, behavior is dictated by the assertion options. By
default, assertions are not active, which means they are simply ignored. Use
assert_options to activate them.

Assertions are a nice way to add error checking to your code, especially paranoid checks
that are useful during development but unneeded during production.

<?
 //create custom assertion function
 function failedAssertion($file, $line, $expression)
 {
 print("On line $line, in file '$file' ");
 print("the following assertion failed:
'$expression'
\n");
 }

 //turn on asserts
 assert_options(ASSERT_ACTIVE, TRUE);

 //bail on assertion failure
 assert_options(ASSERT_CALLBACK, "failedAssertion");

 //assert a false expression
 assert(1 == 2);
?>

value assert_options(integer flag, value)

Use assert_options to get and set assert flags. Table 8.8 lists the flags and their
meanings. The previous value is returned. Most of the options expect a boolean because
they are either on or off. The exception is the option for setting the callback function.
This option expects the name of a function to be called when an assertion fails. This
function will be called with three arguments: the filename, the line number, and the
expression that evaluated as FALSE.

value call_user_function(string function, ...)

Use call_user_function to execute a function you've defined. The function argument
names the function. Arguments to be passed to the function follow.

Table 8.8. Assert Options

Core PHP Programming

IT-SC book 175

Flag Description
ASSERT_ACTIVE Asserts are ignored unless activated with this option.
ASSERT_BAIL Exits the script if assertion fails. FALSE by default.

ASSERT_CALLBACK Registers a function to be called on failure. No function is
registered by default.

ASSERT_QUIET_EVAL Prints the expression passed to assert. FALSE by default.
ASSERT_WARNING Prints a regular PHP warning message. TRUE by default.

value call_user_method(string method, string object, ...)

Use call_user_method to execute a method defined in an object. You are required to
name a method and an object. Any arguments to pass to the method follow.

closelog()

The closelog function closes any connection to the system log. Calling it is optional, as
PHP will close the connection for you when necessary. See syslog for an example of
use.

boolean connection_aborted()

Use connection_aborted to test if a request for your script was aborted. The user may
do this by clicking the stop button on the browser, or closing the browser completely.
Ordinarily your script will stop execut- ing when aborted. However, you may change this
behavior with the ignore_user_abort function. You can also set abort handling using
commands in php.ini or with an Apache directive.

<?
 //allow script continuation if aborted
 ignore_user_abort(TRUE);

 //fake a long task
 sleep(20);

 //check for abort
 if(connection_aborted())
 {
 //write to log that the process was aborted
 openlog("TEST", LOG_PID | LOG_CONS, LOG_USER);
 syslog(LOG_INFO, "The fake task has been aborted!");
 closelog();
 }
 else
 {
 print("Thanks for waiting!\n");
 }
?>

Core PHP Programming

IT-SC book 176

integer connection_status()

The connection_status function returns an integer describing the status of the
connection to the browser. The integer uses bitfields to signal whether a connection was
aborted or timed out. That is, binary digits are flipped on to signal either of the
conditions. The first bit signals whether the script aborted. The second signals whether
the script reached its maximum execution time. Rather than using 1 or 2, you can use the
convenient constants ABORTED and TIMEOUT. There's also a constant named NORMAL,
which is set to zero, meaning no bitfields are turned on.

An alternative to connection_status is to use connect_aborted and
connection_timeout, which each return TRUE or FALSE.

<?
 function cleanUp()
 {
 $status = connection_status();

 $statusMessage = date("Y-m-d H:i:s");
 $statusMessage .= " Status was $status. ";

 if($status & ABORTED)
 {
 $statusMessage .= "The script was aborted. ";
 }
 if($status & TIMEOUT)
 {
 $statusMessage .= "The script timed out. ";
 }

 $statusMessage .= "\n";
 //write status to log file
 error_log($statusMessage, 3, "status.log");
 }

 //set cleanUp to the shutdown function
 register_shutdown_function("cleanUp");

 //wait out the max execution time
 sleep(35);

 print("Fake task finished.\n");
?>

boolean connection_timeout()

The connection_timeout function returns TRUE when the current script has stopped
because the maximum execution time was reached. It is really of use only inside a
function you've registered as a shutdown function with register_shutdown_function.

Core PHP Programming

IT-SC book 177

You can use set_time_limit to adjust the time a script is allowed to run. Alternatively,
you may wish to use connection_status.

<?
 function cleanUp()
 {
 if(connection_timeout())
 {
 $statusMessage = date("Y-m-d H:i:s");
 $statusMessage .= " The script timed out. \n";

 //write status to log file
 error_log($statusMessage, 3, "status.log");
 }
 }

 //set cleanUp to the shutdown function
 register_shutdown_function("cleanUp");

 //wait out the max execution time
 while(true);

 print("Fake task finished.\n");
?>

debugger_off()

The debugger_off function tells PHP to stop sending debugging information to the
remote debugger.

<?
 debugger_off();
?>

boolean debugger_on(string host)

Use debugger_on to enable remote debugging. Diagnostic information will be sent to the
specified host using the port set in php.ini, which is 7869 by default. Use of the remote
debugger is discussed in Chapter 22, "Efficiency and Debugging."

<?
 debugger_on("127.0.0.1");
?>

Core PHP Programming

IT-SC book 178

boolean error_log(string message, integer type, string
destination, string extra_headers)

The error_log function sends an error message to one of four places depending on the
type argument. The four values for the type argument are listed in Table 8.9. An
alternative to error_log is the syslog function.

<?
 //send log message via email to root
 error_log("The error_log is working", 1, "root", "");
?>

Table 8.9. error_log Message Types

Type Description

0 Depending on the error_log configuration directive, the message is sent either
to the system log or to a file.

1
The message is sent by email to the address specified by the destination
argument. If the extra_headers argument is not empty, it is sent as headers to
the email.

2 The message is sent through the remote debugging system. The destination
argument specifies the host and port separated by a colon.

3 The message is appended to the file specified by the destination argument.

boolean extension_loaded(string extension)

Use extension_loaded to test for the presence of an extension.

<?
 if(extension_loaded("php_mysql.dll"))
 {
 print("php_mysql.dll is present");
 }
 else
 {
 print("php_mysql.dll is not present");
 }
?>

value func_get_arg(integer argument)

The func_get_arg function allows you to get by number an argument passed to a
function you write. The first argument will be number zero. This allows you to write
functions that take any number of arguments. The return value might be any type,

Core PHP Programming

IT-SC book 179

matching the type of the argument being fetched. The func_num_args function returns
the number of arguments available.

Chapter 4, "Functions," discusses functions, including writing functions that accept an
unlimited number of arguments.

<?
 /*
 ** Function concat
 ** Input: any number of strings
 ** Output: string
 ** Description: input strings are put together in
 ** order and returned as a single string.
 */
 function concat()
 {
 //start with empty string
 $returnValue ="";

 //loop over each argument
 for($i=0; $i < func_num_args(); $i++)
 {
 //add current argument to return value
 $returnValue .= func_get_arg($i);
 }

 return($returnValue);
 }

 //prints "OneTwoThree"
 print(concat("One", "Two", "Three") . "
\n");
?>

array func_get_args()

Use func_get_args to get an array containing all the arguments passed as arguments to
the function. The elements of the array will be indexed withintegers, starting with zero.
This provides an alternative to using func_get_arg and func_num_args.

<?
 /*
 ** Function gcd
 ** Input: any number of integers
 ** Output: integer
 ** Description: Returns the greatest common
 ** denominator from the input.
 */
 function gcd()
 {
 /*

Core PHP Programming

IT-SC book 180

 ** start a smallest value and try every value
 ** until we get to 1, which is common to all
 */

 $start = 2147483647;
 foreach(func_get_args() as $arg)
 {
 if(abs($arg) < $start)
 {
 $start = abs($arg);
 }
 }

 for($i=$start; $i > 1; $i-)
 {
 //assume we will find a gcd
 $isCommon = TRUE;

 //try each number in the supplied arguments
 foreach(func_get_args() as $arg)
 {
 //if $arg divided by $i produces a
 //remainder, then we don't have a gcd
 if(($arg % $i) != 0)
 {
 $isCommon = FALSE;
 }
 }

 //if we made it through the previous code
 //and $isCommon is still TRUE, then we found
 //our gcd
 if($isCommon)
 {
 break;
 }
 }

 return($i);
 }

 //prints 5
 print(gcd(10, 20, -35) . "
\n");
?>

integer func_num_args()

The func_num_args function returns the number of arguments passed to a function. See
the description of func_get_arg for an example of use.

boolean function_exists(string function)

Core PHP Programming

IT-SC book 181

Use function_exists to test that a function is available, either natively or defined
previously by PHP code.

<?
 $function = "date";
 if(function_exists($function))
 {
 print($function . " exists");
 }
?>

object get_browser(string user_agent)

The get_browser function works with the browscap.ini (browser capabilities) file to
report the capabilities of a browser. The user_agent argument is the text a browser
identifies itself with during an HTTP transaction. If you leave out this argument, PHP
uses HTTP_USER_AGENT, a variable created by PHP for you. The argument is matched
against all the browsers in the browscap.ini file. When a match occurs, each of the
capabilities becomes a property in the object returned.

The location of the browscap.ini file is specified in php.ini using the browscap
directive. If the directive is not used, or PHP can't match a browser to an entry in your
browscap.ini file, no error will be produced. However, the returned object will have no
properties.

Microsoft provides a browscap.ini file for use with its Web server, but it is not freely
distributable. In response, PHP has an official browscap.ini file. It may be found at
<http://php.netvision.net.il/browscap/> and depends on contributions. At the time of
this writing, it appeared to be abandoned. Alternatively, you may wish to get a
browscap.ini from Web developer cyScape at
<http://www.cyscape.com/asp/browscap/ >. Be aware you are required to register first.

<?
 $browser = get_browser();
 print("You are using " . $browser->browser . "
\n");
 if($browser->javascript)
 {
 print("Your browser supports JavaScript.
\n");
 }
?>

string get_cfg_var(string variable)

Core PHP Programming

IT-SC book 182

The get_cfg_var function returns the value of the specified configuration variable.
These are the variables specified in php.ini or in Apache's configuration files. You can
get a report on all configuration information by calling the phpinfo function.

<?
 print("Scripts are allowed to run " .
 get_cfg_var("max_execution_time") .
 " seconds");
?>

string get_class(object variable)

The get_class function returns the name of the class for the given object.

<?
 class animal
 {
 var $name;
 }

 $gus = new animal;

 print("Gus is of type " . get_class($gus) . "
\n");
?>

array get_class_methods(string class)

The get_class_methods function returns an array of the names of the methods for the
given class.

<?
 class dog
 {
 var $name="none";
 var $sound="woof!";

 function speak()
 {
 print($this->sound);
 }
 }

 $gus = new dog;
 $gus->name = "Gus";

 foreach(get_class_methods("dog") as $method)
 {

Core PHP Programming

IT-SC book 183

 print("$method
\n");
 }
?>

array get_class_vars(string class)

The get_class_vars function returns an array containing properties of a class and their
default values. Compare this function to get_object_vars.

Figure 8-8. get_meta_tags.

Core PHP Programming

IT-SC book 184

Core PHP Programming

IT-SC book 185

string get_current_user()

The get_current_user function returns the name of the user who owns the script being
executed. This function isn't guaranteed to have any meaning under Windows 98.

<?
 print(get_current_user());
?>

string getcwd()

The getcwd function returns the name of the current working directory, including the full
path.

<?
 print(getcwd());
?>

array get_extension_funcs(string extension)

Use get_extension_funcs to get an array of the names of functions created by an
extension.

array get_loaded_extensions()

The get_loaded_extensions function returns an array of the names of the extensions
available. This includes extensions compiled into PHP or loaded with dl. Another way to
see this list is with phpinfo.

array get_object_vars(object data)

The get_object_vars function returns an array describing the properties of an object and
their values. See get_class_vars for an example of use.

boolean highlight_file(string filename)

The highlight_file function prints a PHP script directly to the browser using syntax
highlighting. HTML is used to emphasize parts of the PHP language in order to aid
readability.

<?
 //highlight this file

Core PHP Programming

IT-SC book 186

 highlight_file(__FILE__);
?>

boolean highlight_string(string code)

The highlight_string function prints a string of PHP code to the browser using syntax
highlighting.

<?
 //create some code
 $code = "print(\"a string\");";
 //highlight sample code
 highlight_string($code);
?>

string get_html_translation_table (integer table)

Use get_html_translation_table to get the table used by htmlentities and
htmlspecialchars. By default the former is returned, but if table is 1, the table used by
htmlspecialchars is returned.

<?
 $trans = get_html_translation_table(HTML_ENTITIES);

 print("pre>");
 var_dump($trans);
 print("/pre>\n");
?>

integer get_magic_quotes_gpc()

The get_magic_quotes_gpc function returns the magic_quotes_gpc directive setting,
which controls whether quotes are escaped automatically in user-submitted data.

<?
 if(get_magic_quotes_gpc() == 1)
 {
 print("magic_quotes_gpc is on");
 }
 else
 {
 print("magic_quotes_gpc is off");
 }
?>

Core PHP Programming

IT-SC book 187

integer get_magic_quotes_runtime()

The get_magic_quotes_runtime function returns the magic_quotes_ runtime
directive setting, which controls whether quotes are escaped automatically in data
retrieved from databases. You can use set_magic_quotes_runtime to change its value.

<?
 if(get_magic_quotes_runtime() == 1)
 {
 print("magic_quotes_runtime is on");
 }
 else
 {
 print("magic_quotes_runtime is off");
 }
?>

string get_parent_class(object variable)

The get_parent_class function returns the name of the parent class for an object.

<?
 class animal
 {
 var $name;
 }

 class dog extends animal
 {
 var $owner;
 }

 $gus = new dog;
 $gus->name = "Gus";
 //Gus is of type dog, which is of type animal
 print("$gus->name is of type " .
 get_class($gus) . ", which is of type ".
 get_parent_class($gus) . "BR>\n");
?>

integer getlastmod()

Core PHP Programming

IT-SC book 188

The getlastmod function returns the date the executing script was last modified. The
date is returned as a number of seconds since January 1, 1970. This is the same as calling
filemtime on the current file.

<?
 printf("This script was last modified %s",
 date("m/d/y", getlastmod()));
?>

integer getmyinode()

The getmyinode function returns the inode of the executing script. Under Windows, zero
is always returned. You can get the inode of any file using fileinode.

 print(getmyinode());
?>

integer getmypid()

The getmypid function returns the process identifier of the PHP engine. It may not return
anything under Windows 98.

<?
 print(getmypid());
?>

integer getmyuid()

The getmyuid function returns the user identifier of the owner of the script.

<?
 print(getmyuid());
?>

array getrusage(integer children)

The getrusage function is a wrapper for the C function of the same name. It reports
information about the resources used by the calling process. If thechildren argument is 1,

Core PHP Programming

IT-SC book 189

the function will be called with the RUSAGE_CHILDREN constant. You may wish to read
the man page for more information.

<?
 //show CPU time used
 $rusage = getrusage(1);
 print($rusage["ru_utime.tv_sec"] . " seconds
used.");
?>

boolean headers_sent()

The headers_sent function returns TRUE if HTTP headers have been sent. Headers must
precede any content, so executing a print statement or placing text outside PHP tags will
cause headers to be sent. Attempting to add headers to the stack after they're sent causes
an error.

<?
 if(headers_sent())
 {
 print("Can't add more headers!BR>\n");
 }
 else
 {
 header("X-Debug: It's OK to send a header");
 }
?>

boolean leak(integer bytes)

The leak function purposely leaks memory. It is useful mostly for testing the garbage-
collecting routines of PHP itself. You might also use it to simulate lots of memory usage
if you were stress-testing.

<?
 //leak 8 megs
 leak(8388608);
?>

boolean method_exists(object variable, string method)

The method_exists function returns TRUE when the named method exists in the
specified object.

Core PHP Programming

IT-SC book 190

<?
 class animal
 {
 var $name;
 }

 class dog extends animal
 {
 var $owner;
 function speak()
 {
 print("woof!");
 }
 }

 $gus = new dog;
 $gus->name = "Gus";

 if(method_exists($gus, "speak"))
 {
 $gus->speak();
 }
?>

openlog(string identifier, integer option, integer facility)

The openlog function begins a connection to the system log and calls C's openlog
function. It is not strictly required to call openlog before using syslog, but it may be
used to change the behavior of the syslog function. You may wish to refer to the man
page for openlog for more details. On Windows, emulation code is used to mimic UNIX
functionality.

The identifier argument will be added to the beginning of any messages sent to the
system log. Usually this is the name of the process or task being performed.

The option argument is a bitfield that controls toggling of miscellaneous options. Use a
logical-or operator to combine the options you want. Table 8.10 lists the values available.
Only the LOG_PID option has any effect under Windows.

Table 8.10. openlog Options

Constant Description
LOG_PID Add process identifier to each message.
LOG_CONS If a message can't be sent to the log, send it to the system console.
LOG_ODELAY Delay opening log until the first call to syslog. This is true by default.
LOG_NDELAY Open the log immediately. Do not wait for first call to syslog.
LOG_NOWAIT Do not wait for child processes. The use of this flag is discouraged.
LOG_PERROR Log all messages to stderr as well.

Core PHP Programming

IT-SC book 191

The facility argument sets a default value for the source of the error—that is, from
which part of the system the report comes. The argument is ignored under Windows.
Table 8.11 lists the facilities available.

See syslog for an example of use.

Table 8.11. openlog Facilities

Constant Facility
LOG_AUTH Authorization
LOG_AUTHPRIV Authorization Privileges
LOG_CRON Cron
LOG_DAEMON Daemon
LOG_KERN Kernal
LOG_LPR Printer
LOG_MAIL Mail
LOG_NEWS News
LOG_SYSLOG System Log
LOG_USER User
LOG_UUCP UNIX to UNIX protocol

phpcredits(integer flags)

The phpcredits function prints information about the major contributors to the PHP
project. If the optional flags argument is left out, all information will be provided.
Otherwise, you may combine the flags listed in Table 8.12 to choose a specific set of
information. The PHP_FULL_PAGE constant will cause the credits to be surrounded with
minimal tags for defining an HTML page.

Figure 8-9. phpcredits.

Core PHP Programming

IT-SC book 192

Table 8.12. Flags for phpcredits

CREDITS_FULLPAGE
CREDITS_GENERAL
CREDITS_MODULES
CREDITS_DOCS

boolean phpinfo(integer flags)

The phpinfo function sends a large amount of diagnostic information to the browser and
returns TRUE. The flags argument is not required. By default all information is returned.
You may use the flags listed in Table 8.13 with bitwise OR operators to choose specific
information.

The complete set of information will contain

PHP version

Core PHP Programming

IT-SC book 193

Credits

Operating system of the Web server

Extensions compiled into PHP executable

Every configuration variable

Every environment variable

Apache variables if running as an Apache module

HTTP headers

Table 8.13. Flags for phpcredits

INFO_GENERAL
INFO_CREDITS
INFO_CONFIGURATION
INFO_MODULES
INFO_ENVIRONMENT
INFO_VARIABLES
INFO_LICENSE

Calling phpinfo is a good way to find out which environment variables are available to
you.

<?
 phpinfo();
?>

string phpversion()

The phpversion function returns a string that describes the version of PHP executing the
script.

<?
 print("PHP version" . phpversion() . "
\n");
<?

print_r(expression)

The print_r function prints the value of an expression. If the expression is a string,
integer, or double, the simple representation of it is sent to the browser. If the expression

Core PHP Programming

IT-SC book 194

is an object or array, special notation is used to show indices or property names. Arrays
and objects are explored recursively in the cases where objects or arrays are contained
within each other.

<?
 //define some test variables
 $s = "a string";
 $a = array("x", "y", "z", array(1, 2, 3));

 //print a string
 print_r($s);
 print("\n");

 //print an array
 print_r($a);
 print("\n");
?>

show_source

Use show_source as an alias to highlight_file.

syslog(integer priority, string message)

The syslog function adds a message to the system log. It is a wrapper for C's function of
the same name. The priority is an integer that stands for how severe the situation is.
Under UNIX the priority may cause the system to take special measures. Priorities are
listed in Table 8.14.

Under Windows NT, emulation code is used to simulate the UNIX functionality.
Messages generated by the syslog function are added to theapplication log, which may be
viewed with Event Viewer. The priority isused in two ways. First, it is translated into
being either an error, a warning, or information. This determines the icon that appears
next to the message in Event Viewer. It is also used to fill the Category column. The
Event column will always be set to 2000 and the User column will be set to null.

Table 8.14. syslog Priorities

Constant Priority Description

_EMERG Emergency
This is a panic situation and the message may be broadcast to
all users of the system. On Windows this is translated into a
warning.

_ALERT Alert This is a situation that demands being corrected immediately.
It is translated into being an error on Windows.

_CRIT Critical This is a critical condition that may be created by hardware
errors. It is translated into being a warning on Windows.

_ERR Error These are general error conditions. They are translated into

Core PHP Programming

IT-SC book 195

warnings on Windows.
_WARNING Warning These are warnings, less severe than errors.

_NOTICE Notice
A notice is not an error but requires more attention than an
informational message. It is translated into a warning on
Windows.

_INFO Information
Informational messages do not require that any special action
be taken.

_DEBUG Debug These messages are of interest only to debugging tasks. They
are translated into warnings.

<?
 openlog("TEST", LOG_PID | LOG_CONS, LOG_USER);
 syslog(LOG_INFO, "The log has been tested");
 closelog();
?>

var_dump(expression,...)

The var_dump function reports all information about a given variable. Information is
printed directly to the browser. You may supply any number of variables separated by
commas. The output of the command is well formatted, including indention for cases
such as arrays containing other arrays. Arrays and objects are explored recursively.

<?
 //create a directory object
 $d = dir(".");

 //dump info about it
 var_dump($d)
?>

string zend_version()

Use zend_version to get the version of the Zend library.

<?
 print(zend_version());
?>

Session Handling

Core PHP Programming

IT-SC book 196

The functions in this section work with the session handling capabilities of PHP. They
were added in PHP 4. To read more about their use, turn back to Chapter 7. That chapter
also includes a complete example.

boolean session_decode(string code)

Use session_decode to read encoded session data and set the values of global variables
in the session. This happens automatically when you start a session with session_start.

boolean session_destroy()

The session_destroy function eliminates all the data stored in the session. It does not
destroy the session itself, however.

string session_encode()

The session_encode function returns a string that contains encoded information about
the current session.

string session_id(string id)

Use session_id to get the value of the session identifier. If you wish to change the
session identifier, supply the optional id argument. If you do, take care to do so before
any output is sent to the browser, because the identifier is sent as a cookie.

boolean session_is_registered(string name)

The session_is_registered function returns TRUE if the specified variable is registered
with the session.

string session_module_name(string name)

The session_module_name function returns the name of the module that handles session
duties. This is the same value set by the session.save_handler directive inside
php.ini. You can change the module name if you supply the optional name argument,
but the only one available at the time of writing was the files module.

If you wish to implement your own handler in PHP, see the
session_set_save_handler function.

string session_name(string name)

The session_name function returns the current name for the session variable. The
session may be renamed with the optional name argument. This name is used as the name
of the cookie that contains the session identifier. It's also used for the back-up GET

Core PHP Programming

IT-SC book 197

variable. Consequently, if you wish to override the name of the session defined in
php.ini, you must do so prior to registering any variables or starting the session.

boolean session_register(...)

The session_register function accepts any number of arguments, each of which may
be a string or an array. Each argument names a global variable that will be attached to the
session. Arrays passed as arguments will be traversed for elements. You can even pass
multidimensional arrays. Each registered variable that is set when the script ends will be
serialized and written into the session information. When the user returns with a later
request, the variables will be restored.

string session_save_path(string path)

The session_save_path function returns the path in the file system used to save
serialized session information. This is /tmp by default. The optional path argument will
change the path. Keep in mind, the permissions for this directory must include read/write
access for the Web server.

session_set_save_handler(string open, string close, string
read, string write, string destroy, string garbage)

The session_set_save_handler function allows you to implement an alternative
method for handling sessions. Each argument is the name of a function for handling a
certain aspect of the session handling process. Unfortunately, at the time of this writing
the code that implements this functionality was not finished. Consequently, I can describe
the expected arguments, but I can't provide a working example. See Table 8.15.

boolean session_start()

Use session_start to activate a session. If no session exists, one will be created. Since
this involves sending a cookie, you must call session_start before sending any text to
the browser. You can avoid using this function by configuring PHP to automatically start
sessions with each request. This is done with the session.auto_start directive in
php.ini.

Once you start a session, PHP will begin watching the variables you register with
session_register.

boolean session_unregister(string name)

Use session_unregister to remove a global variable from the session. It will not be
saved with the session when the script ends.

Table 8.15. Functions for Use with session_set_save_handler

Function Argument

Core PHP Programming

IT-SC book 198

open string SavePath, string SessionName
close none read string Variable
write string Variable, Value
destroy none
garbage integer MaximumLifetime

Shell Commands

This section describes functions that interact with the command shell in some way. Some
of them execute other programs, and two of them read or write to environment variables.

string exec(string command, array output, integer return)

The exec function attempts to execute the command argument as if you had typed it in
command shell. Nothing is echoed to the browser, but the last line of output from the
execution is returned. If the optional output argument is supplied, each line of output will
be added to the output argument as an array element. If the optional return argument is
supplied, the variable is set to the return value of the command.

It is very dangerous to put any user-supplied information inside the command argument.
Users may pass values in form fields that allow them to execute their own commands on
your Web server. If you must execute a command based on user input, pass the
information through the escape-shellcmd function, defined in Chapter 9.

Compare this function to passthru and system.

<?
 // get directory list for the root of C drive
 $LastLine = exec("dir C:\ quote>, $AllOutput, $ReturnValue);

 print("Last Line: $LastLine BR>\n");

 print("All Output:BR>\n");
 for($index = 0; $index count($AllOutput); $index++)
 {
 print("$AllOutput[$index] BR>\n");
 }
 print("BR>BR>\n");

 print("Return Value: $ReturnValueBR>\n");
?>

string getenv(string variable)

The getenv function returns the value of the given environment variable or false if there
is an error. PHP converts all environment variables into PHP variables, so this function is

Core PHP Programming

IT-SC book 199

useful only in those rare instances when environment variables change after a script
begins executing. If you need to set the value of an environment variable, use putenv.

<?
 print(getenv("PATH"));
?>

string passthru(string command, integer return)

The passthru function is similar to exec and system. The command argument is executed
as if you typed it in a command shell. If you provide the optional return argument, it
will be set with the return value of the command. All output will be returned by the
passthru function and sent to the browser. The output will be sent as binary data. This is
useful in situations where you need to execute a shell command that creates some binary
file, such as an image. See Chapter 17, "Database Integration," for an application of
this.

It is very dangerous to put any user-supplied information inside the command argument.
Users may pass values in form fields that allow them to execute their own commands on
your Web server. If you must allow this, pass the information through the
escapeshellcmd function first.

putenv(string variable)

The putenv function sets the value of an environment variable. You must use syntax
similar to that used by a command shell, as shown in the example below. To get the value
of an environment variable, use getenv, or use phpinfo to dump all environment
variables.

<?
 putenv("PATH=/local/bin;.");
?>

string system(string command, integer return)

The system function behaves identically to C's system function. It executes the command
argument, sends the output to the browser, and returns the last line of output. If the
return argument is provided, it is set with the return value of the command. If you do
not wish for the output to be sent to the browser, use the exec function.

It is very dangerous to put any user-supplied information inside the command argument.
Users may pass values in form fields that allow them to execute their own commands on

Core PHP Programming

IT-SC book 200

your Web server. If you must allow this, pass the information through the
escapeshellcmd function first.

<?
 // list files in directory
 print("PRE>");
 system("ls -l");
 print("/PRE>");
?>

HTTP Headers

HTTP headers are special commands sent between the browser and Web server before
the browser receives any content. Some of the headers let the server know which file the
browser wants. Others may instruct the browser about the type of file it will soon be sent.
To learn more about headers, refer to the HTTP specification that was originally
described in RFC 1945. It and other documents may be found at the W3C site, which has
a section devoted to the HTTP protocol <http://www.w3.org/Protocols/>. For an
overview of how headers work with PHP, turn back to Chapter 7.

boolean header(string http_header)

The header function sends an HTTP header to the browser. It must be called before any
output is sent to the browser, inside or outside PHP tags. You may wish to turn back to
the description of HTTP connections in Chapter 7. Many different kinds of headers may
be sent. Perhaps the most common is a location header, which redirects the browser to
another URI.

Each time you call header, it is pushed onto a stack. If you are unfamiliar with the
concept of a stack, think of it as a list of items placed one on top of another. When your
script gets to the point of sending content to the browser, headers are pulled from the
stack one at a time. This means headers are sent to the browser in reverse order.

Headers are also used to send cookies, but PHP's setcookie function is better suited for
this purpose.

One common trick the header function provides is sending a user to another page, as
demonstrated in the example below. Another is to force the browser to either download
the file or display it in an OLE container. This isdone by setting the Content-type
header, which PHP defaults to text/html. Sending a value of application/octet-
stream will cause most browsers to prompt the user for where to save the file. You can
also use other MIME types to get the browser to run a helper application. For example, if
you use application/vnd.ms-excel, a Windows machine with Microsoft Excel
installed will launch Excel in an OLE container inside the browser window. In this case
you don't need to send an actual Excel file. A simple tab-delimited file will be interpreted
correctly.

Core PHP Programming

IT-SC book 201

 // redirect request to another address
 header("Location: http://www.leonatkinson.com/");
?>

boolean setcookie(string name, string value, integer expire,
string path, string domain, integer secure)

Use setcookie to send a cookie to the browser. Cookies are sent as headers during an
HTTP connection. Since cookie headers are more complex than other headers, it is nice
to have a function specifically for sending cookies. Keep in mind that all headers must be
sent prior to any content. Also, calling setcookie does not create a PHP variable until the
cookie is sent back by the browser on the next page load.

If setcookie is called with only the name argument, the cookie will be deleted from the
browser's cookie database. Otherwise, a cookie will be created on the client browser with
the name and value given.

The optional expire argument sets a time when the cookie will automatically be deleted
by the browser. This takes the form of seconds since January 1, 1970. PHP converts this
into Greenwich Mean Time and the proper form for the Set-Cookie header. If the expire
argument is omitted, the browser will delete the cookie when the session ends. Usually
this means when the browser application is shut down.

The path and domain arguments are used by the browser to determine whether to send
the cookie. The hostname of the Web server is compared to the domain. If it is left empty,
the complete hostname of the server setting the cookie is used. The path is matched
against the beginning of the path onthe server to the document. The cookie specification
requires that domains contain two periods. This is to prevent scripts that get sent to every
top-level domain (.com, .edu, .net). It also prevents a domain value of
leonatkinson.com. Just remember to add a leading dot.

The secure argument is used to tell the browser to send the cookie only over secure
connections which use Secure Socket Layers. Use a value of 1 to denote a secure cookie.

Like other headers, those created by the setcookie function are pushed onto a stack,
which causes them to be sent in reverse order. If you set the same cookie more than once,
the first call to setcookie will be executed last. Most likely, this isn't what you intend.
Keep track of the value you intend to set as the value of the cookie and call setcookie
once.

Netscape, which developed cookies, offers more information about them in a document
titled Persistent Client State: HTTP Cookies. Its URL is

<http://developer.netscape.com/docs/manuals/communicator/jsguide4/cooki
es.htm>.

Core PHP Programming

IT-SC book 202

How do you know if a browser accepts your cookie? The only way is to send one and test
that it is returned on the next page request.

 /*
 ** mark this site as being visited
 ** for the next 24 hours
 */
 setcookie ("HasVisitedLast24Hours", "Yes", time()+86400;
?>

Network I/O

The network I/O functions send information directly over the Internet Protocol, or they
fetch information about Internet hosts.

boolean checkdnsrr(string host, string type)

The checkdnsrr function checks DNS records for a host. The type argument defines the
type of records for which to search. Valid types are listed in Table 8.16.

If type is not specified, checkdnsrr checks for MX records. You may wish to read the
man page for named, the Internet domain name server daemon.

<?
 if(checkdnsrr("clearink.com", "MX"))
 {
 print("clearink.com is a mail exchanger");
 }
?>

integer fsockopen(string hostname, integer port, integer
error_number, string error_description, double timeout)

The fsockopen begins a network connection as a file stream, returning a file descriptor
suitable for use by fputs, fgets, and other file-stream functions discussed earlier in this
chapter. A connection is attempted to the hostname at the given port. The hostname may
also be a numerical IP address. The hostname may also be the path to a UNIX domain
socket, in which case port should be set to 0. Some operating systems, specifically
Windows, don't support UNIX domain sockets.

Table 8.16. DNS Record Types

Type Description

Core PHP Programming

IT-SC book 203

A IP Address
ANY Any records
CNAME Canonical name
MX Mail Exchanger
NS Name Server
SOA Start of a zone of authority

If an error occurs, FALSE is returned and the optional error_number and
error_description arguments are set. They must be passed by reference, which means
adding an ampersand (&) prior to the dollar sign. If the error number returned is zero, an
error occurred before PHP tried to connect. This may indicate a problem initializing the
socket.

The optional timeout argument will set the number of seconds PHP will wait for a
connection to be established. You may specify fractions of a second as well, if you wish.

The pfsockopen adds persistence to the fsockopen functionality.

 //tell browser not to render this
 header("Content-type: text/plain");

 //try to connect to Web server,
 //timeout after 60 seconds
 $fp = fsockopen("www.clearink.com", 80,
 &$error_number, &$error_description,
 60);

 if($fp)
 {
 //set nonblocking mode
 set_socket_blocking($fp, FALSE);

 // tell server we want root document
 fputs($fp, "GET / HTTP/1.0");
 fputs($fp, "\r\n\r\n");

 while(!feof($fp))
 {
 //print next 4K
 print(fgets($fp, 4096));
 }

 //close connection
 fclose($fp);

 }
 else
 {
 //$connect was false
 print("An error occurred
\n");
 print("Number: $error_number
\n");

Core PHP Programming

IT-SC book 204

 print("Description: $error_description
\n");
 }
?>

string gethostbyaddr(string ip_address)

The gethostbyaddr function returns the name of the host specified by the numerical IP
address. If the host cannot be resolved, the address is returned.

<?
 print(gethostbyaddr("207.46.131.30"));
?>

string gethostbyname(string hostname)

The gethostbyname function returns the IP address of the host specified by its name. It is
possible a domain name resolves to more than one IP address. To get each one, use
gethostbynamel.

<?
 print(gethostbyname("www.php.net"));
?>

array gethostbynamel(string hostname)

The gethostbynamel function returns a list of IP addresses that a given hostname
resolves to.

<?
 $hosts = gethostbynamel("www.microsoft.com");
 for($index = 0; $index count($hosts); $index++)
 {
 print("$hosts[$index] BR>\n");
 }
?>

boolean getmxrr(string host, array mxhost, array weight)

The getmxrr function gets mail-exchanger DNS records for a host. Hostnames will be
added to the array specified by the mxhost argument. The optional weight array is

Core PHP Programming

IT-SC book 205

assigned with the weight for each host. The return value signals whether the operation
was successful.

Chapter 18 contains an example of using getmxrr to verify an email address.

 //get mail-exchanger records for clearink.com
 getmxrr("clearink.com", $mxrecord, $weight);

 //display results
 for($index=0; $index count($mxrecord); $index++)
 {
 print($mxrecord[$index]);
 print(" - ");
 print($weight[$index]);
 print("BR>\n");
 }
?>

integer getprotobyname(string name)

The getprotobyname function returns the number associated with a protocol.

string getprotobynumber(integer protocol)

The getprotobynumber function returns the name of a protocol given its number.

integer getservbyname(string service, string protocol)

The getservbyname function returns the port used by a service. The protocol argument
must be tcp or udp.

 //check which port ftp uses
 $port = getservbyname("ftp", "tcp");

 print("port $port
\n");
?>

string getservbyport(integer service, string protocol)

The getservbyport function returns the name of the service that uses a specified port.
The protocol argument must be tcp or udp.

<?
 //check which service uses port 25

Core PHP Programming

IT-SC book 206

 $service = getservbyport(25, "tcp");

 print("$serviceBR>\n");
?>

boolean mail(string recipient, string subject, string body, string
additional_headers)

The mail function sends email. Under UNIX it runs the sendmail shell command. Under
Windows it makes a connection to an SMTP server. The mail is sent to the address
specified in the recipient argument. You may specify multiple recipients by separating
them with commas. You must also provide a subject and a message body.Optionally, you
may provide additional headers in the fourth argument. Each extra header should be
separated by a single newline character. If the mail is sent successfully, true is returned.

On Windows, Date: and From: headers are added to the message automatically, unless
you supply them yourself.

There are a few directives in php.ini for configuring this function. For Windows you can
set the name of the SMTP host using the SMTP directive, and you can set the default
From: header with the sendmail_from directive. It's valid, of course, to point to an
SMTP server on the localhost. For UNIX, you may specify the path to your sendmail
executable, which may have an acceptable default compiled in already. You can't set up
PHP on UNIX to send mail directly to a remote SMTP host. You can configure sendmail
to relay messages to a specific host, but the instructions are outside the scope of this text.

See Chapter 18 for an example that sends attachments.

<?
 //define who is to receive the mail
 //(in this case, root of the localhost)
 $mailTo = "root@" . $SERVER_NAME;

 //set the subject
 $mailSubject = "Testing Mail";

 //build body of the message
 $mailBody = "This is a test of PHP's mail function. ";
 $mailBody .= "It was generated by PHP version ";
 $mailBody .= phpversion();

 //add a from header
 $mailHeaders = "From: php@$SERVER_NAME.com\n";

 //send mail
 if(mail($mailTo, $mailSubject, $mailBody, $mailHeaders))
 {
 print("Mail successfull sent to $mailTo.");
 }

Core PHP Programming

IT-SC book 207

 else
 {
 print("Mail could not be sent to $mailTo.");
 }
?>

integer pfsockopen(string hostname, integer port, integer
error_number, string error_description, double timeout)

The pfsockopen function operates identically to fsockopen, except that connections are
cached. Connections opened with pfsockopen are not closed when a script terminates.
They persist with the server process.

boolean set_socket_blocking(integer file_descriptor, boolean
mode)

The set_socket_blocking function sets whether a file stream is blocking. In
nonblocking mode, calls to functions that get information from the stream will return
immediately with whatever data are in the input buffer. Blocking mode forces execution
to halt until sufficient data are received.

FTP

The functions in this section allow you to make connections to FTP servers. FTP is the
file transfer protocol. While the file functions allow you to open and manipulate remote
files by specifying a URL instead of a local path, these functions operate directly with the
FTP protocol. They offer a greater degree of control. They also allow you to get a list of
files on the server. The FTP functions were added to PHP by Andrew Skalski.M.

boolean ftp_cdup(integer link)

The ftp_cdup function changes the working directory to the parent directory.

boolean ftp_chdir(integer link, string directory)

The ftp_chdir function moves the working directory to the specified directory.

integer ftp_connect(string host, integer port)

Use ftp_connect to begin an FTP connection. The port argument is optional. An FTP
resource identifier will be returned if the connection is successful, FALSE otherwise. This
ID is used in the rest of the FTP commands. Remem- ber that once you connect, you
must log in before you can issue any commands.

Core PHP Programming

IT-SC book 208

<?
 //connect to server
 if(!($ftp = ftp_connect("localhost")))
 {
 print("Unable to connect!BR>\n");
 exit();
 }

 print("Connected.BR>\n");

 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@localhost"))
 {
 print("Unable to login!BR>\n");
 exit();
 }

 print("Logged In.BR>\n");

 //print system type
 print("System Type: " . ftp_systype($ftp) . "BR>\n");

 //make sure passive mode is off
 ftp_pasv($ftp, FALSE);

 //get working directory
 print("Working Directory: " . ftp_pwd($ftp) . "BR>\n");

 //get files in raw format
 print("Raw List:BR>\n");
 foreach(ftp_rawlist($ftp, ".") as $line)
 {
 print("$lineBR>\n");
 }
 print("BR>\n");

 //move to pub directory
 if(!ftp_chdir($ftp, "pub"))
 {
 print("Unable to go to the pub directory!BR>\n");
 }

 print("Moved to pub directory.BR>\n");

 //get a list of files
 print("Files:BR>\n");
 foreach(ftp_nlist($ftp, ".") as $filename)
 {
 print("$filenameBR>\n");
 }
 print("BR>\n");

 //return to root directory
 if(!ftp_cdup($ftp))
 {
 print("Failed to move up a directory!BR>\n");
 }

Core PHP Programming

IT-SC book 209

 //close connection
 ftp_quit($ftp);
?>

boolean ftp_delete(integer link, string path)

The ftp_delete function removes a file on the remote server. The link argument is as
returned by ftp_connect. The path argument is the path on the remote server to the file
to be deleted. See ftp_put for an example of use.

boolean ftp_fget(integer link, integer file, string filename,
integer mode)

The ftp_fget function copies a remote file into an open file stream. You must create a
file resource using fopen or a similar function to pass as the second argument. The mode
argument should be set with one of two constants: FTP_ASCII or FTP_IMAGE. These are
sometimes referred to as text or binary modes.

<?
 //connect to server
 if(!($ftp = ftp_connect("localhost")))
 {
 print("Unable to connect!BR>\n");
 exit();
 }

 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@localhost"))
 {
 print("Unable to login!BR>\n");
 exit();
 }

 //open local file for writing
 $fp = fopen("/tmp/ftp_fget.test", "w");

 //save remote file in open file stream
 if(!ftp_fget($ftp, $fp, "data.txt", FTP_ASCII)))
 {
 print("Unable to get remote file!BR>\n");
 }

 //close local file
 fclose($fp);

 //close connection
 ftp_quit($ftp);
?>

Core PHP Programming

IT-SC book 210

boolean ftp_fput(integer link, string remote, integer file,
integer mode)

The ftp_fput function creates a file on the remote server from the contents of an open
file stream. The link argument is as returned by ftp_connect. The remote argument is
the path to the file to be created on the remote server. The file argument is a file
identifier as returned by fopen or a similar function. The mode argument should be
FTP_ASCII or FTP_IMAGE.

<?
 //connect to server
 if(!($ftp = ftp_connect("localhost"))
 {
 print("Unable to connect!BR>\n");
 exit();
 }

 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@localhost"))
 {
 print("Unable to login!BR>\n");
 exit();
 }

 //open local file
 if(!($fp = fopen("/tmp/data.txt", "r"))
 {
 print("Unable to open local file!BR>\n");
 exit();
 }
 //write file to remote server
 ftp_fput($ftp, "data.txt", $fp, FTP_ASCII);

 //close local file
 fclose($fp);

 //close connection
 ftp_quit($ftp);
?>

boolean ftp_get(integer link, string local, string remote, integer
mode)

Use ftp_get to copy a file from the remote server to local filesystem. The link argument
is as returned by ftp_connect. The local and remote arguments specify paths. The
mode argument should use FTP_ASCII or FTP_IMAGE.

Core PHP Programming

IT-SC book 211

<?
 //connect to server
 if(!($ftp = ftp_connect("localhost")))
 {
 print("Unable to connect!BR>\n");
 exit();
 }

 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@localhost"))
 {
 print("Unable to login!BR>\n");
 exit();
 }

 //save file to tmp directory
 ftp_get($ftp, "/tmp/data.bin", "/pub/data.bin",FTP_IMAGE);

 //close connection
 ftp_quit($ftp);
?>

boolean ftp_login(integer link, string username, string
password)

Once you make a connection to an FTP server, you must use ftp_login to identify
yourself. All three arguments are required, even if you are logging in anonymously. See
ftp_connect for an example of use.

integer ftp_mdtm(integer link, string path)

The ftp_mdtm function returns the last modification time for the file named in the path
argument.

<?
 //connect to server
 if(!($ftp = ftp_connect("localhost")))
 {
 print("Unable to connect!BR>\n");
 exit();
 }

 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@localhost"))
 {
 print("Unable to login!BR>\n");
 exit();
 }

 //get the size of the README file

Core PHP Programming

IT-SC book 212

 print("Size: " . ftp_size($ftp, "README") . "BR>\n");

 //get the last modification date
 print("Modified: " .
 date("Y-m-d", ftp_mdtm($ftp, "README")) .
 "BR>\n");

 //close connection
 ftp_quit($ftp);
?>

string ftp_mkdir(integer link, string directory)

The ftp_mkdir function creates a directory on the remote server. FALSE is returned if the
directory cannot be created.

<?
 //connect to server
 if(!($ftp = ftp_connect("localhost")))
 {
 print("Unable to connect!BR>\n");
 exit();
 }

 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@localhost"))
 {
 print("Unable to login!BR>\n");
 exit();
 }

 //create a new directory
 $result = ftp_mkdir($ftp, "corephp");
 if($result)
 {
 print("Created directory: $resultBR>\n");
 }
 else
 {
 print("Unable to create corephp directory!BR>\n");
 }

 //remove corephp directory
 if(!ftp_rmdir($ftp, "corephp"))
 {
 print("Unable to remove corephp directory!BR>\n");
 }

 //close connection
 ftp_quit($ftp);
?>

Core PHP Programming

IT-SC book 213

array ftp_nlist(integer link, string directory)

The ftp_nlist function returns an array of files in the specified directory.

boolean ftp_pasv(integer link, boolean on)

Use ftp_pasv to turn passive mode on or off. It is off by default.

boolean ftp_put(integer link, string remote, string local,
integer mode)

The ftp_put function copies a file from the local filesystem to the remote server. The
link argument is as returned by ftp_connect. The local and remote arguments specify
paths. The mode argument should be either FTP_ASCII or FTP_IMAGE.

<?
 //connect to server
 if(!($ftp = ftp_connect("localhost")))
 {
 print("Unable to connect!BR>\n");
 exit();
 }

 //log in
 if(!ftp_login($ftp, "anonymous", "corephp@localhost"))
 {
 print("Unable to login!BR>\n");
 exit();
 }

 //copy local file to remote server
 ftp_put($ftp, "/uploads/data.txt", "
/tmp/data.txt", FTP_ASCII);

 //remove remote file
 ftp_delete($ftp, "/uploads/data.txt");

 //close connection
 ftp_quit($ftp);
?>

string ftp_pwd(integer link)

The ftp_pwd function returns the name of the current directory. See ftp_connect for an
example of use.

Core PHP Programming

IT-SC book 214

boolean ftp_quit(integer link)

Use ftp_quit to close an FTP connection.

array ftp_rawlist(integer link, string directory)

The ftp_rawlist returns the raw output of an ls -l command on the given directory.

boolean ftp_rename(integer link, string original, string new)

The ftp_rename function changes the name of a file on the remote server.

boolean ftp_rmdir(integer link, string directory)

Use ftp_rmdir to remove a directory.

integer ftp_size(integer link, string path)

The ftp_size function returns the size of a remote file in bytes. If an error occurs, -1 is
returned.

string ftp_systype(integer link)

The ftp_systype function returns the system type of the remote FTP server.

Core PHP Programming

IT-SC book 215

Chapter 9. DATA FUNCTIONS

Data Types, Constants, and Variables

Arrays

Hashing

Strings

Encoding and Decoding

Encryption

Regular Expressions

PERL-compatible Regular Expressions

The functions in this chapter manipulate data. They check the values of variables. They
transform one type of data into another. They also deal with arrays. You may find it
useful to turn back to Chapter 2, "Variables, Operators, and Expressions,"
and read the discussion on data types and variables.

Data Types, Constants, and Variables

These functions check the status of a variable, change its type, or return a value as a
particular data type.

boolean define(string name, value, boolean
non_case_sensitive)

The define function creates a constant, which is essentially a variable that may be set
only once. The value argument may be a string, integer, double, or boolean. It may not
be an array or object. The non_case_sensitive argument is optional. By default,
constants are case sensitive, which is the same as with variables.

If the constant cannot be created for some reason, FALSE will be returned. If you wish to
check that a constant is defined, use the defined function.

It is customary to name constants using all uppercase letters, as is the practice in C. This
makes them stand out among other identifiers.

Because PHP allows for unquoted string literals, it is possible to write code that uses
constants that do not exist, yet produces no error. When you are using constants to hold
strings to be displayed on the page, this is simply an annoyance, because you can see the
error right away. When used for values not displayed, it can be a frustrating source of

Core PHP Programming

IT-SC book 216

bugs. If you discover a constant mysteriously evaluating to zero, check that the constant
has been defined.

<?
 /*
 ** Database variables
 */
 define("DATABASE_HOST", "localhost");
 define("DATABASE_USER", "httpd");
 define("DATABASE_PASSWORD", "");
 define("DATABASE_NAME", "freetrade");

 print("Connecting to " . DATABASE_HOST . "
\n");
?>

boolean defined(string constantname)

The defined function returns TRUE if a constant exists, FALSE otherwise.

<?
 define("THERMOSTAT","72 degrees");
 if(defined("THERMOSTAT"))
 {
 print("THERMOSTAT is " . THERMOSTAT);
 }
?>

double doubleval(expression)

The doubleval function returns its argument as a double. Chapter 2 discusses
converting between data types. Related functions are strval and intval. It is an error to
pass an array or object to doubleval.

<?
 $myNumber = "13.1cm";
 print(doubleval($myNumber));
?>

empty

This function is an alias for isset.

string gettype(expression)

Core PHP Programming

IT-SC book 217

The gettype function returns a string that describes the type of the variable or
expression. It will be one of the following values: array, class, double, integer,
object, resource, string, unknown type.

<?
 //integer
 printf("%s
\n", gettype(11));

 //double
 printf("%s
\n", gettype(7.3));

 //string
 printf("%s
\n", gettype("hello"));
?>

integer intval(expression, integer base)

The intval function returns its argument as an integer. The optional base argument
instructs intval to use a numerical base other than ten.

Chapter 2 discusses converting between types.

<?
 //drop extraneous stuff after decimal point
 print(intval("13.5cm") . "
\n");

 //convert from hex
 print(intval("EE", 16));
?>

boolean is_array(expression)

The is_array function returns TRUE if the expression is an array, otherwise FALSE is
returned.

<?
 $colors = array("red", "blue", "green");
 if(is_array($colors))
 {
 print("colors is an array");
 }
?>

Core PHP Programming

IT-SC book 218

boolean is_bool(expression)

Use is_bool to test whether an expression is a boolean.

boolean is_double(expression)

The is_double function returns TRUE if the expression is a double, FALSE otherwise.

<?
 $Temperature = 15.23;
 if(is_double($Temperature))
 {
 print("Temperature is a double");
 }
?>

is_float

The is_float function is an alias for the is_double function.

is_int

The is_int function is an alias for the is_integer function.

boolean is_integer(expression)

The is_integer function returns TRUE if the expression is an integer, FALSE otherwise.

<?
 $PageCount = 2234;
 if(is_integer($PageCount))
 {
 print("$PageCount is an integer");
 }
?>

is_long

The is_long function is an alias for the is_integer function.

boolean is_object(expression)

The is_object function returns TRUE if the expression is an object, FALSE otherwise.

Core PHP Programming

IT-SC book 219

<?
 class widget
 {
 var $name;
 var $length;
 }

 $thing = new widget;

 if(is_object($thing))
 {
 print("thing is an object");
 }
?>

boolean is_real(expression)

The is_real function is an alias for the is_double function.

boolean is_resource(variable)

This function returns TRUE if the given variable is a resource. A resource is an integer
used to identify a system resource. An example is the return value of fopen.

boolean is_string(expression)

The is_string function returns TRUE if the expression is a string, FALSE otherwise.

<?
 $Greeting = "Hello";
 if(is_string($Greeting))
 {
 print("Greeting is a string");
 }
?>

boolean isset(variable)

The isset function returns TRUE if the variable has been given a value, or FALSE if the
variable has never been on the left side of a set operator. In other words, it tests that the
variable has been set with a value.

<?
 if(isset($Name))
 {

Core PHP Programming

IT-SC book 220

 print("Your Name is $Name");
 }
 else
 {
 print("I don't know your name");
 }
?>

boolean settype(variable, string type)

The settype function changes the type of a variable. The type is written as a string and
may be one of the following: array, double, integer, object, string. If the type could
not be set, FALSE is returned.

<?
 $myValue = 123.45;
 settype($myValue, "integer");
 print($myValue);
?>

string strval(expression)

The strval function returns its argument as a string.

<?
 $myNumber = 13;
 print(strval($myNumber));
?>

unset(variable)

The unset function destroys a variable, causing all memory associated with the variable
to be freed.

<?
 $list[0] = "milk";
 $list[1] = "eggs";
 $list[2] = "sugar";

 unset($list);

 if(!isset($list))
 {
 print("list has been cleared and has ");

Core PHP Programming

IT-SC book 221

 print(count($list));
 print(" elements");
 }
?>

Arrays

The functions in this section operate on arrays. Some of them sort the arrays; some of
them help you find and retrieve values from arrays. Chapter 5, "Arrays," discusses arrays
in depth.

array array(...)

The array function takes a list of values separated by commas and returns an array. This
is especially useful for creating one-off arrays to be passed to functions. Elements will be
added to the array as if you used empty square brackets, which means they are numbered
consecutively starting at zero. You may use the => operator to specify index values.

<?
 //create an array
 $myArray = array(
 "Name"=>"Leon Atkinson",
 "Profession"=>array("Programmer", "Author"),
 "Residence"=>"Martinez, California"
);
?>

array array_count_values(array data)

The array_count_values function returns counts for each distinct value in the data
argument. The returned array is indexed by the values of the data argument. Although
the example below uses an array of numbers, array_count_values will count the
appearance of elements that contain any other data type.

Figure 9-1. array_count_values.

Core PHP Programming

IT-SC book 222

array array_flip(array data)

The array_flip function returns the data argument with the indices and elements
exchanged.

Figure 9-2. array_flip.

Core PHP Programming

IT-SC book 223

array array_keys(array data, string value)

The array_keys function returns an array of the keys used in the data array. If the
optional value argument is supplied, only the subset of indices that point the given
element value are returned.

<?
 //create random test data with 0 or 1

Core PHP Programming

IT-SC book 224

 srand(time());
 for($i=0; $i<10; $i++)
 {
 $data[] = rand(0,1);
 }

 //print out the keys to 1's
 foreach(array_keys($data, 1) as $key)
 {
 print("$key
\n");
 }
?>

array array_merge (array data, array data, ...)

The array_merge function takes two or more arrays and returns a single array containing
all elements. Elements indexed by integers are added to the new array one at a time, in
most cases renumbering them. Elements indexed by strings retain their index values and
are added as they are encountered in the input arrays. They may replace previous values.
If you are unsure of the indices used in the merged arrays, you can use array_values to
make sure all values are indexed by an integer.

<?
 function printElement($element)
 {
 print("$element
\n");
 }

 //set up an array of color names
 $colors = array("red", "blue", "green");
 $more_colors = array("yellow", "purple", "orange");

 //merge arrays
 $all_colors = array_merge($colors, $more_colors);

 //print out all the values
 array_walk($all_colors, "printElement");
?>

boolean array_multisort(array data, integer direction, ...)

The array_multisort function sorts arrays together, as if array were a column in a
table. The data argument is an array and the direction argument is one of two
constants: SORT_ASC or SORT_DESC. These stand for ascending and descending,
respectively. If left out, the direction defaults to ascending order, which is smallest to
largest. You may specify any number of arrays, but you must alternate between arrays
and sort order constants as you do.

Core PHP Programming

IT-SC book 225

The way array_multisort works is similar to the way a relational database sorts the
results of a join. The first element of each array is joined into a virtual row, and all
elements in a row move together. The arrays are sorted by the first array. In the case
where elements of the first array repeat, rows are sorted on the second row. Sorting
continues as necessary.

Figure 9-3. array_multisort.

array array_pad(array data, integer size, value padding)

The array_pad function adds elements to an array until it has the number of elements
specified by the size argument. If the array is long enough already, no elements are
added. Otherwise, the padding argument is used for the value of the new elements. If the
size argument is positive, padding is added to the end of the array. If the size argument
is negative, padding is added to the beginning.

<?

Core PHP Programming

IT-SC book 226

 //create test data
 $data = array(1,2,3);

 //add "start" to beginning of array
 $data = array_pad($data, -4, "start");

 //add "end" to end of array
 $data = array_pad($data, 5, "end");

 foreach($data as $value)
 {
 print("$value
\n");
 }
?>

value array_pop(array stack)

The array_pop function returns the last element of an array, removing it from the array
as well. The array_push function compliments it, and array_shift and
array_unshift add and remove elements from the beginning of an array.

<?
 //set up an array of color names
 $colors = array("red", "blue", "green");

 $lastColor = array_pop($colors);
 //prints "green"
 print($lastColor . "
\n");

 //shows that colors contains red, blue
 print("<PRE>");
 print_r($colors);
 print("</PRE>\n");
?>

boolean array_push(array stack, expression entry, ...)

The array_push function adds one or more values to the end of an array. It treats the
array as a stack. Use array_pop to remove elements from the stack. The array_shift
and array_unshift functions add and remove elements to the beginning of an array.

<?
 //set up an array of color names
 $colors = array("red", "blue", "green");

 //push two more color names
 array_push($colors, "purple", "yellow");

Core PHP Programming

IT-SC book 227

 //print out all the values
 //(red, blue, green, purple, yellow)
 print("<PRE>");
 print_r($colors);
 print("</PRE>\n".);
?>

array array_reverse(array data)

The array_reverse function returns the data argument with the elements in reverse
order. The elements are not sorted in any way. They are simply in the opposite order.

<?
 //create test data
 $data = array(3, 1, 2, 7, 5);

 //reverse order
 $data = array_reverse($data);

 //print in reverse order
 //5, 7, 2, 1, 3
 print("<PRE>");
 print_r($data);
 print("</PRE>\n");
?>

value array_shift(array stack)

The array_shift function returns the first element of an array, removing it as well. This
allows you to treat the array like a stack. The array_unshift function adds an element
to the beginning of an array. Use array_pop and array_push to perform the same
actions with the end of the array.

<?
 //set up an array of color names
 $colors = array("red", "blue", "green");

 $firstColor = array_shift($colors);

 //print "red"
 print($firstColor . "
\n");

 //dump colors (blue, green)
 print("<PRE>");
 print_r($colors);
 print("</PRE>\n");
?>

Core PHP Programming

IT-SC book 228

array array_slice(array data, integer start, integer stop)

The array_slice function returns part of an array, starting with the element specified by
the start argument. If you specify a negative value for start, the starting position will
be that many elements before the last element. The optional stop argument allows you to
specify how many elements to return or where to stop returning values. A positive value
is treated as a maximum number of elements to return. A negative stop is used to count
backward from the last element to specify the element at which to stop.

Compare this function to array_merge and array_splice.

<?
 function printElement($element)
 {
 print("$element
\n");
 }

 //set up an array of color names
 $colors = array("red", "blue", "green",
 "purple", "cyan", "yellow");

 //get a new array consisting of a slice
 //from "green" to "cyan"
 $colors_slice = array_slice($colors, 2, 3);

 //print out all the values
 array_walk($colors_slice, "printElement");
?>

array_splice(array data, integer start, integer stop, array
insert_data)

The array_splice function removes part of an array and inserts another in its place. The
array passed is altered in place, not returned. Starting with the element specified by the
start argument, elements are removed until the element specified by the stop argument
is reached. If stop is left out, then removal continues until the end of the array. If stop is
negative, it references from the end of the array backward. It is possible to specify start
and stop values that do not actually remove any values. For instance, the stop value may
be positive and less than start. This is a valid way to use array_splice to insert an
array without removing any elements.

In place of any removed elements, the array passed as the insert_data argument is
inserted if it is supplied. Declaring it is optional, as you may wish simply to remove some
elements. If you wish to insert a single element into the array, you do not need to supply
an array for insert_data.

Core PHP Programming

IT-SC book 229

Compare this function to array_merge and array_slice.

<?
 function printElement($element)
 {
 print("$element
\n");
 }

 //set up an array of color names
 $colors = array("red", "blue", "green",
 "yellow", "orange", "purple");

 //remove green
 array_splice($colors, 2, 2);

 //insert "pink" after "blue"
 array_splice($colors, 2, 0, "pink");

 //insert "cyan" and "black" between
 //"orange" and "purple"
 array_splice($colors, 4, 0, array("cyan", "black"));

 //print out all the values
 array_walk($colors, "printElement");
?>

boolean array_unshift(array stack, expression entry, ...)

The array_unshift function adds one or more values to the beginning of an array, as if
the array were a stack. Use array_shift to remove an element from the beginning of an
array. Compare this function to array_pop and array_push, which operate on the end of
the array.

<?
 function printElement($element)
 {
 print("$element
\n");
 }

 //set up an array of color names
 $colors = array("red", "blue", "green");

 //push two more color names
 array_unshift($colors, "purple", "yellow");

 //print out all the values
 array_walk($colors, "printElement");
?>

Core PHP Programming

IT-SC book 230

array array_values(array data)

The array_values function returns just the array elements, re-indexed with integers.

<?
 //set up an array of color names
 $UserInfo = array("First Name"=>"Leon",
 "Last Name"=>"Atkinson",
 "Favorite Language"=>"PHP");

 //re-index using integers
 $UserInfo = array_values($UserInfo);

 //print out all the values and their
 //new indices
 for($n=0; $n count($UserInfo); $n++)
 {
 print("($n) $UserInfo[$n]
\n");
 }
?>

boolean array_walk(array data, string function)

The array_walk function executes the specified function on each element of the given
array. The function must take exactly one element; otherwise an error message is
generated. The array elements will be passed by reference, so any change made to them
by the specified function will be permanent in the array. The function specified must be
one you create, not a built-in PHP function.

<?
 $colors = array("red", "blue", "green");

 function printElement($element)
 {
 print("$element
\n");
 }

 array_walk($colors, "printElement");
?>

arsort(array unsorted_array)

The arsort function sorts an array in reverse order by its values. The indices are moved
along with the values. This sort is intended for associative arrays. Chapter 15, "Sorting,
Searching, and Random Numbers," discusses sorting in depth.

Core PHP Programming

IT-SC book 231

<?
 // build array
 $users = array("bob"=>"Robert",
 "steve"=>"Stephen",
 "jon"=>"Jonathon");

 // sort array
 arsort($users);

 // print out the values
 for(reset($users); $index=key($users); next($users))
 {
 print("$index : $users[$index]
\n");
 }
?>

asort(array unsorted_array)

The asort function sorts an array by its values. The indices are moved along with the
values. This sort is intended for associative arrays. Chapter 15 discusses sorting in depth.

<?
 // build array
 $users = array("bob"=>"Robert",
 "steve"=>"Stephen",
 "jon"=>"Jonathon");

 // sort array
 asort($users);

 // print out the values
 for(reset($users); $index=key($users); next($users))
 {
 print("$index : $users[$index]
\n");
 }
?>

array compact(...)

The compact function returns an array containing the names and values of variables
named by the arguments. Any number of arguments may be passed, and they may be
single string values or arrays of string values. Arrays containing other arrays will be
recursively explored. The variables must be in the current scope. This function
complements extract, which creates variables from an array.

Figure 9-4. compact.

Core PHP Programming

IT-SC book 232

integer count(variable array)

The count function returns the number of elements in an array. If the variable has never
been set, count returns zero. If the variable is not an array, count returns 1. Despite this
added functionality, you should use the isset and is_array functions to determine the
nature of a variable.

<?
 $colors = array("red", "green", "blue");
 print(count($colors));
?>

Core PHP Programming

IT-SC book 233

value current(array arrayname)

The current function returns the value of the current element pointed to by PHP's
internal pointer. Each array maintains a pointer to one of the elements of an array. By
default it points to the first element added to the array until it is moved by a function such
as next or reset.

<?
 //create test data
 $colors = array("red", "green", "blue");

 //loop through array using current
 for(reset($colors); $value = current($colors); next($colors))
 {
 print("$value
\n");
 }
?>

array each(array arrayname)

The each function returns a four-element array that represents the next value from an
array. The four elements of the returned array (0, 1, key, and value) refer to the key and
value of the current element. You may refer to the key with 0 or key, and to get the value
use 1 or value. You may traverse an entire array by repeatedly using list and each, as
in the example below.

<?
 //create test data
 $colors = array("red", "green", "blue");
 //loop through array using each
 //output will be like "0 = red"
 while(list($key, $value) = each($colors))
 {
 print("$key = $value
\n");
 }
?>

end(array arrayname)

The end function moves PHP's internal array pointer to the array's last element. The reset
function moves the internal pointer to the first element.

<?
 $colors = array("red", "green", "blue");
 end($colors);

Core PHP Programming

IT-SC book 234

 print(current($colors));
?>

array explode(string delimiter, string data)

The explode function creates an array from a string. The delimiter argument divides
the data argument into elements. This function is safe for use with binary strings. The
implode function will convert an array into a string.

<?
 /*
 ** convert tab-delimited list into an array
 */
 $data = "red\tgreen\tblue";
 $colors = explode("\t", $data);

 // print out the values
 for($index=0; $index < count($colors); $index++)
 {
 print("$index : $colors[$index]
\n");
 }
?>

extract(array variables, integer mode, string prefix)

The extract function creates variables in the local scope based on elements in the
variables argument. Elements not indexed by strings are ignored. The optional mode
argument controls whether variables overwrite existing variables or are renamed to avoid
a collision. The valid modes are listed in Table 9.1. If left out, EXTR_OVERWRITE mode is
assumed. The prefix argument is required only if EXTR_PREFIX_SAME or
EXTR_PREFIX_ALL modes are chosen. If used, the prefix argument and an underscore are
added to the name of the extracted variable.

Compare this function to compact, which creates an array based on variables in the local
scope.

<?
 $new_variables = array('Name'=>'Leon', 'Language'=>'PHP');

 $Language = 'English';

 extract($new_variables, EXTR_PREFIX_SAME, "collision");

 //print extracted variables
 print($Name . "
\n");
 print($collision_Language . "
\n");

Core PHP Programming

IT-SC book 235

?>

boolean in_array(value query, array data)

The in_array function returns TRUE if the query argument is an element of the data
argument.

Table 9.1. extract Modes

Mode Description
EXTR_OVERWRITE Overwrite any variables with the same name.
EXTR_SKIP Skip any variables with the same name.
EXTR_PREFIX_SAME Add prefix to variables with same name.
EXTR_PREFIX_ALL Prefix all variables.

<?
 //create test data
 $colors = array("red", "green", "blue");

 //test for the presence of green
 if(in_array("green", $colors))
 {
 print("Yes, green is present!");
 }
?>

string implode(array data, string delimiter)

The implode function transforms an array into a string. The elements are concatenated
with the delimiter string separating them. To perform the reverse functionality, use
explode.

<?
 /*
 ** convert an array into a comma-delimited string
 */
 $colors = array("red", "green", "blue");
 $colors = implode($colors, ",");

 print($colors);
?>

join

You may use join as an alias to the implode function.

Core PHP Programming

IT-SC book 236

value key(array arrayname)

The key function returns the index of the current element. Use current to find the value of
the current element.

<?
 $colors = array("FF0000"=>"red",
 "00FF00"=>"green",
 "0000FF"=>"blue");

 for(reset($colors); $key = key($colors); next($colors))
 {
 print("$key is $colors[$key]
\n");
 }
?>

boolean krsort(array data)

The krsort function sorts an array by its keys in reverse order—that is, largest values
first. The element values are moved along with the keys. This is mainly for the benefit of
associative arrays, since arrays indexed by integers can easily be traversed in order of
their keys.

<?
 $colors = array("red"=>"FF0000",
 "green"=>"00FF00",
 "blue"=>"0000FF");

 // sort an array by its keys
 krsort($colors);

 // print out the values
 foreach($colors as $key=>$value)
 {
 print("$key : $value
\n");
 }
?>

boolean ksort(array data)

The ksort function sorts an array by its keys, or index values. The element values are
moved along with the keys. This is mainly for the benefit of associative arrays, since
arrays indexed by integers can easily be traversed in order of their keys.

<?

Core PHP Programming

IT-SC book 237

 $colors = array("red"=>"FF0000",
 "green"=>"00FF00",
 "blue"=>"0000FF");

 // sort an array by its keys
 ksort($colors);

 // print out the values
 foreach($colors as $key=>$value)
 {
 print("$key : $value
\n");
 }
?>

list(...)

The list function treats a list of variables as if they were an array. It may only be used
on the left side of an assignment operator. It is useful for translating a returned array
directly into a set of variables.

<?
 $colors = array("red", "green", "blue");

 //put first two elements of returned array
 //into key and value, respectively
 list($key, $value) = each($colors);

 print("$key: $value
\n");
?>

value max(array arrayname) value max(...)

The max function returns the largest value from all the array elements. If all values are
strings, then the values will be compared as strings. If any of the values is a number, only
the integers and doubles will be compared numerically. The alternate version of the max
function takes any number of arguments and returns the largest of them. With this use,
you must supply at least two values.

To find the minimum value, use min.

<?
 $colors = array("red"=>"FF0000",
 "green"=>"00FF00",
 "blue"=>"0000FF");

 //prints FF0000
 print(max($colors) . "
\n");

Core PHP Programming

IT-SC book 238

 //prints 13
 print(max("hello", "55", 13) . "
\n");

 //prints 17
 print(max(1, 17, 3, 5.5) . "
\n");
?>

value min(array arrayname) value min(...)

The min function returns the smallest value from all the array elements. If all values are
strings, then the values will be compared as strings. If any of the values is a number, only
the integers and doubles will be compared numerically. The alternate version of the min
function takes any number of arguments and returns the smallest of them. You must
supply at least two values.

<?
 $colors = array("red"=>"FF0000",
 "green"=>"00FF00",
 "blue"=>"0000FF");

 //prints 0000FF
 print(min($colors) . "
\n");

 //prints 13
 print(min("hello", "55", 13) . "
\n");

 //prints 1
 print(min(1, 17, 3, 5.5) . "
\n");
?>

value next(array arrayname)

The next function moves PHP's array pointer forward one element. It returns the value at
the new element. If the pointer is already at the end of the array, FALSE is returned.

<?
 $colors = array("red", "green", "blue");
 $my_color = current($colors);
 do
 {
 print("$my_color
\n");
 }
 while($my_color = next($colors))
?>

Core PHP Programming

IT-SC book 239

pos

You may use pos as an alias to the current function.

value prev(array arrayname)

The prev function operates similarly to the next function with the exception that it
moves backward through the array. The internal pointer to the array is moved back one
element, and the value at that position is returned. If the pointer is already at the
beginning, FALSE is returned.

<?
 $colors = array("red", "green", "blue");
 end($colors);
 $my_color = current($colors);
 do
 {
 print("$my_color
\n");
 }
 while($my_color = prev($colors))
?>

array range(integer start, integer stop)

Use range to create an array containing every integer between the first argument and the
second, inclusive.

<?
 $numbers = range(13, 19);

 //print out all the values
 foreach($numbers as $value)
 {
 print("$value
\n");
 }
?>

value reset(array arrayname)

Use the reset function to move an array's internal pointer to the first element. The
element in the first position is returned. Use end to set the pointer to the last element.

<?
 //create test data
 $colors = array("red", "green", "blue");

Core PHP Programming

IT-SC book 240

 //move internal pointer
 next($colors);

 //set internal pointer to first element
 reset($colors);

 //show which element we're at (red)
 print(current($colors));
?>

rsort(array unsorted_array)

The rsort function sorts an array in reverse order. As with other sorting functions, the
presence of string values will cause all values to be treated as strings and the elements
will be sorted alphabetically. If all the elements are numbers, they will be sorted
numerically. The difference between rsort and arsort is that rsort discards any key
values and reassigns elements with key values starting at zero. Chapter 15 discusses
sorting in depth.

<?
 //create test data
 $colors = array("one"=>"orange", "two"=>"cyan",
 "three"=>"purple");

 //sort and discard keys
 rsort($colors);

 //show array
 foreach($colors as $key=>$value)
 {
 print("$key = $value
\n");
 }
?>

shuffle(array data)

The shuffle function randomly rearranges the elements in an array. The srand function
may be used to seed the random number generator, but as with the rand function, a seed
based on the current time will be used if you do not provide a seed.

<?
 //create test data
 $numbers = range(1, 10);

 //rearrange
 shuffle($numbers);

Core PHP Programming

IT-SC book 241

 //print out all the values
 foreach($numbers as $value)
 {
 print("$value
\n");
 }
?>

sizeof

This is an alias for the count function.

sort(array unsorted_array)

The sort function sorts an array by element values from lowest to highest. If any element
is a string, all elements will be converted to strings for the purpose of comparison, which
will be made alphabetically. If all elements are numbers, they will be sorted numerically.
Like rsort, sort discards key values and reassigns elements with key values starting at
zero. Chapter 15 discusses sorting in depth.

<?
 //create test data
 $colors = array("one"=>"orange", "two"=>"cyan",
"three"=>"purple");

 //sort and discard keys
 sort($colors);

 //show array
 foreach($colors as $key=>$value)
 {
 print("$key = $value
\n");
 }
?>

uasort(array unsorted_array, string comparison_function)

The uasort function sorts an array using a custom comparison function. The index
values, or keys, move along with the element values, similar to the behavior of the asort
function.

The comparison function must return a signed integer. If it returns zero, then two
elements are considered equal. If a negative number is returned, the two elements are
considered to be in order. If a positive number is returned, the two elements are
considered to be out of order.

Core PHP Programming

IT-SC book 242

<?
 /*
 ** duplicate normal ordering
 */
 function compare($left, $right)
 {
 return($left - $right);
 }

 //create test data
 $some_numbers = array(
 "red"=>6,
 "green"=>4,
 "blue"=>8,
 "yellow"=>2,
 "orange"=>7,
 "cyan"=>1,
 "purple"=>9,
 "magenta"=>3,
 "black"=>5);

 //sort using custom compare
 uasort($some_numbers, "compare");

 //show sorted array
 foreach($some_numbers as $key=>$value)
 {
 print($key . "=" . $value . "
\n");
 }
?>

uksort(array unsorted_array, string comparison_function)

The uksort function sorts an array using a custom comparison function. Unlike usort,
the array will be sorted by the index values, not the elements. The comparison function
must return a signed integer. If it returns zero, then two indices are considered equal. If a
negative number is returned, the two indices are considered to be in order. If a positive
number is returned, the two indices are considered to be out of order.

<?
 /*
 ** duplicate normal ordering
 */
 function compare($left, $right)
 {
 return($left - $right);
 }

 //create test data
 srand(time());
 for($i=0; $i<10; $i++)

Core PHP Programming

IT-SC book 243

 {
 $data[rand(1,100)] = rand(1,100);
 }

 //sort using custom compare
 uksort($data, "compare");

 //show sorted array
 foreach($data as $key=>$value)
 {
 print($key . "=" . $value . "
\n");
 }
?>

usort(array unsorted_array, string compare_function)

The usort function sorts an array by element values using a custom comparison function.
The function must return a signed integer. If it returns zero, then two elements are
considered equal. If a negative number is returned, the two elements are considered to be
in order. If a positive number is returned, the two elements are considered to be out of
order.

<?
 /*
 ** duplicate normal ordering
 */
 function compare($left, $right)
 {
 return($left - $right);
 }

 //create test data
 srand(time());
 for($i=0; $i<10; $i++)
 {
 $data[rand(1,100)] = rand(1,100);
 }

 //sort using custom compare
 usort($data, "compare");

 //show sorted array
 foreach($data as $key=>$value)
 {
 print($key . "=" . $value . "
\n");
 }
?>

Hashing

Core PHP Programming

IT-SC book 244

Hashing is the process of creating an index for a value using the value itself. The index is
called a hash. Sometimes hashes are unique to values, but not always. Hashes can be used
to make fast lookups, a method that PHP uses for keeping track of variables. Other times
hashes are used like encryption. If the hashes of two strings match, you can assume the
two strings match, as long as hash values are unique. In this way you can check
passwords without ever decrypting the original password.

Some of the functions in this section are built into PHP. The others are part of Sascha
Shumann's Mhash library. This library presents a universal interface to many hashing
algorithms. Visit the home site to learn more about it <http://schumann.cx/mhash/>.

string md5(string text)

The md5 function produces a hash as described by RFC 1321. The function takes a string
of any length and returns a 32-character identifier. It is theorized that the algorithm for
the md5 function will produce unique identifiers for all strings.

Figure 9-5. md5.

string metaphone(string word)

Use metaphone to produce a string that describes how a word sounds when spoken. This
function is similar to soundex; however, it knows about how groups of letters are
pronounced in English. Therefore it is more accurate. Compare this function to soundex
and similar_text.

Core PHP Programming

IT-SC book 245

The metaphone algorithm, invented by Lawrence Philips, was first described in
Computer Language magazine. You may find a discussion of metaphone at Scott Gasch's
Algorithm Archive <http://perl.guru.org/alg/node131.html>.

<?
 print("Atkinson encodes as " . metaphone("Atkinson"));
?>

string mhash(integer hash, string data)

Use mhash to get a hash for a string. Hashing algorithms available at the time of writing
are shown in Table 9.2.

Refer to the Mhash documentation for more information about each algorithm.

<?
 print(mhash(MHASH_GOST, "Who is John Galt?"));
?>

Table 9.2. Mhash Algorithms

MHASH_CRC32
MHASH_CRC32B
MHASH_GOST
MHASH_HAVAL
MHASH_MD5
MHASH_RIPEMD128
MHASH_RIPEMD160
MHASH_SHA1
MHASH_TIGER

integer mhash_count()

The mhash_count function returns the highest-numbered hash identifier. All hash
algorithms are numbered from zero, so you can use this function and
mhash_get_hash_name to get a complete list.

<?
 print("<TABLE BORDER=\"1\">\n");

 print("<TR>\n");
 print("<TH>Algorithm</TH>\n");
 print("<TH>Block Size</TH>\n");
 print("</TR>\n");

Core PHP Programming

IT-SC book 246

 for($i=0; $i <= mhash_count(); $i++)
 {
 print("<TR>\n");
 print("<TD>MHASH_" . mhash_get_hash_name($i) .
"</TD>\n");
 print("<TD>" . mhash_get_block_size($i) .
"</TD>\n");
 print("</TR>\n");
 }

 print("</TABLE>\n");
?>

integer mhash_get_block_size(integer hash)

The mhash_get_block_size function returns the block size used for a hash algorithm.

string mhash_get_hash_name(integer hash)

The mhash_get_hash_name function returns the name for a particular hash identifier.

int similar_text(string left, string right, reference percentage)

The similar_text function compares two strings and returns the number of characters
they have in common. If present, the variable specified for the percentage argument will
receive the percentage similarity. Compare this function to metaphone and soundex.

The algorithm used for similar_text is taken from a book by Ian Oliver called
Programming Classics: Implementing the World's Best Algorithms. It's published by
Prentice Hall, and you can find out more about it on the Prentice Hall PTR Web site http:
//www.phptr.com/ptrbooks/ptr_0131004131.html>.

Figure 9-6. similar_text

Core PHP Programming

IT-SC book 247

string soundex(string text)

The soundex function returns an identifier based on how a word sounds when spoken.
Similar-sounding words will have similar or identical soundex codes. The soundex code
is four characters and starts with a letter. Compare this function to the similar_text and
the metaphone functions.

The soundex algorithm was described by Donald Knuth in Volume 3 of The Art of
Computer Programming.

<?
 print(soundex("lion"));
 print("
");
 print(soundex("lying"));
?>

Strings

Core PHP Programming

IT-SC book 248

For the most part, the string functions create strings from other strings or report about the
properties of a string. The exception is the eval function, which executes a string as if it
were a line of code in your PHP script.

array count_chars(string data, integer mode) string
count_chars(string data, integer mode)

The count_chars function analyzes a string by the characters present. The mode
argument controls the return value. Modes 0, 1 and 2 return an array. Modes 3 and 4
return a string. If mode is left out, mode 0 is used.

If mode is 0, an array is returned indexed by ASCII codes, 0–255. Each element is set
with the count for that character. If mode is 1, only the elements with count greater than
zero are returned. If mode is 2, only the elements with count equal to zero are returned.
Mode 3 returns a string containing each character appearing in the input string. Mode 4
contains a string containing all characters not appearing in the input string.

<?
 //print counts for characters found
 foreach(count_chars("Core PHP", 1) as
$key=>$value)
 {
 print("$key:
$value
\n");
 }

 //print list of characters found
 print("Characters: '" . count_chars("Core
PHP", 3) . "'
\n");
?>

eval(string phpcode)

The eval function attempts to execute the phpcode argument as if it were a line in
your PHP script. As with all strings, double quotes will cause the string to be evaluated
for embedded strings and other special characters, so you may wish to use single quotes
or escape dollar signs with backslashes.

In some ways, eval is like include or require. Beyond the obvious difference that
eval works on strings instead of files, eval starts in a mode where it expects PHP
code. If you need to switch to a mode where plain HTML is passed directly to the
browser, you will need to insert a closing PHP tag (?>). Why would you ever want to

Core PHP Programming

IT-SC book 249

execute eval on a string that contained plain HTML? Probably because the code was
stored in a database.

Be extremely careful when calling eval on any string that contains data that at any time
came from form variables. This includes database fields that were originally set through a
form. When possible, use nested $ operators instead of eval.

<?
 //Contrived example
 //eval() line could be replaced with
$$varName = 1;
 $varName = "myValue";
 eval("\$$varName = 1;");
 print($myValue . "
\n");

 //More realistic simulation of using eval
 //on data from a database
 $code_from_database = "<?
print(date(\"Y-m-d\")); ?>";
 eval("?>" . $code_from_database);
?>

string sprintf(string format, ...)

The sprintf function operates identically to the printf function, except that instead
of sending the assembled string to the browser, the string is returned. See the description
of printf for a detailed discussion. This function offers an easy way to control the
representation of numbers. Ordinarily PHP may print a double with no fraction

<?
 $x = 3.00;

 //print $x as PHP default
 print($x . "
\n");

 //format value of $x so that
 //it show two decimals after
 //the decimal point
 $s = sprintf("%.2f", $x);
 print($s . "
\n");
?>

Core PHP Programming

IT-SC book 250

string str_repeat(string text, integer count)

The str_repeat function returns a string consisting of the text argument repeated
the number of times specified by the count argument.

<?
 print(str_repeat("PHP!
\n", 10));
?>

integer strcasecmp(string first, string second)

The strcasecmp function operates identically to strcmp with the exception that
upper- and lowercase letters are treated as being identical. Check out soundex,
metaphone, and similar_text for alternative ways of comparing strings.

<?
 $first = "abc";
 $second = "aBc";

 if(strcasecmp($first, $second) == 0)
 {
 print("strings are equal");
 }
 else
 {
 print("strings are not equal");
 }
?>

strchr

This function is an alias to strstr.

integer strcmp(string first, string second)

The strcmp function compares the first string to the second string. A number less than
zero is returned if the first string is less than the second. Zero is returned if they are equal.
A number greater than zero is returned if the first string is greater than the second string.
Comparisions are made by ASCII values. This function is safe for comparing binary data.

Core PHP Programming

IT-SC book 251

Check out soundex, metaphone, and similar_text for alternative ways of
comparing strings.

<?
 $first = "abc";
 $second = "xyz";

 if(strcmp($first, $second) == 0)
 {
 print("strings are equal");
 }
 else
 {
 print("strings are not equal");
 }
?>

integer strcspn(string text, string set)

The strcspn function returns the position of the first character in the text argument
that is part of the set argument. Compare this function to strspn.

<?
 $text = "red cabbage";
 $set = "abc";
 $position = strcspn($text, $set);

 // prints 'red '
 print(substr($text, 0, $position));
?>

string stristr(string text, string substring)

The stristr function is a case-insensitive version of strstr, below. A portion of the
text argument is returned starting from the first occurrence of the substring
argument to the end.

<?
 $text = "Although he had help, Leon is the author
of

Core PHP Programming

IT-SC book 252

this book.";

 print("Full text: $text BR>\n");
 print("Looking for 'leon':" . stristr($text,
"leon"));
?>

integer strlen(string text)

Use the strlen function to get the length of a string.

<?
 $text = "a short string";
 print("'$text' is " . strlen($text) . "
characters long.");
?>

integer strpos(string data, string substring, integer offset)

The strpos function returns the position of the substring argument in the data
argument. If the substring argument is not a string, it will be treated as an ASCII
code. If the substring appears more than once, the position of the first occurrence is
returned. If the substring doesn't exist at all, then FALSE is returned. The optional
offset argument instructs PHP to begin searching after the specified position. Positions
are counted starting with zero.

This function is a good alternative to ereg when you are searching for a simple string. It
carries none of the overhead involved in parsing regular expressions. It is safe for use
with binary strings.

<?
 $text = "Hello, World!";

 //check for a space
 if(strpos($text, 32))
 {
 print("There is a
space in '$text'
\n");
 }

 //find where in the string World appears

Core PHP Programming

IT-SC book 253

 print("World is at position " .
strpos($text, "World") . "
\n");
?>

strrchr

This is an alias for strrpos.

integer strrpos(string text, string character)

The strrpos function operates similarly to strpos. It returns the last occurrence of
the second argument in the first. However, only the first character of the second argument
is used. This function offers a very neat way of chopping off the last part of a path, as in
the example below.

<?
 //set test string
 $path = "/usr/local/apache";

 //find last slash
 $pos = strrpos($path, "/");

 //print everything after the last slash
 print(substr($path, $pos+1));
?>

integer strspn(string text, string set)

The strspn function returns the position in the first character in the text argument that
is not part of the set of characters in the set argument. Compare this function to
strcspan.

<?
 $text = "cabbage";
 $set = "abc";
 $position = strspn($text, $set);

 // prints 'cabba'
 print(substr($text, 0, $position));
?>

Core PHP Programming

IT-SC book 254

string strstr(string text, string substring)

The strstr function returns the portion of the text argument from the first occurrence
of the substring argument to the end of the string. If substring is not a string, it is
assumed to be an ASCII code. ASCII codes are listed in Appendix B.

An empty string is returned when substring is not found in text. You can use it as a
faster alternative to ereg if you test for an empty string, as in the example below. The
stristr function is a case-insensitive version of this function.

<?
 $text = "Although this is a string, it's not very
long.";
 if(strstr($text, "it") != "")
 {
 print("The string contains 'it'.BR>/n");
 }
?>

string strtok(string line, string separator)

The strtok function pulls tokens from a string. The line argument is split up into
tokens separated by any of the characters in the separator string. The first call to
strtok must contain two arguments. Subsequent calls are made with just the
separator argument, unless you wish to begin tokenizing another string. Chapter
16, "Parsing and String Evaluation," discusses this function in depth, including
alternatives like ereg .

<?
 // create a demo string
 $line = "leon\tatkinson\tleon@clearink.com";

 // loop while there are still tokens
 for($token = strtok($line, "\t");
 $token != "";
 $token = strtok("\t"))
 {
 print("token: $tokenBR>\n");
 }
?>

Core PHP Programming

IT-SC book 255

string substr(string text, integer start, integer length)

Use the substr function to extract a substring from the text argument. A string is
returned that starts with the character identified by the start argument, counting from
zero. If start is negative, counting will begin at the last character of the text
argument instead of the first and work backward.

The number of characters returned is determined by the length argument or the
beginning and end of the string. If length is negative, the returned string will end that
many characters from the end of the string. In any case, if the combination of start and
length calls for a string of negative length, a single character is returned.

This function is safe for use with binary strings.

<?
 $text = "My dog's name is Angus.";

 //replace Angus with Gus
 print(substr_replace($text, "Gus", 17, 5));
?>

Encoding and Decoding

The functions in this section transform data from one form to another.
This includes stripping certain characters, substituting some characters
for others, and translating data into some encoded form.

string addcslashes(string text, string characters)

The addcslashes function returns the text argument after escaping characters in the
style of the C programming language. Briefly, this means special characters are replaced
with codes, such as \n replacing a newline character, and other characters outside ASCII
32-126 are replaced with backslash octal codes.

The optional characters argument may contain a list of characters to be escaped,
which overrides the default of escaping all special characters. The characters are
specified with octal notation. You may specify a range using two periods as in the
example below.

<?
 $s = addcslashes($s, "\0..\37");
?>

Core PHP Programming

IT-SC book 256

string addslashes(string text)

The addslashes function returns the text argument with backslashes preceding
characters that have special meaning in database queries. These are single quotes ('),
double quotes ("), and backslashes themselves (\).

<?
 // add slashes to text
 $phrase = addslashes("I don't know");

 // build query
 $Query = "SELECT * ";
 $Query .= "FROM comment ";
 $Query .= "WHERE text like '%$phrase%'";

 print($Query);
?>

string base64_decode(string data)

The base64_decode function translates data from MIME base64 encoding into 8-bit
data. Base64 encoding is used for transmitting data across protocols, such as email, where
raw binary data would otherwise be corrupted.

<?
 $data = "VGhpcyBpcyBhIAptdWx0aS1saW5lIG1lc3NhZ2UK";
 print(base64_decode($data));
?>

string base64_encode(string text)

The base64_encode function converts text, such as email, to a form that will pass
through 7-bit systems uncorrupted.

<?
 $text = "This is a \nmulti-line message\n";
 print(base64_encode($text));

Core PHP Programming

IT-SC book 257

?>

string basename(string path)

The basename function returns only the filename part of a path. Directories are
understood to be strings of numbers and letters separated by slash characters (/). When
running on Windows, backslashes (\) are used as well. The flip side to this function is
dirname, which returns the directory.

<?
 $path="/usr/local/bin/ls";
 print(basename($path));
?>

string bin2hex(string data)

The bin2hex function returns the data argument with each byte replaced by its
hexadecimal representation. The numbers are returned in little-endian style. That is, the
first digit is most significant.

<?
 //print book title in hex
 //436f7265205048502050726f6772616d6d696e67
 $s = "Core PHP Programming";
 $s = bin2hex($s);
 print($s);
?>

string chop(string text)

The chop function returns the text argument with any trailing whitespace removed. If
you wish to remove both trailing and leading whitespace, use the trim function. If you
wish to remove leading whitespace only, use ltrim. Whitespace includes spaces, tabs,
and other nonprintable characters, including nulls (ASCII 0).

<?
 print("\" " .
 chop("This has whitespace ") .

Core PHP Programming

IT-SC book 258

 "\" ");
?>

string chr(integer ascii_code)

Use chr to get the character for an ASCII code. This function is helpful for situations
where you need to use a nonprinting character that has no backslash code, or the
backslash code is ambiguous. Imagine a script that writes to a formatted text file.
Ordinarily you would use \n for an end-of-line marker. But the behavior may be
different when your script is moved from Windows to Linux, because Windows uses a
carriage return followed by a linefeed. If you wish to enforce that each line end with a
linefeed only, you can use chr(10) as in the example below.

Of course, you may always use a backslash code to specify an ASCII code, as listed in
Appendix A and discussed in Chapter 2. Another alternative to chr is sprintf.
The %c code stands for a single character, and you may specify an ASCII value for the
character. Additionally, some functions, such as ereg_replace, accept integers that
are interpreted as ASCII codes.

If you need the ASCII code for a character, use ord. Appendix B lists ASCII codes.

<?
 //open a test file
 $fp = fopen("data.txt", "w");

 //write a couple of records that have
 //linefeeds for end markers
 fwrite($fp, "data record 1" . chr(10));
 fwrite($fp, "data record 2" . chr(10));

 //close file
 fclose ($fp);
?>

string chunk_split(string data, integer length, string marker)

The chunk_split function returns the data argument after inserting an end-of-line
marker at regular intervals. By default a carriage return and a linefeed are inserted every
76 characters. Optionally, you may specify a different length and a different marker
string.

Core PHP Programming

IT-SC book 259

Sascha Schumann added this function specifically to break base64 codes up into 76-
character chunks. Although ereg_replace can mimic this functionality,
chunk_split is faster. It isn't appropriate for breaking prose between words. That is, it
isn't intended for performing a soft wrap.

<?
 $encodedData =
chunck_split(base64_encode($rawData));
?>

string convert_cyr_string(string text, string from, string to)

Use convert_cyr_string to convert a text in one Cyrillic character set to another.
The from and to arguments are single-character codes listed in Table 9.3.

Table 9.3. Codes for convert_cyr_String

Code Description
a,d x-cp866
i iso8859-5
k koi8-r
m x-mac-cyrillic
w windows-1251

<?
 $new = convert_cyr_string($old, "a", "w");
?>

string dirname(string path)

The dirname function returns only the directory part of a path. The trailing slash is not
included in the return value. Directories are understood to be separated by slashes (/). On
Windows, backslashes (\) may be used, too. If you need to get the filename part of a path,
use basename.

<?
 $path = "/usr/local/bin/ls";
 print(dirname($path));
:?>

Core PHP Programming

IT-SC book 260

string escapeshellcmd(string command)

The escapeshellcmd function adds a backslash before any characters that may cause
trouble in a shell command. This function should be used to filter user input before it is
used in exec or system. Table 9.4 lists characters escaped by escapeshellcmd.

Figure 9-7. escapeshellcmd.

Table 9.4. Characters Escaped by escapeshellcmd

Character Description
& Ampersand
; Semicolon
' Left Tick
' Single Quote
" Double Quote
| Vertical Bar
* Asterisk
? Question Mark
~ Tilde
< Left Angle Bracket
> Right Angle Bracket

Core PHP Programming

IT-SC book 261

^ Caret
(Left Parenthesis
) Right Parenthesis
[Left Square Bracket
] Right Square Bracket
{ Left Curly Brace
} Right Curly Brace
$ Dollar Sign
\ Backslash
ASCII 10 Linefeed
ASCII 255

string hebrev(string text, integer length)

Unlike English, Hebrew text reads right to left, which makes working with strings
inconvenient at times. The hebrev function reverses the orientation of Hebrew text, but
leaves English alone. Hebrew characters are assumed to be in the ASCII range 224
through 251, inclusive. The optional length argument specifies a maximum length per
line. Lines that exceed this length are broken.

<?
 print(hebrev("Hebrew"));
?>

string hebrevc(string text, integer length)

The hebrevc function operates exactly like hebrev, except that BR tags are inserted
before end-of-line characters.

string htmlentities(string text)

The htmlentities function returns the text argument with certain characters
translated into HTML entities. Table 9.5 lists entities supported.

This list conforms to the ISO-8859-1 standard. The nl2br function is similar: it
translates line breaks to BR tags. You can use strip_tags to remove HTML tags
altogether.

<?
 $text = "Use <HTML> to begin a document.";
 print(htmlentities($text));

Core PHP Programming

IT-SC book 262

?>

string htmlspecialchars(string text)

The htmlspecialchars function works like htmlentities, except that a smaller
set of entities are used. They are amp, quot, lt, and gt.

<?
 $text = "Use <HTML> to begin a document.";
 print(htmlspecialchars($text));
?>

integer ip2long(string address)

The ip2long function takes an IP address and returns an integer. This allows you to
compress a 16-byte string into a 4-byte integer. Use long2ip to reverse the process.

Table 9.5. HTML Entities

aacute eacute macr raquo
aacute eacute micro reg
acirc ecirc middot sect
acirc ecirc nbsp shy
acute egrave not sup1
aelig egrave ntilde sup2
aelig eth ntilde sup3
agrave eth oacute szlig
agrave euml oacute thorn
aring euml ocirc thorn
aring frac12 ocirc times
atilde frac14 ograve uacute
atilde frac34 ograve uacute
auml iacute ordf ucirc
auml iacute ordm ucirc
brvbar icirc oslash ugrave
ccedil icirc oslash ugrave
ccedil iexcl otilde uml
cedil igrave otilde uuml
cent igrave ouml uuml
copy iquest ouml yacute

Core PHP Programming

IT-SC book 263

curren iuml para yacute
deg iuml plusmn yen
divide laquo pound yuml

string long2ip(integer address)

Use long2ip to get the textual representation of an IP address. Use ip2long to
reverse the process.

string ltrim(string text)

The ltrim function returns the text argument with any leading whitespace removed. If
you wish to remove whitespace on the end of the string, use chop. If you wish to remove
whitespace from the beginng and end, use trim. Whitespace includes spaces, tabs and
other nonprintable characters, including nulls (ASCII 0).

<?
 $text = " Leading whitespace";
 print("<PRE>" . ltrim($text) . "</PRE>");
?>

string nl2br(string text)

The nl2br function inserts
 before every newline in the text argument and returns
the modified text.

<?
 $text = "line1\nline2\nline3\n";
 print(nl2br($text));
?>

string number_format(double value, integer precision, string
decimal, string thousands)

The number_format function returns a formatted representation of the value
argument as an integer with commas inserted to separate thousands. The optional
precision argument specifies the number of digits after the decimal point, which by
default is zero. The optional decimal and thousands arguments must be used
together. They override the default use of periods and commas for decimal points and
thousands separators.

Core PHP Programming

IT-SC book 264

Figure 9-8. number_format.

integer ord(string character)

The ord function returns the ASCII code of the first character in the character argument.
This function allows you to deal with characters by their ASCII values, which often can
be more convenient than using backslash codes, especially if you wish to take advantage
of the order of the ASCII table. Refer to Appendix B for a complete table of ASCII
codes.

If you need to find the character associated with an ASCII code, use the chr function.

<?
 /*
 ** Decompose a string into its ASCII codes.
 ** Test for codes below 32 because these have
 ** special meaning and we may not want to
 ** print them.
 */

 $text = "Line 1\nLine 2\n";

 print("ASCII Codes for '$text'
\n");

 print("<TABLE>\n");

Core PHP Programming

IT-SC book 265

 for($i=0; $i < strlen($text); $i++)
 {
 print("<TR>");

 print("<TH>");
 if(ord($text[$i]) > 31)
 {
 print($text[$i]);
 }
 else
 {
 print("(unprintable)");
 }
 print("</TH> ");
 print(ord($text[$i]));
 print("</TD>");

 print("</TR>\n");
 }

 print("</TABLE>\n");
?>

string pack(string format, ...)

The pack function takes inspiration from the Perl function of the same name. It allows
you to put data in a compact format readable on all platforms. Format codes in the first
argument match with the arguments that follow it. The codes determine how the values
are stored. An optional number, called the repeat count, may follow the format code. It
specifies how many of the following arguments to use. The repeat count may also be *,
which matches the remaining arguments. Some of the codes use the repeat count
differently. Table 9.6 lists all the format codes and how they use the repeat count.

A string with the packed data is returned. Note that it will be in a
binary form, unsuitable for printing. In the example below, I've printed
out each byte of the packed data as hexadecimal codes.

<?
 //create some packed data
 $packedData = pack("ca10n", 65, "hello", 1970);

 //display ASCII code for each character
 print("<PRE>");

Core PHP Programming

IT-SC book 266

 for($i=0; $istrlen($packedData); $i++)
 {
 print("0x" . dechex(ord($packedData[$i])) .
" ");
 }
 print("</PRE>\n");

 //unpack the data
 $Data = unpack("cOne/a10Two/nThree", $packedData);

 //show all elements of the unpacked array
 while(list($key, $value) = each($Data))
 {
 print("$key = $value
\n");
 }
?>

Table 9.6. Pack Codes

Code Data
Type Description

a String
Repeat count is the number of characters to take from the string. If
there are fewer characters in the string than specified by the repeat
count, spaces are used to pad it out.

A String
Repeat count is the number of characters to take from the string. If
there are fewer characters in the string than specified by the repeat
count, nulls (ASCII 0) are used to pad it out.

c Integer The integer will be converted to a signed character.
C Integer The integer will be converted to an unsigned character.

d Double The double will be stored in double-width floating-point format.
Depending on your operating system, this is probably 8 bytes.

f Double The double will be converted to a single-width floating-point format.
Depending on your operating system, this is probably 4 bytes.

h String
The ASCII value of each character of the argument will be saved as two
characters representing the ASCII code in hexadecimal, big-endian. The
repeat count denotes the number of characters to take from the input.

H String

The ASCII value of each character of the argument will be saved as two
characters representing the ASCII code in hexadecimal, little-endian.
The repeat count denotes the number of characters to take from the
input.

i Integer The argument will be saved as an unsigned integer. Typically this is 4
bytes.

I Integer The argument will be saved as a signed integer. Typically this is 4
bytes, with one bit used for sign.

l Integer The argument is saved as an unsigned long, which is usually 8 bytes.

L Integer The argument is saved as a signed long, which is usually 8 bytes with
one bit used for sign.

Core PHP Programming

IT-SC book 267

n Integer
The argument is saved as an unsigned short, which is 2 bytes. The
value is saved in a way that allows for safe unpacking on both little-
endian and big-endian machines.

N Integer
The argument is saved as an unsigned long, which is 8 bytes. The value
is saved in a way that allows for safe unpacking on both little-endian
and big-endian machines.

s Integer The argument is saved as an unsigned short, which is usually 2 bytes.

S Integer The argument is saved as a signed short, which is usually 2 bytes with
one bit used for sign.

v Integer The argument is saved as an unsigned short in little-endian order.
V Integer The argument is saved as an unsigned long in little-endian order.

x None This format directive doesn't match with an argument. It writes a null
byte.

X None This format directive causes the pointer to packed string to back up 1
byte.

@ None
This format directive moves the pointer to the absolute position
specified by its repeat count. The empty space is padded with null
bytes.

parse_str(string query)

The parse_str function parses the query argument as if it were an HTTP GET
query. A variable is created in the current scope for each field in the query. You may
wish to use this function on the output of parse_url.

<?
 $query = "name=Leon&occupation=Web+Engineer";
 parse_str($query);
 print("$name
\n");
 print("$occupation BR>\n");
?>

array parse_url(string query)

The parse_url function breaks an URL into an associative array with the following
elements: fragment, host, pass, path, port, query, scheme, user. The query
is not evaluated as with the parse_str function.

Figure 9-9. parse_url.

Core PHP Programming

IT-SC book 268

string quoted_printable_decode(string text)

The quoted_printable_decode function converts a quoted string into 8-bit binary
form. It reverses the action of the quotemeta function. That is, it removes backslashes
preceding special characters. Table 9.7 lists these special characters.

Table 9.7. Meta Characters

Character Description
. Period
\ Backslash
+ Plus
* Asterisk
? Question Mark
[Left Square Bracket
] Right Square Bracket
^ Caret
(Left Parenthesis
) Right Parenthesis

Core PHP Programming

IT-SC book 269

$ Dollar Sign

This function performs the same function as imap_qprint but does not require the
IMAP extension.

<?
 $command = "echo 'hello\?'";
 print(quoted_printable_decode($command));
?>

string quotemeta(string command_text)

The quotemeta function returns the command_text argument with backslashes
preceding special characters. These characters are listed in Table 9.7. Compare this
function to addslashes and escapeshellcmd. If your intention is
to ensure that user data will cause no harm when placed
within a shell command, use escapeshellcmd.

The quotemeta function may be adequate for assembling PHP code passed to eval.
Notice in the example below how characters with special meaning inside double quotes
are escaped by quote meta, thus defeating an attempt at displaying the password
variable.

<?
 //simulate user input
 $input = '$password';

 //assemble safe PHP command
 $cmd = '$text = "' . quotemeta($input) . '";';

 //execute command
 eval($cmd);

 //print new value of $text
 print($text);
?>

string rawurldecode(string url_text)

Core PHP Programming

IT-SC book 270

The rawurldecode function returns the url_text string translated from url format
into plain text. It reverses the action of rawurlencode. This function is safe for use
with binary data. The urldecode function is not.

<?
 print(rawurldecode("mail%20leon%40clearink.com"));
?>

string rawurlencode(string url_text)

The rawurlencode function returns the url_text string translated into URL
format. This format uses percent signs (%) to specify characters by their ASCII code, as
required by the HTTP specification. This allows you to pass information in an URL that
includes characters that have special meaning in URLs, such as the ampersand (&). This
is discussed in detail in RFC 1738.

This function is safe for use with binary data. Compare this to urlencode, which is
not.

<?
 print(rawurlencode("mail leon@clearink.com"));
?>

string serialize(value)

Use serialize to transform a value into an ASCII string that may be later turned back
into the same value using the unserialize function. The serialized value may be
stored in a file or a database for retrieval later. In fact, this function offers a great way to
store complex data structures in a database without writing any special code.

Figure 9-10. serialize

Core PHP Programming

IT-SC book 271

Core PHP Programming

IT-SC book 272

string sql_regcase(string regular_expression)

The sql_regcase function translates a case-sensitive regular expression into a case-
insensitive regular expression. This is unnecessary for use with PHP's built-in regular
expression functions but can be useful when creating regular expressions for external
programs such as databases.

<?
 //print [Mm][Oo][Zz][Ii][Ll][Ll][Aa]
 print(sql_regcase("Mozilla"));
?>

string str_replace(string target, string replacement, string
text)

The str_replace function attempts to replace all occurrences of target in text
with replacement. This function is safe for replacing strings in binary data. It's also a
much faster alternative to ereg_replace. Note that str_replace is case sensitive.

<?
 $text = "Search results with keywords
highlighted.";
 print(str_replace("keywords", "keywords/B>",
$text));
?>

string strip_tags(string text, string ignore)

The strip_tags function attempts to remove all SGML tags from the text
argument. This includes HTML and PHP tags. The optional ignore argument may
contain tags to be left alone. This function uses the same algorithm used by fgetss. If
you want to preserve tags, you may wish to use htmlentities.

<?
 //create some test text
 $text = "<P>Paragraph One<P>Paragraph Two";

 //strip out all tags except paragraph and break
 print(strip_tags($text, "<P>
"));

Core PHP Programming

IT-SC book 273

?>

string stripcslashes(string text)

The stripcslashes function complements addcslashes. It removes backslash
codes that conform to the C style. See addcslashes, above, for more details.

<?
 //create some test text
 $text = "Line 1\x0ALine 2\x0A";

 //convert backslashes to actual characters
 print(stripcslashes($text));
?>

string stripslashes(string text)

The stripslashes function returns the text argument with backslash encoding
removed. It complements addslashes. By default, PHP is configured to add slashes to
user input. Use stripslashes to remove slashes before sending submitted form fields
to the browser.

<?
 $text = "Leon\'s Test String";

 print("Before: $textBR>\n");
 print("After: " . stripslashes($text) . "BR>\n");
?>

string strrev(string text)

The strrev function returns the text argument in reverse order.

<?
 print(strrev("abcdefg"));
?>

Core PHP Programming

IT-SC book 274

string strtolower(string text)

The strtolower function returns the text argument with all letters changed to
lowercase. Other characters are unaffected. Locale affects which characters are
considered letters, and you may find that letters with accents and umlauts are being
ignored. You may overcome this by using setlocale, discussed in Chapter 11,
"Time, Date, and Configuration Functions."

<?
 print(strtolower("Hello World"));
?>

string strtoupper(string text)

The strtoupper function returns the text argument with all letters changed to
uppercase. Other characters are unaffected. Locale affects which characters are
considered letters, and you may find that letters with accents and umlauts are being
ignored. You may overcome this by using setlocale, discussed in Chapter 11.

<?
 print(strtoupper("Hello World"));
?>

string strtr(string text, string original, string translated)

When passed three arguments, the strtr function returns the text argument with
characters matching the second argument changed to those in the third argument. If
original and translated aren't the same length, the extra characters are ignored.

At the time of writing a second prototype for strtr was being planned that allows you
to pass two arguments. The second argument must be an associative array. The indices
specify strings to be replaced, and the values specify replacement text. If a substring
matches more than one index, the longer substring will be used. The process is not
iterative. That is, once substrings are replaced, they are not further matched.

This function is safe to use with binary strings.

<?
 $text = "Wow! This is neat.";
 $original = "!.";

Core PHP Programming

IT-SC book 275

 $translated = ".?";

 // turn sincerity into sarcasm
 print(strtr($text, $original, $translated));
?>

string substr_replace(string text, string replacement, integer
start, integer length)

Use substr_replace to replace one substring with another. Unlike str_replace,
which searches for matches, substr_replace simply removes a length of text and
inserts the replacement argument. The arguments operate similarly to substr. The
start argument is an index into the text argument with the first character numbered
as zero. If start is negative, counting will begin at the last character of the text
argument instead of the first.

The number of characters replaced is determined by the optional length argument or
the ends of the string. If length is negative, the returned string will end as many
characters from the end of the string. In any case, if the combination of start and
length calls for a string of negative length, a single character is removed.

<?
 $text = "My dog's name is Angus.";

 //replace Angus with Gus
 print(substr_replace($text, "Gus", 17, 5));
?>

string trim(string text)

The trim function strips whitespace from both the beginning and end of a string.
Compare this function to ltrim and chop. Whitespace includes spaces, tabs and other
nonprintable characters, including nulls (ASCII 0).

<?
 $text = " whitespace ";
 print(" \" " . trim($text) . "\" ");
?>

Core PHP Programming

IT-SC book 276

string ucfirst(string text)

Use the ucfirst function to capitalize the first character of a string. Compare this
function to strtoupper and ucwords. As with these other functions, your locale
determines which characters are considered letters.

<?
 print(ucfirst("i forgot to capitalize
something."));
?>

string ucwords(string text)

Use the ucwords function to capitalize every word in a string. Compare it to
strtoupper and ucfirst. As with these other functions, your locale determines
which characters are considered letters.

<?
 print(ucwords("core PHP programming"));
?>

array unpack(string format, string data)

The unpack function transforms data created by the pack function into an associative
array. The format argument follows the same rules used for pack except that each
element is separated by a slash to allow them to be named. These names are used as the
keys in the returned associative array. See the pack example.

value unserialize(string data)

Use unserialize to transform serialized data back into a PHP value. The description
of serialize has an example of the entire process.

string urldecode(string url_text)

The urldecode function returns the url_text string translated from URL format
into plain text. It is not safe for binary data.

<?

Core PHP Programming

IT-SC book 277

 print(urldecode("mail%20leon%40clearink.com"));
?>

string urlencode(string url_text)

The urlencode function returns the url_text string translated into URL format.
This format uses percent signs (%) to specify characters by their ASCII code. This
function is not safe for use with binary data.

<?
 print(urlencode("mail leon@clearink.com"));
?>

Encryption

Encryption is the process of transforming information to and from an unreadable format.
Some algorithms simply scramble text; others allow for reversing the process. PHP offers
a wrapper to C's crypt function, plus an extension that wraps the mcrypt library.

The mcrypt functions rely on a library of the same name written by Nikos
Mavroyanopoulos, which provides an advanced system for encrypting data. The URI for
the project is <ftp: //argeas.cs-net.gr/pub/unix/mcrypt/>. Sascha Schumann
added mycrypt functionality to PHP.

Cryptography is a topic beyond the scope of this text. Some concepts discussed in this
section require familiarity with advanced cryptographic theories. A great place to start
learning about cryptography is the FAQ file for the sci.crypt Usenet newsgroup. The URI
is < http://www.faqs.org/faqs/cryptography-faq/>. Another resource is a
book Prentice Hall publishes called Cryptography and Network Security: Principles and
Practice by William Stallings. The PHP manual suggests Applied Cryptography by Bruce
Schneier.

string crypt(string text, string salt)

The crypt function encrypts a string using C's crypt function, which usually uses
standard DES encryption, but depends on your operating system. The text argument is
returned encrypted. The salt argument is optional. PHP will create a random salt
value if one is not provided. You may wish to read the man page on crypt to gain a
better understanding.

Note that data encrypted with the crypt function cannot be decrypted. The function is
usually used to encrypt a password that is saved for when authorization is necessary. At

Core PHP Programming

IT-SC book 278

that time, the password is asked for, encrypted, and compared to the previously encrypted
password.

Depending on your operating system, alternatives to DES encryption may be available.
The salt argument is used to determine which algorithm to use. A two-character salt is
used for standard DES encryption. A nine-character salt specifies extended DES. A
twelve-character salt specifies MD5 encryption. And a sixteen-character salt specifies the
blowfish algorithm.

When PHP is compiled, available algorithms are incorporated. The following constants
will hold TRUE or FALSE values you can use to determine the availability of the four
algorithms: CRYPT_STD_DES, CRYPT_EXT_DES, CRYPT_MD5, CRYPT_BLOWFISH.

<?
 $password = "secret";

 if(CRYPT_MD5)
 {
 $salt = "leonatkinson";
 print("Using MD5: ");
 }
 else
 {
 $salt = "cp";
 print("Using Standard DES: ");
 }

 print(crypt($password, $salt));
?>

string mcrypt_create_iv(integer size, integer source)

Use mcrypt_create_iv to create an initialization vector. The size should match the
encryption algorithm and should be set using mcrypt_get_block_size. The source
argument can be one of three constants. MCRYPT_DEV_RANDOM uses random numbers
from /dev/random. MCRYPT_DEV_URANDOM uses random numbers from
/dev/urandom. MCRYPT_RAND uses random numbers from the rand function,
which means you ought to seed it first with srand.

string mcrypt_cbc(integer algorithm, string key, string data,
integer mode, string initialization_vector)

Core PHP Programming

IT-SC book 279

The mcrypt_cbc function encrypts a string using cipher block chaining. This method
is best suited to encrypting whole files. The algorithm argument is one of the constants
listed in Table 9.8. The mode argument can be either MCRYPT_DECRYPT or
MCRYPT_ENCRYPT. An initialization vector is optional. Remember that if you encrypt
using one, you must use the same one to decrypt.

<?
 //set up test data
 $message = "This message is sensitive.";
 $key = "secret";

 //encrypt message
 $code = mcrypt_ofb(MCRYPT_BLOWFISH_128, $key,
$message, MCRYPT_ENCRYPT);

 //pring decrypted message
 print(mcrypt_ofb(MCRYPT_BLOWFISH_128, $key, $code,
MCRYPT_ DECRYPT));
?>

mcrypt_cfb(integer algorithm, string key, string data, integer
mode, string initialization_vector)

The mcrypt_cfb function encrypts a string using cipher feedback. This method is best
suited to encrypting streams. However, PHP's mcrypt interface does not support stream
ciphers at the time of this writing. The algorithm argument is one of the constants listed
in Table 9.8. The mode argument can be either MCRYPT_DECRYPT or
MCRYPT_ENCRYPT. An initialization vector is required. You must use the same one to
decrypt.

mcrypt_ecb(integer algorithm, string key, string data, integer
mode)

The mcrypt_ecb function encrypts a string using the electronic codebook method,
which is good for encryption of short, irregular data. The algorithm argument is one of
the constants listed in Table 9.8. The mode argument can be either
MCRYPT_DECRYPT or MCRYPT_ENCRYPT.

<?
 //set up test data
 $message = "This message is sensitive.";
 $key = "secret";

Core PHP Programming

IT-SC book 280

 //encrypt message
 $code = mcrypt_cbc(MCRYPT_BLOWFISH_128, $key,
$message, MCRYPT_ENCRYPT);

 //pring decrypted message
 print(mcrypt_cbc(MCRYPT_BLOWFISH_128, $key, $code,
MCRYPT_DECRYPT));
?>

integer mcrypt_get_block_size(integer algorithm)

Use mcrypt_get_block_size to find the block size for a given encryption
algorithm. Use one of the constants listed in Table 9.8. See mcrypt_
get_cipher_name for an example of use.

string mcrypt_get_cipher_name(integer algorithm)

Use mcrypt_get_cipher_name to get the name of an encryption algorithm. Use
one of the constants listed in Table 9.8.

<?
 //create array of encryption algorithms
 $algorithm = array(
 3DES, 3WAY, BLOWFISH_128, BLOWFISH_192,
BLOWFISH_256,
 BLOWFISH_448, CAST_128, CAST_256, DES,
GOST, IDEA, LOKI97,
 RC2_1024, RC2_128, RC2_256, RC4, RC6_128,
RC6_192, RC6_256,
 RIJNDAEL_128, RIJNDAEL_192, RIJNDAEL_256,
SAFERPLUS,
 SAFER_128, SAFER_64, SERPENT_128,
SERPENT_192, SERPENT_256,
 TWOFISH_128, TWOFISH_192, TWOFISH_256,
XTEA);

 print("<TABLE BORDER=\"1\">\n");

 print("<TR>\n");
 print("<TH>Name</TH>\n");
 print("<TH>Block Size</TH>\n");
 print("<TH>Key Size<TH>\n");
 print("</TR>\n");

Core PHP Programming

IT-SC book 281

 //loop over each one
 foreach($algorithm as $value)
 {
 print("<TR>\n");
 print("<TD>" .
mcrypt_get_cipher_name($value) . "</TD>");
 print("<TD>" .
mcrypt_get_block_size($value) . "</TD>");
 print("<TD>" . mcrypt_get_key_size($value)
. "</TD>");
 print("</TR>\n");
 }

 print("</TABLE>\n");
?>

integer mcrypt_get_key_size(integer algorithm)

Use mcrypt_get_key_size to find the key size for a given encryption algorithm.
Use one of the constants listed in Table 9.8. See mcrypt_get_cipher_name for
an example of use.

mcrypt_ofb(integer algorithm, string key, string data, integer
mode, string initialization_vector)

The mcrypt_ofb function encrypts a string using output feedback. This method is
another method suited to stream ciphers. The algorithm argument is one of the
constants listed in Table 9.8. The mode argument can be either MCRYPT_DECRYPT or
MCRYPT_ENCRYPT. An initialization vector is required. You must use the same one to
decrypt.

<?
 //set up test data
 $message = "This message is sensitive.";
 $key = "secret";
 $iv = mcrypt_create_iv(
 mcrypt_get_block_size(MCRYPT_BLOWFISH_128),
 MCRYPT_DEV_RANDOM);

 //encrypt message

Core PHP Programming

IT-SC book 282

 $code = mcrypt_ofb(MCRYPT_BLOWFISH_128, $key,
$message, MCRYPT_ENCRYPT, $iv);

 //pring decrypted message
 print(mcrypt_ofb(MCRYPT_BLOWFISH_128, $key, $code,
MCRYPT_DECRYPT, $iv));
?>

Table 9.8. Encryption Algorithms
MCRYPT_3DES
MCRYPT_3WAY
MCRYPT_BLOWFISH_128
MCRYPT_BLOWFISH_192
MCRYPT_BLOWFISH_256
MCRYPT_BLOWFISH_448
MCRYPT_CAST_128
MCRYPT_CAST_256
MCRYPT_DES
MCRYPT_GOST
MCRYPT_IDEA
MCRYPT_LOKI97
MCRYPT_RC2_1024
MCRYPT_RC2_128
MCRYPT_RC2_256
MCRYPT_RC4
MCRYPT_RC6_128
MCRYPT_RC6_192
MCRYPT_RC6_256
MCRYPT_RIJNDAEL_128
MCRYPT_RIJNDAEL_192
MCRYPT_RIJNDAEL_256
MCRYPT_SAFERPLUS
MCRYPT_SAFER_128
MCRYPT_SAFER_64
MCRYPT_SERPENT_128
MCRYPT_SERPENT_192
MCRYPT_SERPENT_256
MCRYPT_TWOFISH_128
MCRYPT_TWOFISH_192
MCRYPT_TWOFISH_256
MCRYPT_XTEA

Regular Expressions

Core PHP Programming

IT-SC book 283

Regular expressions offer a powerful way to test strings for the presence of patterns.
They use a language all their own to describe patterns, a language that consists mostly of
symbols. PHP has several functions that use regular expressions. You may wish to turn to
Chapter 16, which describes regular expressions in detail.

boolean ereg(string pattern, string text, array matches)

The ereg function evaluates the pattern argument as a regular expression and attempts
to find matches in the text argument. If the optional matches argument is supplied,
each match will be added to the array. TRUE is returned if at least one match is made,
FALSE otherwise.

The first element in the matches array, with an index of zero, will contain the match for
the entire regular expression. Subsequent elements of matches will contain the matches
for subexpressions. These are the expressions enclosed in parentheses in the example.

This function is discussed in depth in Chapter 16.

<?
 // show User Agent
 print("User Agent: $HTTP_USER_AGENT
\n");

 // try to parse User Agent
 if(ereg("^(.+)/([0-9])\.([0-9]+)",
 $HTTP_USER_AGENT, $matches))
 {
 print("Full match: $matches[0]
\n");
 print("Browser: $matches[1]
\n");
 print("Major Version: $matches[2]
\n");
 print("Minor Version: $matches[3]
\n");
 }
 else
 {
 print("User Agent not recognized");
 }
?>

string ereg_replace(string pattern, string replacement, string
text)

Use ereg_replace to replace substrings within the text argument. Each time the
pattern matches a substring within the text argument, it is replaced with the replacement
argument. The text argument is unchanged, but the altered version is returned.

Core PHP Programming

IT-SC book 284

If the pattern contains subexpressions in parentheses, the replacement argument may
contain a special code for specifying which subexpression to replace. The form is to use
two backslashes followed by a single digit, zero through nine. Zero matches the entire
expression; one through nine each match the first nine subexpressions, respectively.
Subexpressions are numbered left to right, which accounts for nested subexpressions.

Regular expressions are discussed in depth in Chapter 16.

Figure 9-11. ereg_replace.

boolean eregi(string pattern, string text, array matches)

The eregi function operates identically to ereg with the exception that letters are
matched with no regard for upper or lower case.

Regular expressions are discussed in depth in Chapter 16.

string eregi_replace(string pattern, string replacement, string
text)

Core PHP Programming

IT-SC book 285

The eregi_replace function operates identically to ereg_replace with the
exception that letters are matched with no regard for upper or lower case.

array split(string pattern, string text, integer limit)

The split function returns an array of substrings from the text argument. The
pattern argument will be used as a field delimiter. The optional limit argument sets
the maximum number of elements to return. There is no case-insensitive version of split.

Compare this function to explode, which uses a simple string to delimit substrings.
Regular expression processing is slower than straight string matching, so use explode
when you can.

<?
 $paragraph = "This is a short paragraph. Each ";
 $paragraph .= "sentence will be extracted by ";
 $paragraph .= "the split function. As a ";
 $paragraph .= "result, you will be amazed!";

 $sentence = split("[\.\!\?]", $paragraph);

 for($index = 0; $index < count($sentence);
$index++)
 {
 print("$index. $sentence[$index]
\n");
 }
?>

Perl-Compatible Regular Expressions

Andrei Zmievski added support to PHP for Perl-compatible regular expressions.
Expressions are surrounded by delimiters, which are usually / or | characters, but can be
any printable character other than a number, letter, or backslash. After the second
delimiter, you may place one or more modifiers. These are letters that change the way the
regular expression is interpreted.

For the most part, the functions in this section comply with the way regular expressions
work in Perl 5. There are a few very specific differences. They are narrow enough that
you probably won't run into them, and they may not make much sense without explaining
regular expressions in detail. If you're curious, read the excellent notes in the PHP
manual available online <http://www.php.net/manual/html/ref. pcre.html>.

array preg_grep(string pattern, array data)

Core PHP Programming

IT-SC book 286

The preg_grep function compares the elements of the data argument that match the
given pattern.

boolean preg_match(string pattern, string text, array matches)

The preg_match function is the equivalent of ereg. It evaluates the pattern argument
as a regular expression and attempts to find matches in the text argument. If the optional
matches argument is supplied, each match will be added to the array. TRUE is returned
if at least one match is made, FALSE otherwise.

The first element in the matches array, with an index of zero, will contain the match for
the entire regular expression. Subsequent elements of matches will contain the matches
for subexpressions. These are the expressions enclosed in parentheses in the example.

<?
 // show User Agent
 print("User Agent: $HTTP_USER_AGENT
\n");

 // try to parse User Agent
 if(preg_match("/^(.+)/([0-9])\.([0-9]+)/",
 $HTTP_USER_AGENT, $matches))
 {
 print("Full match: $matches[0]
\n");
 print("Browser: $matches[1]
\n");
 print("Major Version: $matches[2]
\n");
 print("Minor Version: $matches[3]
\n");
 }
 else
 {
 print("User Agent not recognized");
 }
?>

integer preg_match_all (string pattern, string text, array
matches, integer order)

The preg_match_all function operates similarly to preg_match. A pattern is
evaluated against the text argument, but instead of stopping when a match is found,
subsequent matches are sought. The matches argument is required and will receive a
two-dimensional array. The method for filling this array is determined by the order
argument. It may be set with two constants, either PREG_PATTERN_ORDER, the default,
or PREG_SET_ORDER. The number of matches against the full pattern is returned.

Core PHP Programming

IT-SC book 287

Figure 9-12. preg_match_all.

Core PHP Programming

IT-SC book 288

Core PHP Programming

IT-SC book 289

If PREG_PATTERN_ORDER is used, the first element of the matches array will
contain an array of all the matches against the full pattern. The other elements of the
array will contain arrays of matches against subpatterns.

If PREG_SET_ORDER is used, each element of the matches array contains an array
organized like those created by preg_match. The first element is the entire matching
string. Each subsequent element contains the match against the subpattern for that match.

string preg_quote(string text)

The preg_quote function returns text with backslashes inserted before character that
have special meaning to the functions in this section. The special characters are:

 . \\ + * ? [^] $ () { } = ! < > | :

string preg_replace(string pattern, string replacement, string
text)

The preg_replace function is equivalent to ereg_replace. Each time the pattern
matches a substring within the text argument, it is replaced with the replacement
argument. The text argument is unchanged, but the altered version is returned.

If the pattern contains subexpressions in parentheses, the replacement argument may
contain a special code for specifying which subexpression to replace. The form is to use
two backslashes followed by a single digit, zero through nine. Zero matches the entire
expression; one through nine each match the first nine subexpressions, respectively.
Subexpressions are numbered left to right, which accounts for nested subexpressions.

<?
 // swap newlines for break tags
 $text = "line1\nline2\nline3\n";
 print(preg_replace("|\n|", "
", $text));

 print("<HR>\n");

 //mix up these words
 $text = "one two three four";
 print(preg_replace("|([a-z]+) ([a-z]+) ([a-z]+)
([a-z]+)|",
 "\\4 \\2 \\1 \\3", $text));
?>

Core PHP Programming

IT-SC book 290

array preg_split(string pattern, string text, integer limit)

The preg_split function returns an array of substrings from the text argument. The
pattern argument will be used as a field delimiter. The optional limit argument sets
the maximum number of elements to return. This function is equivalent to split.

<?
 $paragraph = "This is a short paragraph. Each ";
 $paragraph .= "sentence will be extracted by ";
 $paragraph .= "the preg_split function. As a ";
 $paragraph .= "result, you will be amazed!";
 $sentence = preg_split("/[\.\!\?]/", $paragraph);

 for($index = 0; $index < count($sentence);
$index++)
 {
 print("$index. $sentence[$index]
\n");
 }
?>

Core PHP Programming

IT-SC book 291

Chapter 10. MATHEMATICAL FUNCTIONS

Common Math

Random Numbers

Arbitrary-Precision Numbers

The math functions fall into three categories: common mathematical operations, random
numbers, and special functions for handling numbers of arbitrary precision.

Common Math

The functions in this section offer most of the common mathematical operations that are
part of arithmetic, geometry, and trigonometry. Most of these functions work on either
doubles or integers. The return type will be the same as the argument. Unless a specific
type is called for, I've written "number" to indicate that either an integer or a double is
expected.

number abs(number value)

The abs function returns the absolute value of a number. This is the number itself if it's
positive, or the number multiplied by negative one (-1) if negative.

<?
 //prints 13
 print(abs(-13));
?>

double acos(double value)

The acos function returns the arc cosine of the value argument. Trying to find the arc
cosine of a value greater than one or less than negative one is undefined.

Figure 10-1. acos.

Core PHP Programming

IT-SC book 292

double asin(double value)

The asin function returns the arc sine of the value argument. Trying to findthe arc sine of
a value greater than one or less than negative one is undefined.

Core PHP Programming

IT-SC book 293

<?
 // print asin values from -1 to 1
 print("<TABLE BORDER=\"1\">\n");
 print("<TR><TH>x</TH><TH>asin(x)</TH></TR>\n");

 for($index = -1; $index >= 1; $index += 0.25)
 {
 print("<TR>\n");
 print("<TD>$index</TD>\n");
 print("<TD>" . asin($index) . "</TD>\n");
 print("<TR>\n");
 }

 print("/<TABLE>\n");
?>

double atan(double value)

The atan function returns the arc tangent of the value argument.

<?
 // print atan values from -1 to 1
 print("<TABLE BORDER=\"1\">\n");
 print("<TR><TH>x</TH><TH>atan(x)</TH></TR>\n");

 for($index = -1; $index >= 1; $index += 0.25)
 {
 print("<TR>\n");
 print("<TD>$index</TD>\n");
 print("<TD>" . atan($index) . "</TD>\n");
 print("</TR>\n");
 }

 print("</TABLE>\n");
?>

double atan2(double x, double y)

The atan2 function returns the angle portion in radians of the polar coordinate specified
by the Cartesian coordinates.

<?
 //print 0.40489178628508
 print(atan2(3, 7));
?>

Core PHP Programming

IT-SC book 294

string base_convert(string value, int base, int new_base)

The base_convert function converts a number from one base to another. Some common
bases have their own functions.

<?
 //convert hex CC to decimal
 print(base_convert("CC", 16, 10));
?>

integer bindec(string binary_number)

The bindec function returns the integer value of a binary number written as a string. PHP
uses 32-bit signed integers. The binary numbers are little-endian, which means the least
significant bit is to the right. The first bit is the sign bit.

Figure 10-2. bindec.

integer ceil(double value)

The ceil function returns the ceiling of the argument, which is the smallest integer
greater than the argument.

Core PHP Programming

IT-SC book 295

<?
 //print 14
 print(ceil(13.2));
?>

double cos(double angle)

The cos function returns the cosine of an angle expressed in radians.

<?
 //prints 1
 print(cos(2 * pi()));
?>

string decbin(integer value)

The decbin function returns a binary representation of an integer as a string.

<?
 //prints 11111111
 print(decbin(255));
?>

string dechex(integer value)

The dechex function returns the hexadecimal representation of the value argument as a
string.

<?
 //prints ff
 print(dechex(255));
?>

string decoct(integer value)

The decoct function returns the octal representation of the value argument as a string.

<?
 //prints 377

Core PHP Programming

IT-SC book 296

 print(decoct(255));
?>

double deg2rad(double angle)

The deg2rad function returns the radians that correspond to angle argument, specified in
degrees.

<?
 //prints 1.5707963267949
 print(deg2rad(90));
?>

double exp(double power)

The exp function returns the natural logarithm raised to the power of the argument.

<?
 //prints 20.085536923188
 print(exp(3));
?>

integer floor(double value)

The floor function returns the floor of the argument, which is the integer part of the
argument.

<?
 //prints 13
 print(floor(13.2));
?>

integer hexdec(string hexadecimal_number)

The hexdec function converts a string that represents a hexadecimal number into an
integer. Preceding the number with "0x" is optional.

<?
 print(hexdec("FF"));
 print("
\n");

Core PHP Programming

IT-SC book 297

 print(hexdec("0x7FAD"));
 print("
\n");
?>

double log(double value)

The log function returns the natural logarithm of the value argument.

<?
 //prints 3.0022112396517
 print(log(20.13));
?>

double log10(double value)

The log10 function returns the decimal logarithm of its argument.

<?
 //prints 3.2494429614426
 print(log10(1776));
?>

integer octdec(string octal_number)

The octdec function returns the integer value of a string representing an octal number.

<?
 //prints 497
 print(octdec("761"));
?>

double pi()

The pi function returns the approximate value of pi. Alternatively, you may use the M_PI
constant.

<?
 //prints 3.1415926535898
 print(pi() . "
\n");

Core PHP Programming

IT-SC book 298

 //prints 3.1415926535898
 print(M_PI . "
\n");
?>

double pow(double base, double power)

Use the pow function to raise the base argument to the power indicated by the second
argument.

<?
 //print 32
 print(pow(2, 5));
?>

double rad2deg(double angle)

The deg2rad function returns the degrees that correspond to given radians specified in
the angle argument.

<?
 //print 90.00021045915
 print(rad2deg(1.5708));
?>

double round(double value)

The round function returns the argument rounded to the nearest integer.

<?
 //prints 1
 print(round(1.4) . "
\n");

 //prints 1
 print(round(1.5) . "
\n");

 //prints 2
 print(round(1.6) . "
\n");
?>

double sin(double angle)

Core PHP Programming

IT-SC book 299

The sin function returns the sine of the angle. The angle is assumed to be in radians.

<?
 //prints 1
 print(sin(0.5 * M_PI));
?>

double sqrt(double value)

Use sqrt to find the square root of a number.

<?
 //prints 9
 print(sqrt(81.0));
?>

double tan(double angle)

The tan function returns the tangent of an angle. The angle is expected to be expressed in
radians.

<?
 //prints 1.5574077246549
 print(tan(1));
?>

Random Numbers

The following functions help you generate pseudorandom numbers. There are wrappers
for the randomizing functions offered by your operating system, and there are functions
based on the Mersenne Twister algorithm. The Mersenne Twister functions are faster and
return numbers with a much better distribution suitable for cryptographic applications.
The algorithm was developed by Makoto Matsumoto and Takuji Nishimura. You can
read more about it on their Web page http://www.math.keio.ac.jp/~matumoto/emt.
html. Pedro Melo refactored an implementation by Shawn Cokus in order to add support
to PHP.

integer getrandmax()

The getrandmax function returns the maximum random number that may be returned by
the rand function.

Core PHP Programming

IT-SC book 300

<?
print(getrandmax());
?>

integer mt_getrandmax()

The mt_getrandmax function returns the maximum random number that may be returned
by the mt_rand function.

<?
print(mt_getrandmax());
?>

double lcg_value()

The lcg_value function returns a number between 0 and 1 using an algorithm called a
linear congruential generator, or LCG. This is a common method for generating
pseudorandom numbers. The generator is seeded with the process identifier.

integer mt_rand(integer min, integer max)

The mt_rand function uses the Mersenne Twister algorithm to return a number between
the two optional arguments, inclusive. If left out, zero and the integer returned by the
mt_getrandmax function will be used. Use mt_srand to seed the Mersenne Twister
random number generator.

<?
 //seed the generator
 mt_srand(time());

 //get ten random numbers from 1 to 100
 for($index = 0; $index < 10; $index++)
 {
 print(mt_rand(1, 100) . "
\n");
 }
?>

mt_srand()

The mt_srand function seeds the Mersenne Twister random number generator. It is best
to call this function once before using the mt_rand function.

Core PHP Programming

IT-SC book 301

integer rand(integer lowest, integer highest)

The rand function returns a number between the two optional arguments, inclusive. If
left out, zero and the integer returned by the getrandmax function will be used. Use the
srand function to seed the random number generator.

<?
 srand(time());

 //get ten random numbers from -100 to 100
 for($index = 0; $index < 10; $index++)
 {
 print(rand(-100, 100) . "
\n");
 }
?>

srand(integer seed)

The srand function seeds the random number generator. It is best to call this function
once before using the rand function.

string tempnam(string directory, string prefix)

The tempnam function returns the complete path to a unique temporary filename. This
guarantees you will not overwrite an existing file. You must take the responsibility to
create and then destroy the file.

The directory argument specifies a directory to put the file in, but it will be discarded if
a default temporary directory is defined in an environment variable. Under UNIX this
variable is called TMPDIR. Under Windows it is called TMP.

You must also specify a prefix for the file, but you may pass an empty string. It's a good
idea to pass a meaningful prefix, which will allow you to distinguish between temporary
files created by different processes. Note that no suffix is added to the file. Under
Windows you may want to add .tmp or some other file extension.

An empty string is returned on failure. This function is similar to uniqid.

<?
 $myFile = tempnam("C:\temp", "data");
 if(strlen($myFile) > 0)
 {
 print($myFile);
 }
 else
 {
 print("Couldn't make temporary name");

Core PHP Programming

IT-SC book 302

 }
?>

string uniqid(string prefix, boolean use_lcg)

The uniqid function joins the prefix argument to a random series of numbers and letters,
which are generated based on the system clock. The prefix may be up to 114 characters
long and the unique string is always 13 characters long.

If the optional use_lcg argument is TRUE, nine additional characters will be added to
the end of the return string These characters are generated by the same algorithm used by
the lcg_value function, so they will be a period followed by eight digits. Because the
lcg_value function seeds itself with the process ID, turning on this flag may not actually
add much randomness.

Compare this function to tempnam.

<?
print(uniqid("data"));
?>

Arbitrary-Precision Numbers

Doubles are usually sufficiently precise for any numerical analysis you may wish to
perform. However, PHP offers a way to work with numbers of much higher precision.
The functions in this section use strings to store very long floating-point numbers. They
each use a scale value that is the number of digits to the right of the decimal point. The
scale argument that appears in all of the functions is optional and will override the
default scale. The bcscale function, described in Chapter 11, "Date, Time, and
Configuration Functions," sets the default scale.

These functions are activated when PHP is compiled. They are part of the binary
distribution for windows, but they are not activated by default for other operating
systems. If PHP reports these functions as being unrecognized, you may need to
recompile PHP using the —enable-bcmath option.

string bcadd(string left, string right, integer scale)

The bcadd function adds left to right.

<?
 print(bcadd("1.234567890", "9.87654321", 10));
?>

Core PHP Programming

IT-SC book 303

integer bccomp(string left, string right, integer scale)

The bccomp function compares left to right. If they are equal, zero is returned. If left is
less than right, -1 is returned. If left is greater than right, 1 is returned.

<?
 print(bccomp("12345","1.111111111111", 10));
?>

string bcdiv(string left, string right, integer scale)

Use bcdiv to divide left by right.

<?
 print(bcdiv("12345", "98754", 10));
?>

string bcmod(string left, string right)

The bcmod function finds the modulus of the division of left by right.

<?
 print(bcmod("66394593", "133347"));
?>

string bcmul(string left, string right, integer scale)

Use bcmul to multiply the left argument and the right argument.

<?
 print(bcmul("66394593", "133347", 10));
?>

string bcpow(string value, string exponent, integer scale)

The bcpow function raises the value argument to the power of the exponent argument. If
the exponent is not an integer, the fractional part will be chopped off.

Core PHP Programming

IT-SC book 304

<?
 print(bcpow("66394593", "3", 10));
?>

string bcsqrt(string value, integer scale)

The bcsqrt function returns the square root of the value argument.

<?
 print(bcsqrt("1234.567", 10));
?>

string bcsub(string left, string right, integer scale)

Use the bcsub function to subtract the right argument from the left argument.

<?
 print(bcsub("1234.4842", "88.6674"));
?>

Core PHP Programming

IT-SC book 305

Chapter 11. TIME, DATE, AND
CONFIGURATION FUNCTIONS

Time and Date

Alternative Calendars

ConfigurationChapter

The functions in this section fall into three categories: time and date, alternative
calendars, and configuration. The time and date functions are standard for any
programming language. They allow you to get the current date in several formats. The
calendar functions manipulate dates in various calendars, including ancient and obscure
calendars. The configuration functions offer a way to change the configuration of PHP on
a per-script basis.

Time and Date

All the time functions work off the UNIX epoch, which is January 1, 1970. Dates are
expressed as seconds since the epoch. This makes it easy to refer to dates with integers.
When a function calls for seconds since the epoch, I've referred to it as a timestamp.

boolean checkdate(integer month, integer day, integer year)

The checkdate function returns TRUE if a date is valid, FALSE otherwise. A day is
considered valid if the year is between 0 and 32,767, the month is between 1 and 12, and
lastly, if the day is within the allowable days for that month.

<?
 if(checkdate(2,18,1970))
 {
 print("It is a good day");
 }
?>

string date(string format, integer timestamp)

The date function returns a string describing the date of the timestamp according to the
format argument. Letters in the format argument are replaced with parts of the date or
time. Any characters not understood as codes are passed along in place. Format codes are
listed in Table 11.1.

Core PHP Programming

IT-SC book 306

The timestamp argument is optional. If left out, the current time will be used. The
timestamp is interpreted as being in local time.

<?
 //prints something like
 //03:59 PM Monday January 1st, 2001
 print(date("h:i A l F dS, Y"));
?>

array getdate(integer timestamp)

The getdate function returns an associative array with information about the given date.
This array is described in Table 11.2. The timestamp argument is the number of seconds
since January 1, 1970. If left out, the current time is used.

Figure 11-1. getdate

Core PHP Programming

IT-SC book 307

array gettimeofday()

Core PHP Programming

IT-SC book 308

The gettimeofday function returns an associative array containing information about the
current time. This is a direct interface to the C function of the same name. The element of
the returned array are listed in Table 11.3.

Figure 11-2. gettimeofday.

Table 11.1. dateFormat Codes

Code Description
a am or pm
A AM or PM
B Swatch Beat time
d Day of the month with leading zeroes
D Day of the week as a three-letter abbreviation
F Name of the month
h Hour from 01 to 12
H Hour from 00 to 23
g Hour from 1 to 12 (no leading zeroes)

Core PHP Programming

IT-SC book 309

G Hour from 0 to 23 (no leading zeroes)
i Minutes
j Day of the month with no leading zeroes
l Day of the week
L 1 if leap year, 0 otherwise
m Month number from 01 to 12
M Abbreviated month name (Jan, Feb, . . .)
n Month number from 1 to 12 (no leading zeroes)
s Seconds 00 to 59
S Ordinal suffix for day of the month (1st, 2nd, 3rd)
t Number of days in the month
U Seconds since the epoch
y Year as two digits
Y Year as four digits
z Day of the year from 0 to 365
Z Timezone offset in seconds (-43,200 to 43,200)

Table 11.2. Elements ingetdateArray

Element Description
hours Hour in 24-hour format
mday Day of the month
minutes Minutes for the hour
mon Month as a number
month Full name of the month
seconds Seconds for the minute
wday Day of the week as a number from 0 to 6
weekday Name of the day of the week
yday Day of the year as a number
year Year
0 Timestamp

Table 11.3. Elements of the Array Returned bygettimeofday

Element Meaning
sec Seconds
usec Microseconds
minuteswest Minutes West of Greenwich
dsttime Type of DST correction

string gmdate(string format, integer timestamp)

Core PHP Programming

IT-SC book 310

The gmdate function operates identically to the date function except that, rather than
return the time for the local time zone, Greenwich Mean Time is returned.

<?
 print("Local: ");
 print(date("h:i A l "));
 print(date("F dS, Y"));
 print("
\n");

 print("GMT: ");
 print(gmdate("h:i A l "));
 print(gmdate("F dS, Y"));
 print("
\n");
?>

string gmstrftime(string format, integer timestamp)

The gmstrftime function operates identically to strftime except that the timestamp is
translated into Greenwich Mean Time. The same format codes defined in Table 11.4 are
used in the format argument.

<?
 print(gmstrftime("%A, %c", mktime(0, 0, 0, 1, 1,
 1970)));
?>

Table 11.4. Codes Used bystrftime

Code Description
%a Abbreviated weekday name
%A Full weekday name
%b Abbreviated month name
%B Full month name
%c Preferred date and time representation
%d Two-digit day of the month with zero-fill
%H Hour on the 24-hour clock with zero-fill
%I Hour on the 12-hour clock
%j Three-digit day of the year with zero-fill
%m Month number from 1 to 12
%M Minutes
%p Equivalent representation of am or pm
%S Seconds
%U Week number with week one starting with the first Sunday of the year
%W Week number with week one starting with the first Monday of the year

Core PHP Programming

IT-SC book 311

%w Day of the week as a number with Sunday being zero
%x Preferred date representation
%X Preferred time representation
%y Two-digit year with zero-fill
%Y Four-digit year
%Z Time zone
%% A literal % character

string microtime()

The microtime function returns a string with two numbers separated by a space. The first
number is microseconds on the system clock. The second is the number of seconds since
January 1, 1970.

<?
 //print microtime
 print("Start: ". microtime() . "
\n");

 //sleep for a random time
 usleep(rand(100,5000));

 //print microtime
 print("Stop: " . microtime() . "
\n");
?>

integer mktime(integer hour, integer minute, integer second,
integer month, integer day, integer year)

The mktime function returns a timestamp for a given date, the number of seconds since
January 1, 1970. All the arguments are optional and, if left out, the appropriate value for
the current time will be used. If an argument is out of range, mktime will account for the
surplus or deficit by modifying the other time units. For example, using 13 for the month
argument is equivalent to January of the following year. This makes mktime an effective
tool for adding arbitrary time to a date.

<?
 print("Fifty Hours from Now: ");
 print(date("h:i A l F dS, Y", mktime(date("h")+50)));
 print("
\n");
?>

string strftime(string format, integer timestamp)

Core PHP Programming

IT-SC book 312

The strftime function returns a date in a particular format. If the optional timestamp
argument is left out, the current time will be used. Language-dependent strings will be set
according to the current locale, which may be changed with the setlocale function. The
format string may contain codes that have special meaning and begin with a percentage
sign. Other characters are passed through unchanged. See Table 11.4 for a list of format
codes.

<?
 //prints something like
 //Monday, 01/01/01 16:04:12
 print(strftime("%A, %c"));
?>

integer strtotime(string date, integer now)

The strtotime function attempts to parse a string containing date and time, returning the
timestamp for it. If partial information is provided in the date argument, the missing
information will be drawn from the now argument. You may leave out the now argument
to use the current time.

<?
 //create a reason description
 //of a date
 $time = "Feb 18, 1970 3AM";

 //get its timestamp
 $ts = strtotime($time);

 //print it to verify that it worked
 print(date("h:i A l F dS, Y", $ts));
?>

integer time()

Use time to get the current timestamp.

<?
 print(time());
?>

Alternative Calendars

Core PHP Programming

IT-SC book 313

PHP offers a powerful way to convert dates from one calendar system to another. In order
to do this, you must first convert a date into a Julian Day Count. You then convert that
integer back into a date according to another calendar.

These functions require the calendar extension. You may load it dynamically, or compile
it into PHP.

integer easter_date(integer year)

Use easter_date to get the timestamp for midnight on Easter for a given year.

<?
 print(easter_date(2000));
?>

integer easter_days(integer year)

The easter_days function returns the number of days after March 21 on which Easter
falls for the given year.

<?
 print(easter_days(2000));
?>

integer frenchtojd(integer month, integer day, integer year)

The frenchtojd function returns the Julian Day Count for the given French Republican
calendar date.

<?
 $jdc = frenchtojd(1,1,1);
 print(jdtogregorian($jdc));
?>

integer gregoriantojd(integer month, integer day, integer year)

The gregoriantojd function returns the Julian Day Count for the given Gregorian date.

<?
 $jdc = gregoriantojd(1,1,1);
 print(jdtogregorian($jdc));

Core PHP Programming

IT-SC book 314

?>

value jddayofweek(integer julian_day, integer mode)

The jddayofweek function returns either an integer or a string, depending on the mode.
Modes are listed in Table 11.5.

<?
 $jdc = gregoriantojd(1,1,1);
 print(jddayofweek($jdc, 1));
?>

Table 11.5. Calendar Day Modes

Mode Description
0 Return the day of the week as a number from zero to 6, zero being Sunday.

1 Return the day of the week as a name using the English name from the
Gregorian calendar.

2 Returns the abbreviated name of the day of the week using the English name
from the Gregorian calendar.

string jdmonthname(integer julian_day, integer mode)

The jdmonthname function returns the name of the month for a particular day. The mode
argument specifies which calendar to draw month names from. Modes are listed in Table
11.6.

<?
 $jdc = gregoriantojd(1,1,1800);
 print(jdmonthname($jdc, 0) . "
\n");
 print(jdmonthname($jdc, 1) . "
\n");
 print(jdmonthname($jdc, 2) . "
\n");
 print(jdmonthname($jdc, 3) . "
\n");
 print(jdmonthname($jdc, 4) . "
\n");
 print(jdmonthname($jdc, 5) . "
\n");
?>

string jdtofrench(integer julian_day)

The jdtofrench function returns the date on the French Republican calendar for a Julian
Day Count.

<?
 $jdc = gregoriantojd(1,1,1800);

Core PHP Programming

IT-SC book 315

 print(jdtofrench($jdc));
?>

Table 11.6. Month-Name Modes

Mode Description
0 Gregorian, abbreviated
1 Gregorian, full
2 Julian, abbreviated
3 Julian, full
4 Jewish
5 French Republican

string jdtogregorian(integer julian_day)

Use the jdtogregorian function to convert a Julian Day Count to a Gregorian date.

<?
 $jdc = jewishtojd(1,1,1);
 print(jdtogregorian($jdc));
?>

string jdtojewish(integer julian_day)

The jdtojewish function returns the Jewish calendar date for the given Julian Day
Count.

<?
 $jdc = gregoriantojd(1,1,1);
 print(jdtojewish($jdc));
?>

string jdtojulian(integer julian_day)

Use the jdtojulian function to get the Julian date for a Julian Day Count.

<?
 $jdc = gregoriantojd(1,1,1);
 print(jdtojulian($jdc));
?>

Core PHP Programming

IT-SC book 316

integer jewishtojd(integer month, integer day, integer year)

The jewishtojd function returns a Julian Day Count for the given Jewish calendar date.

<?
 $jdc = jewishtojd(1,1,1);
 print(jdtogregorian($jdc));
?>

integer juliantojd(integer month, integer day, integer year)

Use the juliantojd function to get the Julian Day Count for a Julian calendar date.

<?
 $jdc = juliantojd(1,1,1);
 print(jdtogregorian($jdc));
?>

Configuration

The following functions affect the operation of PHP. Some of them alter configuration
variables. Others cause a script to stop executing for a period of time.

boolean bcscale(integer scale)

The bcscale function sets the default scale for the functions that perform math on
arbitrary-precision numbers. The scale is the number of digits after the decimal point. See
the section on arbitrary-precision numbers in Chapter 10, "Mathematical Functions."

<?
 //use ten digits
 bcscale(10);
?>

clearstatcache()

Calling C's stat function may take a considerable amount of time. To increase
performance, PHP caches the results of each call. When you use a function that relies on
stat, the information from the cache is returned. If information about a file changes
often, you may need to clear the stat cache.

Core PHP Programming

IT-SC book 317

The functions that use the stat cache are: stat, file_exists, fileatime, filectime, fileinode,
filegroup, fileowner, fileperms, filesize, filetype.

<?
 //make sure info isn't cached
 clearstatcache();

 //get size of this file
 print(filesize(__FILE__));
?>

define_syslog_variables()

The define_syslog_variables function emulates the configuration directive of the
same name. It causes the constants for use with the system log to be created as variables.
The functions that interact with the system log are closelog, openlog, and syslog.

<?
define_syslog_variables();
?>

boolean dl(string extension)

Use the dl function to load a dynamic extension module. The function returns FALSE if
the module could not be loaded. The path to these modules is set in php.ini, so you need
type only the name of the module file.

<?
 //load windows mysql module
 dl("php_mysql.dll");

 //show diagnostics
 phpinfo();
?>

integer error_reporting(integer level)

The error_reporting function sets the level of error reporting and returns the previous
value. The level argument is a bitfield, so use the bitwise OR operator (|) to put together
the type of error reporting you would like. By default PHP uses a level of seven, which is
Errors, Warnings, and Parser Errors. Refer to Table 11.7, which lists error levels.

Core PHP Programming

IT-SC book 318

Table 11.7. Error Levels

Value Name Description
1 Errors Unrecoverable errors that cause execution of the script to halt.

2 Warnings Recoverable errors where incorrect values are passed to functions,
but script execution continues.

4 Parser
Errors Errors generated by the parser, halting execution.

8 Notice A warning about a condition that may or may not be an error, such
as getting the value of a variable before setting it.

16 Core Error Error conditions reported by the operating system

32 Core
Warning Warnings reported by the operating system.

Figure 11-3. error_reporting

boolean ignore_user_abort(boolean ignore)

Calling ignore_user_abort with a TRUE value for the ignore argument will cause PHP
to continue executing even when the remote client abruptly closes the connection. The
previous setting is returned. You may call ignore_user_abort with no argument, in
which case no change is made.

<?
 function fakeProcess($name)
 {
 print("Start of fake process.
\n");
 flush();
 sleep(10);

Core PHP Programming

IT-SC book 319

 print("End of fake process.
\n");

 //write message to log
 $statusMessage = date("Y-m-d H:i:s") . " Fake
 process $name completed\n";
 error_log($statusMessage, 3, "status.log");
 }

 //finish script even if user
 //aborts execution
 ignore_user_abort(TRUE);

 fakeProcess("one");

 //allow aborts again
 ignore_user_abort(FALSE);

 fakeProcess("two");
?>

string ini_alter(string directive, string value)

Use ini_alter to override the value of one of the directives in the php.ini file. The
setting is for your script only. The file itself is not changed.

string ini_get(string directive)

The ini_get function returns the value of one of the directives in the php.ini file.

<?
 //see what SMTP is now
 print(ini_get("SMTP") . "
\n");

 //change to bogus value
 ini_alter("SMTP", "mail.corephp.com");
 print(ini_get("SMTP") . "
\n");

 //return to original
 ini_restore("SMTP");
 print(ini_get("SMTP") . "
\n");
?>

ini_restore(string directive)

The ini_restore function returns the named directive to the value in the php.ini file.
See ini_get for an example of use.

magic_quotes_runtime

Core PHP Programming

IT-SC book 320

You may use magic_quotes_runtime as an alias to set_magic_quotes_ runtime.

register_shutdown_function(string function)

Use register_shutdown_function to cause PHP to execute a function after it has
parsed the entire script, including anything outside PHP tags. The shutdown function will
also be executed in the event of an error, timeout, or user abort.

Keep in mind that the shutdown function may be called after the connection to the
browser has been shut down, in which case using print makes little sense. In other words,
this isn't a good way to debug.

You may register more than one shutdown function. Each will be executed in the order
they were registered.

<?
 function shutdown()
 {
 print("!-- Script Terminated -->\n");
 }

 register_shutdown_function("shutdown");
?>

integer set_magic_quotes_runtime(boolean setting)

Use set_magic_quotes_runtime to change whether quotes are escaped in data pulled
from a database. The original value is returned.

<?
 //turn off magic_quotes_runtime
 set_magic_quotes_runtime(0);
?>

string setlocale(string category, string locale)

The setlocale function modifies the locale information for PHP and returns the new
locale specification. FALSE is returned if an error occurs. The locale determines things
such as whether to use a comma or a period in floating-point numbers. Locale does not
affect how you write PHP scripts, only the output of some functions.

If the category argument is an empty string, the values for the categories will be set
from environment variables. If the category argument is zero, the current setting will be
returned. Otherwise, a category from Table 11.8 should be chosen.

Core PHP Programming

IT-SC book 321

This function wraps the C function of the same name, so it's a good idea to check out the
man page. PHP accepts some categories that have no effect on PHP itself. Also, PHP
does not necessarily accept all the valid categories your operating system offers.

Location codes differ with operation systems. In general they take the form of
language_country—that is, a language code followed by an optional underscore and a
country code. If you are using Windows, Visual C's help file lists all the languages and
countries.

<?
 // change locale in Windows NT
 print("Changing to Russian: ");
 print(setlocale(LC_ALL, "russian"));
 print("
\n");
 print("Dos vedanya!");
?>

Table 11.8. Categories forsetlocale

Category Description
LC_ALL All aspects of locale
LC_COLLATE Comparison of strings (not used by PHP)
LC_CTYPE Conversion and classification of characters
LC_MONETARY Monetary formatting (not used by PHP)
LC_NUMERIC Number separation
LC_TIME Time formatting

set_time_limit(integer seconds)

Use set_time_limit to override the default time a script is allowed to run, which is
usually set to 30 seconds inside php.ini. If this limit is reached, an error occurs and the
script stops executing. Setting the seconds argument to zero causes the time limit to be
disabled.

Each time the set_time_limit function is called, the counter is reset to zero. This means
that calling set_time_limit (30) gives you a fresh 30 seconds of execution time.

The time-limit functionality does not operate in Windows. Scripts will execute until
finished.

<?
 // allow this script to run forever
 set_time_limit(0);
?>

Core PHP Programming

IT-SC book 322

sleep(integer seconds)

The sleep function causes execution to pause for the given number of seconds.

<?
 print(microtime());
 sleep(3);
 print("
\n");
 print(microtime());
?>

usleep(integer microseconds)

The usleep function causes execution to pause for the given number of microseconds.
There are a million microseconds in a second.

<?
 print(microtime());
 usleep(30);
 print("
\n");
 print(microtime());
?>

Core PHP Programming

IT-SC book 323

Chapter 12. IMAGE FUNCTIONS

Analyzing Images

Creating JPEG, PNG, and WBMP Images

The majority of the image functions draw their functionality from the GD library, free
software for manipulating images. These require the GD extension to be loaded, via
php3.ini or the dl function. The four functions in the first section of this chapter are not
part of the GD extension and should always be available to you.

The GD library was created at Boutell.com, a company that has contributed several Open
Source tools to the Web community. The library historically supported GIF image
creation, but in 1999 this functionality was pulled in favor of PNG format files. The
compression algorithm used in GIF creation is patented, which means permission must be
granted to software authors who use it. PNG, on the other hand, is an open specification.
It also happens to be technically superior to GIF. Support for PNG was added to the
fourth generations of the two most popular browsers, Netscape Navigator and Microsoft
Internet Explorer, so using PNG is feasible. In early 2000, support for JPEG and WBMP
images was added to GD.

The GD library's home on the Web is <http://www.boutell.com/gd/>. The URL for
PNG's home page is <http://www.cdrom.com/pub/png/>.

Two of the functions in this section require a special library to deal with TrueType fonts:
imagettfbbox and imagettftext. Likewise, the functions that work with PostScript
fonts require their own library. Consequently, these functions may not be available to
you, depending on how PHP was compiled.

Chapter 19, "Generating Graphics," makes use of the functions in this chapter to explore
some practical uses.

Analyzing Images

These functions are part of PHP's core and do not require loading an extension.

string gamma_correct_tag(string color, double original, double
new)

The gamma_correct_tag function adjusts an HTML color from one gamma to another.
Video display hardware is given a gamma rating that describes relatively how bright
images appear. Identical images appear lighter on Macintosh hardware than on the typical
Wintel clone. The W3C has a nice discussion about color spaces that includes
information about gamma values: <http://www.w3.org/Graphics/Color/sRGB.html>.

Core PHP Programming

IT-SC book 324

<?
 //go from Windows gamma to Macintosh gamma
 $color = gamma_correct_tag("#CC0000", 2.2, 1.571);

 print("FONT COLOR=\"$color\">");
 print("Sample Text");
 print("/FONT>");
?>

array getimagesize(string filename, array image_info)

The getimagesize function returns a four-element array that tells you the image size of
the given filename. The contents of this array are listed in Table 12.1. The file must be a
graphic file in one of three formats: GIF, JPEG, or PNG.

The optional image_info argument will be set with additional information from the file.
At the time of this writing, this array is set with APP markers 0–15 from JPEG files. One
of the most common is APP13, which is an International Press Telecommunications
Council (IPTC) block. These blocks are used to communicate information about
electronic media released to news agencies. They are stored in binary form, so to decode
them you must use the iptcparse function. You can find out more about the IPTC at
their Web site: <http://www.iptc.org/iptc/>.

Table 12.1. Array Elements for getimagesize

Element Description
0 Width in pixels
1 Height in pixels
2 Image Type (GIF = 1, JPG = 2, PNG = 3)
3 String like "height=150 width=200", usable in IMG tag
bits Bits per sample for jpegs
channels Samples per pixel for jpegs

Note that the image_info argument must be passed by reference, which means it must be
preceded by an ampersand.

<?
 $image_file = "php.jpg";
 $image_size = getimagesize($image_file, &$image_info);
 print("IMG SRC=\"$image_file\" $image_size[3]>BR>\n");

 //show information if it exists
 while(list($key, $value) = each($image_info))
 {
 print($key . "BR>\n");
 }
?>

Core PHP Programming

IT-SC book 325

string iptcembed(string iptc, string file, integer spool)

The iptcembed function adds IPTC blocks to JPEG files. By default the blocks are added
to the file, and the modified file is returned. The spool argument allows you to change
this behavior. If the spool flag is 1 or 2, then the modified JPEG will be sent directly to
the browser. If the spool flag is 2, the JPEG will not be returned as a string.

array iptcparse(string iptc_block)

The iptcparse function takes an IPTC block and returns an array containing all the tags
in the block. See the description of getimagesize to see how to get IPTC blocks.

Creating JPEG, PNG, and WBMP Images

All the functions in this section require the GD library. If you haven't compiled it as part
of your PHP module, either load it automatically by editing php3.ini, or use the dl
function. Some of these functions also require other libraries, which allow you to use font
files.

To get started you can use either imagecreate to start with a blank graphic, or a function
such as imagecreatefrompng to load a PNG from a file. Coordinates in these functions
treat (0, 0) to be the top-left corner and refer to pixels. Likewise, any size arguments refer
to pixels.

When creating images with these functions, you can't simply decide to output an image in
the middle of a script that outputs HTML. You must create a separate script that sends a
content-type header. All the examples illustrate this idea.

For functions that use fonts, there are five built-in fonts numbered 1, 2, 3, 4, and 5. You
may also load fonts, which will always have identifiers greater than five.

boolean imagearc(integer image, integer center_x, integer
center_y, integer width, integer height, integer start, integer
end, integer color)

Use imagearc to draw a section of an ellipse. The first argument specifies a valid image.
The ellipse is centered at center_x and center_y. The height and width are set by the
respective arguments in pixels. The start and end points of the curve are given in degrees.
Zero degrees is at 3 o'clock and proceeds counterclockwise.

<?
 /*
 ** cut out a circular view of an image

Core PHP Programming

IT-SC book 326

 */

 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefrompng("php.png")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/jpeg");
 imagejpeg($image);
 exit();
 }

 //create a color to be transparent, hopefully
 //not already in the image
 $colorMagenta = imagecolorallocate($image, 255, 0, 255);

 //draw a circle
 imagearc($image,
 100, 50,
 100, 100,
 0, 360,
 $colorMagenta);

 //fill outside of circle with Magenta
 imagefilltoborder($image, 0, 0, $colorMagenta, $colorMagenta);

 //turn magenta transparent
 imagecolortransparent($image, $colorMagenta);

 //send image to browser
 header("Content-type: image/png");
 imagepng($image);
?>

boolean imagechar(integer image, integer font, integer x,
integer y, string character, integer color)

The imagechar function draws a single character at the given pixel. The font argument
can be a loaded font or one of the five built-in fonts. The character will be oriented
horizontally—that is, left to right. The x and y coordinates refer to the top-left corner of
the letter.

Figure 12-1. imagechar.

Core PHP Programming

IT-SC book 327

boolean imagecharup(integer image, integer font, integer x,
integer y, string character, integer color)

The imagecharup function operates identically to imagechar, except that the character is
oriented vertically, bottom to top.

Figure 12-2. imagecharup.

Core PHP Programming

IT-SC book 328

integer imagecolorallocate(integer image, integer red, integer
green, integer blue)

The imagecolorallocate function allocates a color in the given image. The color is
specified by the amount of red, green, and blue. An identifier is returned for referring to
this color in other functions.

<?
 /*
 ** Draw Red, Green, Blue circles
 */

 //create white square
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255,255,255);
 $colorRed = imagecolorallocate($image, 255, 0, 0);
 $colorGreen = imagecolorallocate($image, 0, 255, 0);
 $colorBlue = imagecolorallocate($image, 0, 0, 255);
 imagefill($image, 0, 0, $colorWhite);

Core PHP Programming

IT-SC book 329

 //make red circle
 imagearc($image, 50, 50, 100, 100, 0, 360, $colorRed);
 imagefilltoborder($image, 50, 50, $colorRed, $colorRed);

 //make green circle
 imagearc($image, 100, 50, 100, 100, 0, 360, $colorGreen);
 imagefilltoborder($image, 100, 50, $colorGreen, $colorGreen);

 //make blue circle
 imagearc($image, 75, 75, 100, 100, 0, 360, $colorBlue);
 imagefilltoborder($image, 75, 75, $colorBlue, $colorBlue);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

integer imagecolorat(integer image, integer x, integer y)

The imagecolorat function returns the index of the color at the specified pixel. All
images have a palette of arbitrary colors referred to by integers.

<?
 /*
 ** Change a color
 */

 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefromjpeg("php_lang.jpg")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/jpeg");
 imagejpeg($image);
 exit();
 }

 //get the color at (10,10)
 $colorIndex = imagecolorat($image, 10, 10);

 //change that color to red
 imagecolorset($image, $colorIndex, 255, 0, 0);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

Core PHP Programming

IT-SC book 330

integer imagecolorclosest(integer image, integer red, integer
green, integer blue)

The imagecolorclosest function returns the index of the color in the given image
closest to the given color. Colors are treated as three-dimensional coordinates, and
closeness is defined by the distance between two points.

<?
 /*
 ** Compare closest color to real color
 */

 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefromjpeg("php_lang.jpg")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/jpeg");
 imagejpeg($image);
 exit();
 }

 //find index of color closest to pure magenta
 $magentaIndex = imagecolorclosest($image, 255, 0, 255);

 //get RGB values
 $colorArray = imagecolorsforindex($image, $magentaIndex);

 //allocate closest color
 $colorMagenta = imagecolorallocate($image,
 $colorArray["red"],
 $colorArray["green"],
 $colorArray["blue"]);

 //draw a square
 imagefilledrectangle($image, 10, 10, 100, 100, $colorMagenta);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

Core PHP Programming

IT-SC book 331

integer imagecolorexact(integer image, integer red, integer
green, integer blue)

Use the imagecolorexact function to find the index of the color in the given image that
matches the given color exactly. If the color doesn't exist, negative one (-1) is returned.

?<
 /*
 ** Check that an image contains black
 ** If so, change all black to cyan.
 */

 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefromjpeg("php_lang.jpg")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/jpeg");
 imagejpeg($image);
 exit();
 }

 //find index of black
 $blackIndex = imagecolorexact($image, 0, 0, 0);

 if($blackIndex >= 0)
 {
 //make all black areas cyan
 imagecolorset($image, $blackIndex, 0, 255, 255);
 }

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

integer imagecolorresolve(integer image, integer red, integer
green, integer blue)

The imagecolorresolve function returns a color identifier based on a specified color. If
the color does not exist in the image's palette, it will be added. In the event that the color
cannot be added, an identifier for the closest color will be returned.

?<
 /*

Core PHP Programming

IT-SC book 332

 ** Attempt to draw a magenta square
 */

 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefromjpeg("php_lang.jpg")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/jpeg";
 imagejpeg($image);
 exit();
 }

 $colorMagenta = imagecolorresolve($image, 255, 0, 255);

 // draw a square
 imagefilledrectangle($image, 10, 10, 50, 50, $colorMagenta);

 //send ima
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

boolean imagecolorset(integer image, integer index, integer
red, integer green, integer blue)

The imagecolorset function sets the color at the given index to the specified color. For
an example of use, see the example for the imagecolorat function.

array imagecolorsforindex(integer image, integer index)

The imagecolorsforindex function returns an associative array with the red, green, and
blue elements of the color for the specified color index.

<?
 /*
 ** Show RGB values for a color
 */

 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefromjpeg("php_lang.jpg")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);

Core PHP Programming

IT-SC book 333

 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/jpeg");
 imagejpeg($image);
 exit();
 }

 //get the color at (100,100)
 $colorIndex = imagecolorat($image, 100, 100);

 //get RGB values
 $colorParts = imagecolorsforindex($image, $colorIndex);

 //display RGB values
 printf("RGB: " .
 $colorParts["red"] . ", " .
 $colorParts["green"] . ", " .
 $colorParts["blue"]);
?>

integer imagecolorstotal(integer image)

The imagecolorstotal function returns the number of colors in the given image.

<?
 /*
 ** Find number of colors in an image
 */

 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefromjpeg("php_lang.jpg")))
 {
 //error, so print error message
 print("Couldn't load image!");
 }
 else
 {
 print("Total Colors: " . imagecolorstotal
 ($image));
 }
?>

integer imagecolortransparent (integer image, integer color)

The imagecolortransparent function sets the given color transparent. The color
argument is as returned by the imagecolorallocate functions.

Core PHP Programming

IT-SC book 334

<?
 /*
 ** Create a red image with a transparent
 ** square cut out of it.
 */

 //create red square
 $image = imagecreate(200,200);
 $colorRed = imagecolorallocate($image, 255, 0, 0);
 $colorBlue = imagecolorallocate($image, 0, 0, 255);
 imagefill($image, 0, 0, $colorRed);

 //draw a smaller blue square
 imagefilledrectangle($image, 30, 30, 70, 70, $colorBlue);

 //make blue transparent
 imagecolortransparent($image, $colorBlue);

 //send image
 header("Content-type: image/png");
 imagepng($image);
?>

integer imagecopyresized(integer destination, integer source,
integer destination_x, integer destination_y, integer source_x,
integer source_y, integer destination_width, integer
destination_height, integer source_width, integer
source_height)

The imagecopyresized function copies a portion of the source image into the
destination image. If the destination width and height are different thanthe source width
and height, the clip will be stretched or shrunk. It is possible to copy and paste into the
same image, but if the destination and source overlap, there will be unpredictable results.

<?
 /*
 ** Put PHP logo into field of red
 ** and resize it to 180x180
 */

 //create red square
 $image = imagecreate(200,200);
 $colorRed = imagecolorallocate($image, 255, 0, 0);
 imagefill($image, 0, 0, $colorRed);

 //attempt to open image, suppress error messages
 if(!($image2 = @imagecreatefromjpeg("php_lang.jpg")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);

Core PHP Programming

IT-SC book 335

 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/jpeg");
 imagejpeg($image);
 exit();
 }

 //drop image2 into image, and stretch or squash it
 imagecopyresized($image, $image2, 10, 10, 0, 0,
 180, 180, imagesx($image2), imagesy($image2));

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

integer imagecreate(integer width, integer height)

The imagecreate function returns an image identifier of the specified width and height.
This identifier is used in many of the other image functions.

<?
 /*
 ** Create a red square
 */

 //create red square
 $image = imagecreate(200,200);
 $colorRed = imagecolorallocate($image, 255, 0, 0);
 imagefill($image, 0, 0, $colorRed);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

integer imagecreatefromjpeg(string filename)

Use imagecreatefromjpeg to load a JPEG image from a file.

<?
 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefromjpeg("php_lang.jpg")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);

Core PHP Programming

IT-SC book 336

 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
$colorBlack);
 header("Content-type: image/jpeg");
 imagejpeg($image);
 exit();
 }

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

integer imagecreatefrompng(string filename)

Use imagecreatefrompng to load a PNG image from a file.

<?
 //load an image and display it
 $image = imagecreatefrompng("php.png");
 header("Content-type: image/png");
 imagepng($image);
?>

boolean imagedashedline(integer image, integer start_x,
integer start_y, integer end_x, integer end_y, integer color)

The imagedashedline function draws a dashed line from the start point to the end point.
The color argument is a color identifier returned by imagecolorallocate. Use
imageline to draw a solid line.

Figure 12-3. imagesdashedline.

Core PHP Programming

IT-SC book 337

<?
 /*
 ** Show image with a dashed line
 */

 //create yellow square
 $image = imagecreate(200,200);
 $colorBlue = imagecolorallocate($image, 0, 0, 255);
 $colorYellow = imagecolorallocate($image, 255, 255, 0);
 imagefill($image, 0, 0, $colorYellow);

 //draw dashed line in blue
 imagedashedline($image, 10, 10, 150, 130, $colorBlue);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

boolean imagedestroy(integer image)

Use the imagedestroy function to clear memory associated with the specified image.
Most of the time you will not need this function. PHP will clean up when your script
ends.

<?
 /*
 ** Create an image, then free its memory
 */

 //create blue square
 $image = imagecreate(200,200);
 $colorBlue = imagecolorallocate($image, 128, 128, 255);
 imagefill($image, 0, 0, $colorBlue);

Core PHP Programming

IT-SC book 338

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);

 //free memory associated with image
 imagedestroy($image);
?>

boolean imagefill(integer image, integer x, integer y, integer
color)

The imagefill function performs a flood fill at the given point with the given color. The
color argument must be as returned by imagecolorallocate. Starting at the given
point, pixels are changed to the specified color. The coloring spreads out, continuing until
a color different from the one at the specified point is encountered. See the description of
imagearc for an example of use. See imagefilltoborder for an alternative.

boolean imagefilledpolygon(integer image, array points,
integer number, integer color)

The imagefilledpolygon function creates a polygon with its inside filled with the
specified color. The points argument is an array of x and y values for each point: Each
point uses two array elements. The number argument reports how many points to use
from the array.

Figure 12-4. imagefilledpolygon.

Core PHP Programming

IT-SC book 339

Figure 12-5. imagefilledrectangle.

Core PHP Programming

IT-SC book 340

boolean imagefilledrectangle(integer image, integer top_left_x,
integer top_left_y, integer bottom_right_x, integer
bottom_right_y, integer color)

The imagefilledrectangle function draws a filled rectangle based on the top-left and
bottom-right corners.

boolean imagefilltoborder(integer image, integer x, integer y,
integer border_color, integer color)

Core PHP Programming

IT-SC book 341

The imagefilltoborder function will flood-fill an area bounded by the border_color
argument. The flood fill will begin at the given coordinate. See imagecolorallocate for an
example.

integer imagefontheight(integer font)

The imagefontheight function returns the height in pixels of the specified font, which
may be a built-in font (1–5) or a font loaded with imagefontload.

<?
 /*
 ** Create image just the right size for text
 */

 $Text = "Core PHP Programming";
 $Font = 5;
 $Width = imagefontwidth($Font) * strlen($Text);
 $Height = imagefontheight($Font);

 //create green square
 $image = imagecreate($Width, $Height);
 $colorGreen = imagecolorallocate($image, 128, 255, 128);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorRed);

 //add text in black
 imagestring($image, $Font, 0, 0, $Text, $colorBlack);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

integer imagefontwidth(integer font)

The imagefontwidth function returns the width in pixels of the specified font, which
may be a built-in font (1–5) or a font loaded with imagefontload. See
imagefontheight for an example.

boolean imagegammacorrect(integer image, double original,
double new)

The imagegammacorrect function changes the gamma for an image. Video display
hardware is given a gamma rating that describes relatively how bright images appear.
Identical images appear lighter on Macintosh hardware than on the typical Wintel clone.
Each color in the palette of the image will be adjusted to the new gamma.

Core PHP Programming

IT-SC book 342

At the time of this writing, imagegammacorrect was not part of PHP 4, although it was
part of PHP 3.

<?
 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefromjpeg("php_lang.jpg")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/jpeg");
 imagejpeg($image);
 exit();
 }

 //adjust gamma, display
 imagegammacorrect($image, 2.2, 1.571);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

boolean imageinterlace(integer image, boolean on)

Use imageinterlace to set an image as interlaced or not. If the change is successful,
TRUE is returned.

Interlaced images are stored so that they appear progressively rather than all at once.
JPEGs marked as interlaced are called progressive JPEGs, in fact. While most browsers
support interlaced product of the number of characters, the width, and the height. GIFs,
many do not support interlaced PNGs or progressive JPEGs. You can read more on the
subject in the GD library's manual.

>?
 /*
 ** Create interlaced image
 */

 //create red square
 $image = imagecreate(200,200);
 $colorRed = imagecolorallocate($image, 255, 0, 0);
 imagefill($image, 0, 0, $colorRed);

 //set as interlaced
 imageinterlace($image, TRUE);

Core PHP Programming

IT-SC book 343

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

boolean imagejpeg(integer image, string filename, integer
quality)

The imagejpeg function either sends an image to the browser or writes it to a file. If a
filename is provided, a JPEG file is created. Otherwise, the image is sent directly to the
browser. The optional quality argument determines the compression level used in the
image, and should range from 0 (lowest quality) to 10 (highest quality).

<?
 /*
 ** create a blue square, save to disk
 */

 //create image if it doesn't exist,
 //or it's older than an hour
 if(!file_exists("blue_square.jpg") OR
 (filectime("blue_square.jpg") (time() - 3600)))
 {
 //send debugging info
 print("!<-creating image->\n");

 //create a blue square
 $image = imagecreate(200, 100);
 $colorBlue = imagecolorallocate($image, 128, 128, 255);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 imagefill($image, 0, 0, $colorBlue);

 //add file creation time to image
 imagestring($image, 4, 10, 10,
 date("Y-m-d H:i:s"),
 $colorWhite);

 //write it to a file
 imagejpeg($image, "blue_square.jpg");
 }

 //print image tag that show image
 print("IMG SRC= "blue_square.jpg " " .
 "HEIGHT= "100 " WIDTH= "200 " BORDER=\"0\">");
?>

boolean imageline(integer image, integer start_x, integer
start_y, integer end_x, integer end_y, integer color)

Core PHP Programming

IT-SC book 344

Like imagedashedline, imageline draws a line from the starting point to the ending
point. In this case, the line is solid.

Figure 12-6. imageline.

integer imageloadfont(string filename)

The imageloadfont function loads a font and returns a font identifier that may be used
with the other font functions. The fonts are stored as bitmaps in a special format. The
PHP 3 distribution contained a Perl script for converting X11 .bdf files to PHP's format.

The code that loads fonts is architecture dependent. Table 12.2 shows the structure of a
font file for systems that use 32-bit integers. Use this if you wish to create your own font
files.

Table 12.2. PHP Font File Format

Core PHP Programming

IT-SC book 345

Position Length Description
0 4 Number of characters in the font
4 4 ASCII value of first character
8 4 Width in pixels for each character
12 4 Height in pixels for each character

16 variable
Each pixel uses 1 byte, so this field should be the product of the
number of characters, the width, and the height.

<?
 /*
 ** Load a font and display some text
 */

 //create red square
 $image = imagecreate(200,200);
 $colorRed = imagecolorallocate($image, 255, 0, 0);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorRed);

 //load font
 if(!($myFont = imageloadfont("myFont")))
 {
 print("Unable to load font!");
 exit();
 }

 //draw some text with loaded font
 imagestring($image, $myFont, 10, 10,
 "Hello World!", $colorBlack);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

boolean imagepng(integer image, string filename)

The imagepng function either sends an image to the browser or writes it to a file. If a
filename is provided, a PNG file is created. Otherwise, the image is sent directly to the
browser. This latter method is used in most of the examples in this section.

boolean imagepolygon(integer image, array points, integer
number, integer color)

The imagepolygon function behaves identically to the imagefilledpolygon function
with the exception that the polygon is not filled. The points argument is an array of
integers, two for each point of the polygon. A line will be drawn from each point in
succession and from the last point to the first point.

Core PHP Programming

IT-SC book 346

Figure 12-7. imagepolygon.

array imagepsbbox(string text, integer font_identifier, integer
size, integer spacing, integer letting, double angle)

The imagepsbbox function returns an array containing a pair of coordinates that specify a
bounding box that would surround a theoretical string of text. The first two numbers are
the x and y values of the lower-left corner. The second pair of numbers specify the upper-
right corner.

Core PHP Programming

IT-SC book 347

The font_identifier is an integer returned by imagepsloadfont. The size argument
is in pixels. The spacing argument controls vertical spacing between lines of text. The
letting argument controls horizontal spacing between characters. Both are expressed in
units of 1/1000th of an em-square, and are added to the default spacing or leading for a
font. They may be positive or negative. The angle argument specifies a number of
degrees to rotate from normal left-to-right orientation.

See imagepstext, below, for an example.

integer imagepscopyfont(integer font_identifier)

The imagepscopyfont function copies a font loaded with imagepsloadfont into another
font identifier. This allows you to have an original version of the font in memory and
another copy you've stretched or slanted.

<?
 /*
 ** Draw text using a Postscript font
 ** Draw normal, stretched and slanted
 */

 //set parameters for text
 $font_file = "ComputerModern-Roman";
 $size = 20;
 $angle = 0;
 $text = "PHP";
 $antialias_steps = 16;
 $spacing = 0;
 $letting = 0;

 //create red square
 $image = imagecreate(300, 300);
 $colorRed = imagecolorallocate($image, 0xFF, 0x00, 0x00);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 10, 10, $colorRed);

 //Load font
 if(!($myFont = imagepsloadfont($font_file)))
 {
 print("Unable to load font!");
 exit();
 }

 //make extended font
 $myFontExtended = imagepscopyfont($myFont);
 imagepsextendfont($myFont, 1.5);

 //make slanted font
 $myFontSlanted = imagepscopyfont($myFont);
 imagepsslantfont($myFont, 1.5);

 //write normal text
 imagepstext($image, $text, $myFont, $size,

Core PHP Programming

IT-SC book 348

 $colorBlack, $colorRed,
 0, 0, $spacing, $letting,
 $angle, $antialias_steps);

 //write extended text
 imagepstext($image, $text, $myFont, $size,
 $colorBlack, $colorRed,
 0, $size, $spacing, $letting,
 $angle, $antialias_steps);

 //write slanted text
 imagepstext($image, $text, $myFont, $size,
 $colorBlack, $colorRed,
 0, $size*2, $spacing, $letting,
 $angle, $antialias_steps);

 //unload fonts
 imagepsfreefont($myFont);
 imagepsfreefont($myFontExtended);
 imagepsfreefont($myFontSlanted);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

imagepsencodefont(string filename)

Use imagepsencodefont to change the encoding vector used to match ASCII characters
to PostScript font images. By default, PostScript fonts only have characters for the first
127 ASCII values. See imagepstext, below, for an example.

imagepsextendfont(integer font_identifier, double
extension_factor)

The imagepsextendfont function stretches or compresses a PostScript font. The normal
width of the font will be multiplied by the extension_factor. See imagepscopyfont
for an example. Multiple calls to this function are not cumulative, they just change the
extension. If you want to set the font back to normal width, use a factor of one.

imagepsfreefont(integer font_identifier)

The imagepsfreefont function removes a PostScript font from memory. Generally you
do not need to do this. PHP will unload fonts when your script ends. See imagepstext,
below, for an example.

imagepsslantfont(integer font_identifier, double slant_factor)

Core PHP Programming

IT-SC book 349

Use imagepsslantfont to pitch the font forward or backwards. Sometimes this is
referred to as italics. The font_identifier is an integer returned by imagepsloadfont.
The slant_factor operates similarly to the extension_factor in the
imagepsextendfont function. Values greater than one will cause the top of the font to
pitch to the right. Values less than one will cause the top of the font to pitch to the left.

integer imagepsloadfont(string filename)

Use imagepsloadfont to load a PostScript font. A font identifier will be returned for use
in with the other PostScript functions. If the load fails, FALSE is returned. See
imagepstext, below, for an example.

array imagepstext(integer image, string text, integer
font_identifer, integer size, integer foreground, integer
background, integer x, integer y, integer spacing, integer
letting, double angle, integer antialias_steps)

The imagepstext function draws a string of text into an image using a PostScript font.
The image argument is an integer as returned by imagecreate or imagecreatefrompng.
The font_identifier argument is a value returned by the imagepsloadfont function.
The size argument specifies the height in number of pixels. The foreground and
background arguments are color identifiers. The x and y arguments specify the bottom-
left corner from where to begin drawing. The spacing argument controls vertical spacing
between lines of text. The letting argument controls horizontal spacing between
characters. Both are expressed in units of 1/1000th of an em-square and are added to the
default spacing or leading for a font. They may be positive or negative. The angle
argument specifies a num- ber of degrees to rotate from normal left-to-right orientation.
The antialias_steps argument specifies how many colors to use when antialiasing, or
smoothing. Two values are valid: 4 and 16. The last four arguments are optional.

The returned array contains two pairs of coordinates specifying the lower-left corner and
upper-right corner of the bounding box, respectively.

<?
 /*
 ** Draw text using a Postscript font
 ** Make the image the correct size
 */

 //set parameters for text
 $font_file = "ComputerModern-Roman";
 $size = 20;
 $angle = 0;
 $text = "PHP";
 $antialias_steps = 16;
 $spacing = 0;
 $letting = 0;

Core PHP Programming

IT-SC book 350

 //Load font
 if(!($myFont = imagepsloadfont($font_file)))
 {
 print("Unable to load font!");
 exit();
 }

 //set encoding
 imagepsencodefont("IsoLatin1.enc");

 //get bounding box
 $Box = imagepsbbox($text, $myFont, $size, $spacing, $letting,
$angle);

 //create an image with ten extra pixels
 $image = imagecreate($Box[1]+10, $Box[3]+10);
 $colorRed = imagecolorallocate($image, 0, 0, 0);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 10, 10, $colorRed);

 //write the text
 imagepstext($image, $text, $myFont, $size,
 $colorBlack, $colorRed,
 0, 0, $spacing, $letting,
 $angle, $antialias_steps);

 //unload font
 imagepsfreefont($myFont);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

imagerectangle(integer image, integer top_left_x, integer
top_left_y, integer bottom_right_x, integer bottom_right_y,
integer color)

The imagerectangle function draws a rectangle based on the top-left and bottom-right
corners. The inside of the rectangle will not be filled as it is with the
imagefilledrectangle function.

<?
 /*
 ** Draw a hollow black rectangle
 */

 //create yellow square
 $image = imagecreate(200,200);
 $colorYellow = imagecolorallocate($image, 255, 255, 0);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorYellow);

Core PHP Programming

IT-SC book 351

 //draw a black rectangle
 imagerectangle($image, 10, 10, 150, 150, $colorBlack);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

boolean imagesetpixel(integer image, integer x, integer y,
integer color)

The imagesetpixel function sets a single pixel to the specified color.

<?
 /*
 ** Draw 100 black dots
 */

 //create yellow square
 $image = imagecreate(100, 100);
 $colorYellow = imagecolorallocate($image, 255, 255, 0);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorYellow);

 //draw 100 random black dots
 srand(time());
 for($i=0; $i 100; $i++)
 {
 imagesetpixel($image, rand(0, 99), rand(0, 99), $colorBlack);
 }

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

boolean imagestring(integer image, integer font, integer x,
integer y, string text, integer color)

The imagestring function draws the given text at the specified point. The top-left part of
the string will be at the specified point. The font argument may be a built-in font or one
loaded by imageloadfont.

Figure 12-8. imagestring.

Core PHP Programming

IT-SC book 352

boolean imagestringup(integer image, integer font, integer x,
integer y, string text, integer color)

The imagestringup function draws a string oriented vertically instead of horizontally.
Otherwise it works identically to imagestring.

<?
 /*
 ** Write "Hello, World!" vertically
 */

 //create blue square
 $image = imagecreate(50, 200);
 $colorBlue = imagecolorallocate($image, 128, 128, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorYellow);

 //draw some text with loaded font
 imagestringup($image, 4, 10, 150, "Hello World!", $colorBlack);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

integer imagesx(integer image)

The imagesx function returns the width in pixels of the specified image.

Core PHP Programming

IT-SC book 353

<?
 /*
 ** Put a rectangle in the center of any image
 */

 //attempt to open image, suppress error messages
 if(!($image = @imagecreatefromjpeg("php_lang.jpg")))
 {
 //error, so create an error image and exit
 $image = imagecreate(200,200);
 $colorWhite = imagecolorallocate($image, 255, 255, 255);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 0, 0, $colorWhite);
 imagestring($image, 4, 10, 10, "Couldn't load image!",
 $colorBlack);
 header("Content-type: image/jpeg");
 imagejpeg($image);
 }

 //find center
 $centerX = intval(imagesx($image)/2);
 $centerY = intval(imagesy($image)/2);
 $colorGreen = imagecolorallocate($image, 0, 255, 0);

 //draw a green rectangle in center
 imagefilledrectangle($image,
 ($centerX-15), ($centerY-15),
 ($centerX+15), ($centerY+15),
 $colorGreen);

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

Table 12.3. Array Returned by imagettfbbox

Array Pair Corner
0, 1 Lower-Left
2, 3 Lower-Right
4, 5 Upper-Right
6, 7 Upper-Left

integer imagesy(integer image)

The imagesy function returns the height in pixels of the specified image.

array imagettfbbox(integer point_size, integer angle, string
font, string text)

Core PHP Programming

IT-SC book 354

The imagettfbbox function returns an array of points that describe a bounding box
around text to be drawn by the imagettftext function. The points are relative to the
leftmost point on the baseline. The array elements correspond to the lower-left, lower-
right, upper-right, and upper-left corners, in that order, as shown in Table 12.3.

This function may not be available, depending on the libraries available when PHP was
compiled.

boolean imagettftext(integer image, integer point_size, integer
angle, integer x, integer y, integer color, string font, string
text)

The imagettftext function uses a TrueType font to draw a string of text. The x and y
arguments refer to the leftmost position of the baseline. The text will radiate from that
point at the given angle, which should be from 0 to 360. An angle of zero represents
normal right-to-left text. The font argument is the full path to a .ttf file.

This function may not be available, depending on the libraries available when PHP was
compiled.

<?
 /*
 ** Draw text using a TrueType font
 ** Also, draw a box around the text.
 */

 //set parameters for text
 $size = 40;
 $angle = 30;
 $startX = 50;
 $startY = 100;

 //create red square
 $image = imagecreate(200, 200);
 $colorRed = imagecolorallocate($image, 255, 0, 0);
 $colorBlack = imagecolorallocate($image, 0, 0, 0);
 imagefill($image, 10, 10, $colorRed);

 //get bounding box
 $Box = imagettfbbox($size, $angle, "comic.ttf", "PHP");

 //move bounding box to starting point (100,100)
 for($index = 0; $index count($Box); $index += 2)
 {
 $Box[$index] += $startX;
 $Box[$index+1] += $startY;
 }

 //draw bounding box
 imagepolygon($image, $Box, count($Box)/2, $colorBlack);

Core PHP Programming

IT-SC book 355

 //write the text
 imagettftext($image, $size, $angle,
 $startX, $startY, $colorBlack,
 "comic.ttf", "PHP");

 //send image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

boolean imagewbmp(integer image, string filename)

The imagewbmp function either sends an image to the browser or writes it to a file. If a
filename is provided, a WAP (Wireless Application Protocol) bitmap file is created.
Otherwise, the image is sent directly to the browser. This function is similar to imagepng
and imagejpeg.

Core PHP Programming

IT-SC book 356

Chapter 13. DATABASE FUNCTIONS

dBase

DBM-style Database Abstraction

filePro

Informix

InterBase

mSQL

MySQL

ODBC

Oracle

Postgres

Sybase

PHP offers support for many databases. Open source relational databases are well
represented, as are many commercial products. If native support for a database doesn't
exist, it's likely you may use ODBC with an appropriate driver. Chapter 17, "Database
Integration," discusses strategies for using databases with PHP-powered sites.

Most of the functions in this section rely on an extension module. These may be loaded
either in the php.ini file or the dl function, but most likely are compiled into PHP.
Typically Windows requires use of the first method and other operating systems require
the second.

While this chapter describes the PHP functions that communicate with various systems, it
does not pursue introducing the intricacies of all the systems. I can't possibly include a
full tutorial on SQL within this book. If you have chosen a database for integration with
PHP, I assume you will take the time to learn about that database. I am a big fan of
MySQL and have found the online documentation to be great. Additionally, several
books are available about MySQL.

dBase

The following functions work on dBase files, which typically end with a .dbf extension.
If you are using the precompiled version for Windows, you will need to load the dBase
extension by editing php.ini or using the dl function. The extension is likely called

Core PHP Programming

IT-SC book 357

php_dbase.dll but was unavailable at the time of this writing. On other operating
systems it's easy to compile dBase support into PHP.

The dBase functionality in PHP is somewhat limited. Index and memo fields are not
supported. Neither is any kind of locking. The dBase functionality in PHP is meant to be
a means of importing data from what has become somewhat of a lowest common
denominator in data exchange.

Jim Winstead added dBase support to PHP.

boolean dbase_add_record(integer database, array record)

The dbase_add_record function adds a record to the database specified by a database
identifier returned by dbase_open. The record array contains an element for each field in
the database, in order and starting at zero. If the correct number of fields is not supplied,
FALSE is returned.

<?
 //open connection to database
 $db = dbase_open("customer.dbf", 2);

 //create record to be added
 $newRecord = array("John Smith", 100.00, "19980901","Y");

 //add record
 dbase_add_record($db, $newRecord);

 //close connection
 dbase_close($db);
?>

boolean dbase_close(integer database)

The dbase_close function closes a database. See other functions in this section for
examples of use.

integer dbase_create(string filename, array fields)

The dbase_create function creates a dBase database. The fields argument is an array of
arrays that describe fields. Each array may have up to four elements. In order, they are
name, type, length, and precision. Type is a single character. Some types require
length, and precision; others do not. See Table 13.1.

Table 13.1. dBase Field Types

Type Code Description
Boolean L This type does not have a length or a precision.

Core PHP Programming

IT-SC book 358

Date D Dates are stored in YYYYMMDD format and do not use length or
precision.

Number N The length property refers to the total number of digits in the number
and the precision refers to the number of digits after the decimal point.

String C The length property specifies how many characters are stored in the
field. The precision property is not used.

If a database is successfully created, a database identifier is returned; otherwise FALSE is
returned.

<?
 // create field definition
 $fields = array(
 array("Name", "C", 32),
 array("Balance", "N", 8, 2),
 array("Birthday", "D"),
 array("Commercial", L));

 $db = dbase_create("customer.dbf", $fields);

 dbase_close($db);
?>

boolean dbase_delete_record(integer database, integer record)

The dbase_delete_record function marks a record for deletion. The record will remain
in the database until dbase_pack is called.

<?
 //open connection to database
 $db = dbase_open("customer.dbf", 2);

 //mark record for deletion
 dbase_delete_record($db, 2);

 //close connection
 dbase_close($db);
?>

array dbase_get_record(integer database, integer record)

The dbase_get_record function returns the fields of a record in an array. The first field
will be numbered zero. In addition, an element indexed by deleted will contain 1 if the
row was marked for deletion. Records are numbered from one.

Core PHP Programming

IT-SC book 359

<?
 //connect to database
 $db = dbase_open("customer.dbf", 2);

 //get some information about database
 $numRecords = dbase_numrecords($db);
 $numFields = dbase_numfields($db);

 // get every record
 for($index = 1; $index = $numRecords; $index++)
 {
 //get a record
 $record = dbase_get_record($db, $index);

 print("H3>Record $index/H3>\n");

 //loop over fields
 for($index2 = 0; $index2 $numFields;
$index2++)
 {
 print("B>Field $index2:/B>");
 print($record[$index2]);
 print("
\n");
 }

 //print deletion status
 print("B>Deleted:/B> ");
 print($record["deleted"]);
 print("
\n");
 }

 //close connection
 dbase_close($db);
?>

array dbase_get_record_with_names(integer database, integer
record)

This function behaves like dbase_get_record, except that instead of being indexed by
integers, fields are indexed by their names.

<?
 //connect to database
 $db = dbase_open("customer.dbf", 2);

 // get every record
 for($index = 1; $index = dbase_numrecords($db);
$index++)
 {
 $record = dbase_get_record_with_names($db, $index);
 print("H3>Record $index/H3>\n");

Core PHP Programming

IT-SC book 360

 //loop over fields
 while(list($key, $value) = each($record))
 {
 print("B>Field $key: $value/B>
\n");
 }
 }

 //close connection
 dbase_close($db);
?>

integer dbase_numfields(integer database)

The dbase_numfields function returns the number of fields for the given database. See
the description of dbase_get_record for an example of its use.

integer dbase_numrecords(integer database)

The dbase_numrecords function returns the number of records in the database. See the
description of dbase_get_record for an example of its use.

integer dbase_open(string filename, integer mode)

Use dbase_open to get a dbase identifier. This integer is needed for identifying which
database to operate on. The mode may be 0 for read-only, 1 for write-only, or 2 for
allowing both reading and writing. FALSE is returned if the database cannot be opened.
The other examples in this section demonstrate dbase_open.

boolean dbase_pack(integer database)

When rows are deleted in a dbase database, they are simply marked for deletion. Use the
dbase_pack function to permanently remove these rows, thus packing the database.

<?
 //connect to database
 $db = dbase_open("customer.dbf", 2);

 //removed rows marked for deletion
 dbase_pack($db);

 //close connection
 dbase_close($db);
?>

Core PHP Programming

IT-SC book 361

boolean dbase_replace_record(integer database, array record,
integer record_number)

Use dbase_replace_record to change the contents of a record. The record argument
must have one element for each field defined in the database. Record numbers start
counting at one.

<?
 $db = dbase_open("customer.dbf", 2);

 $Record = array("John Smith", 200.00, "19990901","Y");
 dbase_replace_record($db, $Record, 1);

 dbase_close($db);
?>

DBM-style Database Abstraction

The DBA functions abstract communications with databases that conform to the style of
Berkeley DB database systems. Rather than storing complex records, a DBM database
simply stores key/value pairs. This is similar to an associative array.

The functions in this section replace a set of functions that allow just one type of DBM
database. These new functions allow for choosing the underlying system from within
your PHP code rather than compiling PHP for a single DBM implementation. You
choose a type of database when you open a connection, and the rest of the functions
perform accordingly. Sascha Schumann added these functions to PHP.

dba_close(integer link)

The dba_close function closes a link to a database. The link argument is an integer
returned by the dba_open or dba_popen functions. If you choose not to close a database
connection, PHP will close it for you.

boolean dba_delete(string key, integer link)

The dba_delete function removes an entry from a database. You must supply both the
key and a valid link to a database, as supplied by dba_open or dba_popen. The success of
the delete is returned as a boolean.

<?
 // open database in write mode
 $db = dba_popen('inventory', 'w', 'gdbm');

 if($db)
 {
 //check for record

Core PHP Programming

IT-SC book 362

 if(dba_exists('3', $db))
 {

 // remove item 3
 dba_delete('3', $db);
 }
 else
 {
 print('Record does not exist');
 }

 // close database
 dba_close($db);
 }
 else
 {
 print('Database does not exist');
 }
?>

boolean dba_exists(string key, integer link)

The dba_exists function tests for the presence of a key. The link argument must be an
integer returned by the dba_open or dba_popen functions. The description of
dba_delete has an example of using dba_exists.

string dba_fetch(string key, integer link)

Use the dba_fetch function to retrieve a record.

<?
 // open database in write mode
 $db = dba_popen('inventory', 'r', 'gdbm');

 if($db)
 {
 //loop over each record
 for($key = dba_firstkey($db); $key; $key=dba_nextkey($db))
 {
 print("$key = ");

 //fetch this record
 print(dba_fetch($key, $db));

 print("
\n");
 }
 }
 else
 {
 print('Database does not exist');
 }

Core PHP Programming

IT-SC book 363

?>

string dba_firstkey(integer link)

The dba_firstkey function returns the first key in the database. If the database is empty,
FALSE will be returned. As the example for dba_fetch shows, dba_firstkey and
dba_nextkey may be used to traverse the entire database.

boolean dba_insert(string key, string value, integer link)

Use dba_insert to add a record to the database. The success of the insert is returned.
Trying to insert a record that already exists is not allowed. If you need to update a record,
use dba_replace.

<?
 // open database in write mode
 $db = dba_popen('inventory', 'w', 'gdbm');

 if($db)
 {
 //check for record
 if(dba_exists('3', $db))
 {
 //item 3 exists, set inventory to 150
 dba_replace('3', '150', $db);
 }
 else
 {
 //item 3 doesn't exists, insert it
 dba_insert('3', '150', $db);
 }

 // close database
 dba_close($db);
 }
 else
 {
 print('Database does not exist');
 }
?>

string dba_nextkey(integer link)

The dba_nextkey function returns the next key from the database. When there are no
keys left, false is returned. The description of dba_fetch shows a typical use of
dba_nextkey and dba_firstkey together.

Core PHP Programming

IT-SC book 364

integer dba_open(string filename, string mode, string type, ...)

Use dba_open to establish a link to a dbm-style database. A positive integer will be
returned if the open is successful, FALSE if it fails. The filename argument is simply the
path to a database. The mode argument can be one of four characters that control input
and output of data. Table 13.2 lists the four modes.

Table 13.2. DBA Open Modes

Mode Description

c If the database doesn't exist, it will be created. Reads and writes may be
performed.

n If the database doesn't exist, it will be created. If it does exist, all records will
be deleted. Reads and writes may be performed.

r Only reads may be performed.
w Reads and writes may be performed. If the file does not exist, an error occurs.

The type argument chooses the underlying database engine. Table 13.3 describes the
four types. You may also supply any number of optional arguments that will be passed
directly to the underlying engine.

Table 13.3. DBA Database Engine Codes

Code Description

dbm This code represents the original style of DBM database as developed at
Berkeley.

ndbm This code stands for a newer version of the DBM standard with less restrictions
than dbm.

gdbm The GNU Database Manager is the result of project by GNU. You can download
gdbm from the GNU FTP server < ftp://ftp.gnu.org/gnu/gdbm>.

db2
This code stands for a database package developed by Sleepycat software that
is based on the original Berkeley source code. In fact, the founders wrote the
original DBM at Berkeley. You can get more information and download software
at their Web site: <http://www.sleepycat.com/>.

cdb
CDB is a package for creating constant databases—that is, databases that are
read created and read from only. This offers a performance advantage with the
tradeoff being that none of the writing functions work. To download the
sofware, visit < ftp://koobera.math.uic.edu/www/cdb.html >.

When your script finishes executing, the database link will close automatically. You may
choose to close it sooner with dba_close, and this may save some small amount of
memory. Contrast this function to dba_popen, which attempts to reuse links.

boolean dba_optimize(integer link)

Use dba_optimize to optimize a database, which usually consists of eliminating gaps
between records created by deletes. This function returns TRUE on success. Some
underlying engines do not support optimizations, in which case this function will have no
effect.

Core PHP Programming

IT-SC book 365

<?
 // open database in write mode
 $db = dba_popen('inventory', 'w', 'gdbm');

 if($db)
 {
 //optimize database
 dba_optimize($db);

 // close database
 dba_close($db);
 }
 else
 {
 print('Database does not exist');
 }
?>

integer dba_popen(string filename, string mode, string type,
...)

The dba_popen function behaves identically to dba_open with one difference: Links are
not closed. They remain with the process until the process ends. When you call
dba_popen, it first tries to find an existing link. Failing that, it will create a new link. You
never call dba_close on a link returned by dba_popen.

Since the links are pooled on per-process basis, this functionality offers no benefit when
using PHP as a stand-alone executable. When used as an Apache module, there may be
some small performance benefit due to the unique way Apache uses child processes.

boolean dba_replace(string key, string value, integer link)

Use dba_replace to update the value of an existing record. As with the other DBA
functions, a valid link as returned by dba_open or dba_popen should be used for the
link argument. See the description of dba_insert for an example using dba_replace.

boolean dba_sync(integer link)

The dba_sync function will synchronize the view of the database in memory and its
image on the disk. As you insert records, they may be cached in memory by the
underlying engine. Other processes reading from the database will not see these new
records until synchronization.

<?
 // open database in write mode
 $db = dba_popen('inventory', 'w', 'gdbm');

Core PHP Programming

IT-SC book 366

 if($db)
 {
 for($n=1; $n=10; $n++)
 {
 //insert row
 dba_insert($n, '', $db);

 //synchronize
 dba_sync($db);
 }

 // close database
 dba_close($db);
 }
 else
 {
 print('Database does not exist');
 }
?>

filePro

filePro is a relational database by fP Technologies. There are versions for win32 and
SCO UNIX. PHP only supports reading from filePro databases. Further information can
be found at the filePro Web site <http:// www.fptechnologies.com/>. To enable filePro
functions dynamically, use the dl function to load the appropriate extension. You can also
compile filePro support into the PHP module. Chad Robinson wrote the filePro
extension.

boolean filepro(string directory)

The filepro function starts a connection to a map file. Information about the database is
stored in memory and used by the other FilePro functions.

<?
 //get information about database
 filepro("/fp/store");

 print("TABLE>");

 //create headers that contain
 //field names, type, width
 print("TR>\n");
 for($col=1; $col = filepro_fieldcount(); $col++)
 {
 print("TH>");
 print(filepro_fieldname($col));
 print(" ");
 print(filepro_fieldtype($col));
 print(" ");
 print(filepro_fieldwidth($col));

Core PHP Programming

IT-SC book 367

 print("/TH>");
 }
 print("/TR>\n");

 //loop over each row
 for($row=1; $row = filepro_rowcount(); $row++)
 {
 print("TR>\n");

 //output fields
 for($col=1; $col = filepro_fieldcount(); $col++)
 {
 print("TD>");
 print(filepro_retrieve($row, $col));
 print("/TD>");
 }

 print("/TR>\n");
 }

 print('/TABLE>');

?>

integer filepro_fieldcount()

Use filepro_fieldcount to find the number of fields. See the filepro example above.

string filepro_fieldname(integer field_number)

The filepro_fieldname function returns the name of the field for the given field
number. See the filepro example above.

string filepro_fieldtype(integer field_number)

The filepro_fieldtype function returns the edit type for the given field number. See
the filepro example above.

string filepro_retrieve(integer row, integer field)

The filepro_retrieve function returns the value for the specified field on the specified
row. See the filepro example above.

integer filepro_rowcount()

Use filepro_rowcount to find the number of rows. See the filepro example above.

Core PHP Programming

IT-SC book 368

integer filepro_fieldwidth(integer field_number)

Use the filepro_fieldwidth function to find the width of the specified field. See the
filepro example above.

Informix

Informix makes several specialized relational database servers for Windows NT and
UNIX. Like Oracle and Sybase, Informix products are intended for demanding situations.
I can't begin to discuss the unique features of Informix database servers, but you can
learn more about them at their home site <http://www.informix.com/>.

PHP includes support for two parts of the Informix API, ODS and IUS. The functions
that begin with ifx_, such as ifx_pconnect, are part of ODS and should be available to
you. The IUS functions begin with ifxus_, such as ifxus_create_slob. These will be
available only if you have IUS libraries. Keep in mind that ODBC drivers for Informix
are available, so you could pursue using PHP's ODBC functions instead.

Jouni Ahto, Christian Cartus, and Danny Heijl collaborated to create the Informix
extension.

integer ifx_affected_rows(integer result)

The ifx_affected_rows function returns the number of rows selected, inserted,
updated, or deleted, depending on the query. If the query was a select, the number is only
an estimate. You can use this function on a result identifier returned by ifx_prepare in
order to avoid executing queries that will return large result sets.

boolean ifx_blobinfile_mode(integer mode)

Use ifx_blobinfile function to control how to work with blobs. If mode is 0, blobs are
saved in memory. If mode is 1, blobs are saved to disk.

boolean ifx_byteasvarchar(integer mode)

Use ifx_byteasvarchar to control how byte blobs are returned in queries. If mode is 0,
blob IDs are returned. If mode is 1, blob contents are returned.

boolean ifx_close(integer link)

The ifx_close function closes a database connection created by ifx_connect. If the
optional link argument is left out, the last-opened connection is closed.

integer ifx_connect(string database, string user, string
password)

Core PHP Programming

IT-SC book 369

The ifx_connect function returns a connection to an Informix database. All of the
arguments are optional and will draw their values from the php.ini file if necessary. If a
connection cannot be established, FALSE is returned. If you attempt to connect again after
successfully connecting, the original connection identifier is returned. The connection
will be closed automatically when the script ends, but you can close it manually with
ifx_close. The ifx_pconnect function creates a persistent connection.

integer ifx_copy_blob(integer blob)

The ifx_copy_blob function makes a copy of an existing blob and returns the identifier
to the new blob.

integer ifx_create_blob(integer type, integer mode, string
data)

The ifx_create_blob function creates a blob in the database. The type argument can be
1 for text or 0 for byte. The mode argument is set to 0 if the data argument contains data
to place in the blob. The mode is set to 1 if the data argument is a path to a file.

<?
 //connect to database
 if(!($dbLink = ifx_pconnect("mydb@ol_srv1", "
leon", "secret"))
 {
 print("Unable to connect!
\n");
 exit();
 }

 //create blob and add to array
 $blob[] = ifx_create_blob(0, 0, "This is a message");

 //insert message
 $Query = "INSERT INTO message " .
 "VALUES (3,'My Title', ?)";

 if(!($result = ifx_query($Query, $dbLink, $blob))
 {
 print("Unable to insert message!
\n");

 //print Informix error message
 print(ifx_error() . "
\n");
 print(ifx_errormsg() . "
\n");
 }

 //free result identifier
 ifx_free_result($result);

 //close connection
 ifx_close($dbLink);
?>

Core PHP Programming

IT-SC book 370

integer ifx_create_char(string data)

The ifx_create_char function creates a character object. An identifier for the character
object is returned.

boolean ifx_do(integer result)

The ifx_do function executes a query prepared with ifx_prepare. The result
argument must be as returned by ifx_prepare.

string ifx_error()

Use ifx_error to fetch the error produced by the last query. The first character of the
returned string is a flag reporting the type of condition. A space means no error. E is an
error. N means no more data is available. W is a warning. A ? signals an unknown error
condition. If anything other than a space is returned in the first character, the string will
contain extra information, including an error code.

See ifx_create_blob for an example of use.

string ifx_errormsg(integer error)

Use ifx_errormsg to fetch a description of an error given its code. This is the same
numerical code returned by the ifx_error function. If no error code is supplied, the
description of the last error is returned.

array ifx_fetch_row(integer result, integer position) array
ifx_fetch_row(integer result, string position)

The ifx_fetch_row function returns a row from a result set after executing a select. The
returned array will contain elements named in the query indexed by column names. If
cursor type was set using IFX_SCROLL, then you may use the position argument. This
can be an integer, or one of these strings: FIRST, NEXT, LAST, PREVIOUS, CURRENT. See
ifx_prepare for an example of use.

array ifx_fieldproperties(integer result)

The ifx_fieldproperties function returns an array containing information about each
column in a result set. The elements of the array are indexed by the column names. Each
element contains a list of properties separated by semicolons. The parts of this string are
type, length, precision, scale, and a flag for whether the column can be null. The type is
one of the strings listed in ifx_fieldtypes, below.

array ifx_fieldtypes(integer result)

Core PHP Programming

IT-SC book 371

The ifx_fieldtypes function returns an array describing the type for eachcolumn in the
result set. Possible values are SQLBOOL, SQLBYTES, SQLCHAR, SQLDATE, SQLDECIMAL,
SQLDTIME, SQLFLOAT, SQLINT, SQLINT8, SQLINTERVAL, SQLLVARCHAR, SQLMONEY,
SQLNCHAR, SQLNVCHAR, SQLSERIAL, SQLSERIAL8, SQLSMFLOAT, SQLSMINT, SQLTEXT,
SQLUDTFIXED, SQLVCHAR. The returned array is indexed by the names of the columns.

boolean ifx_free_blob(integer blob)

The ifx_free_blob function deletes the specified blob from the database.

boolean ifx_free_char(integer character)

The ifx_free_char function deletes a character object from the database.

boolean ifx_free_result(integer result)

The ifx_free_result function frees memory associated with a result set. See
ifx_pconnect for an example of use.

string ifx_get_blob(integer blob)

The ifx_get_blob function returns the contents of a blob.

string ifx_get_char(integer character)

The ifx_get_char function returns the contents of a character object.

array ifx_getsqlca(integer result)

The ifx_getsqlca function returns an array of the values in the sqlerrd struct from the
underlying Informix API.

integer ifx_htmltbl_result(integer result, string options)

The ifx_htmltbl_result function prints an HTML table containing all the rows in the
result set. The optional options argument will be placed inside the table tag. See
ifx_pconnect for an example of use.

boolean ifx_nullformat(integer mode)

When mode is 0, ifx_nullformat will cause all null columns to be returned as empty
strings. If mode is 1, they are returned as NULL, a four-character string.

integer ifx_num_fields(integer result)

Core PHP Programming

IT-SC book 372

The ifx_num_fields function returns the number of columns in the result set.

integer ifx_num_rows(integer result)

Use ifx_num_rows to get the exact number of rows already fetched for a result set. To
get an approximate number of rows in a result set, use ifx_affected_rows.

integer ifx_pconnect(string database, string user, string
password)

The ifx_pconnect function is similar to ifx_connect, except that connections are not
closed until the Web server process ends. Persistent links remain available for subsequent
connection attempts by other scripts.

<?
 //connect to database
 if(!($dbLink = ifx_pconnect("mydb@ol_srv1", "leon", "secret"))
 {
 print("Unable to connect!
\n");
 exit();
 }
 //treat blobs as varchars
 ifx_textasvarchar(TRUE);

 //get a record from the message table
 $Query = "SELECT Title, Body FROM message " .
 "WHERE ID = 3 ";
 if(!($result = ifx_query($Query, $dbLink))
 {
 print("Unable to query message table!
\n");
 }

 //print results in HTML table
 ifx_htmltbl_result($result);

 //free result identifier
 ifx_free_result($dbLink);

 //close connection
 ifx_close($dbLink);
?>

integer ifx_prepare(string query, integer link, integer
cursor_type, array blob_id)

The ifx_prepare function parses a query but does not execute it. Otherwise it operates
identically to ifx_query, described below. To execute the query, use ifx_do.

Core PHP Programming

IT-SC book 373

<?
 //connect to database
 if(!($dbLink = ifx_pconnect("mydb@ol_srv1", "leon", "secret"))
 {
 print("Unable to connect!
\n");
 exit();
 }

 //get message about PHP
 $Query = "SELECT ID, Title FROM message " .
 "WHERE Title like '%PHP%' ";
 if(!($result = ifx_prepare($Query, $dbLink, IFX_SCROLL))
 {
 print("Unable to query message table!
\n");
 }

 if(ifx_affectedrows($result) 100)
 {
 //execute query
 ifx_do($result);

 //fetch each row, print a link
 while($row = ifx_fetch_row($result, "NEXT"))
 {
 print("A HREF=\"get.php?id={$row["ID"]}\">");
 print("{$row["Title"]}/A>
\n");
 }
 }
 else
 {
 print("Too many results to display on one page.
\n");
 }

 //free result identifier
 ifx_free_result($dbLink);

 //close connection
 ifx_close($dbLink);
?>

integer ifx_query(string query, integer link, integer
cursor_type, array blob_id)

The ifx_query function executes a query and returns a result identifier, which most of
the other Informix functions require. The link argument is as returned by
ifx_pconnect, but if you leave it out, the last link established will be used. If the query
is a select, you may use the IFX_SCROLL and IFX_HOLD constants for the cursor type.

If performing an update or insert, you may use a ? in the query and match it to an entry in
the blob_id argument. Each entry must be a value returned by ifx_create_blob.
Selects that return blob columns will return blob identifiers by default, but you can
override this functionality with ifx_textasvarchar.

Core PHP Programming

IT-SC book 374

Note that both cursor_type and blob_id are optional. The ifx_query function will
allow you to specify an array of blob identifiers for the third argument. See
ifx_create_blob for an example of use.

boolean ifx_textasvarchar(integer mode)

Use ifx_textasvarchar to control how text blobs are returned in queries. If mode is 0,
blob IDs are returned. If mode is 1, blob contents are returned. See ifx_pconnect for an
example of use.

boolean ifx_update_blob(integer blob, string data)

The ifx_update_blob function changes the contents of a blob.

boolean ifx_update_char(integer character, string data)

The ifx_update_char function changes the contents of a character object.

ifxus_close_slob

You can use ifxus_close_slob as an alias for ifxus_free_slob.

integer ifxus_create_slob(integer mode)

Use ifxus_create_slob to create a slob object. The object identifier is returned. The
modes listed in Table 13.4 may be combined with | operators.

Table 13.4. Informix Slob Modes

Value Informix API Constant
1 LO_RDONLY
2 LO_WRONLY
4 LO_APPEND
8 LO_RDWR
16 LO_BUFFER
32 LO_NOBUFFER

boolean ifxus_free_slob(integer slob)

The ifxus_free_slob function deletes a slob object.

integer ifxus_open_slob(integer slob, integer mode)

Use ifxus_open_slob to get an identifier for an existing slob object. The modes listed in
Table 13.4 may be combined with | operators.

Core PHP Programming

IT-SC book 375

string ifxus_read_slob(integer slob, integer bytes)

The ifxus_read_slob function returns data from the specified slob object. The bytes
argument specifies the number of bytes to return.

integer ifxus_seek_slob(integer slob, integer mode, integer
offset)

The ifxus_seek_slob function moves the current cursor position within a slob object.
The mode argument controls where the offset is applied. If mode is 0, offset is applied to
the beginning. If mode is 1, offset is applied to the current position. If mode is 2, offset
is applied to the end of the slob object.

integer ifxus_tell_slob(integer slob)

The ifxus_tell_slob function returns the current position of a cursor inside a slob
object.

integer ifxus_write_slob(integer slob, string data)

The ifxus_write_slob function writes data to an open slob object. The number of bytes
written is returned.

InterBase

InterBase is a full-featured database that spent much of its life as closed-source and
proprietary. In January 2000, Inprise released InterBase under an open source license,
allowing everyone access to the source code. InterBase is the first opensource database to
be compliant with the SQL 92 standard. Under commercial development for more than
16 years, InterBase compares favorably to Oracle, Sybase, and IBM's DB2. This section
discusses the PHP functions for communicating with InterBase, but a tutorial on
InterBase itself is out of scope. Apart from the extensive documentation on the InterBase
site <http://www.interbase.com/>, you may find useful information in books about
Borland's C++ compiler or Delphi.

InterBase support was added to PHP by Jouni Ahto. Later work was done by Andrew
Avdeev and Ivo Panacek. At the time of writing, InterBase functions in PHP were not
complete, but the recent change in licensing will probably encourage developers. You
also have the option of using the ODBC functions.

boolean ibase_blob_add(integer blob, string data)

The ibase_blob_add function adds data to a blob. You must create the blob first with
ibase_blob_create.

boolean ibase_blob_cancel(integer blob)

Core PHP Programming

IT-SC book 376

Use ibase_blob_cancel to discard a blob you have created with ibase_blob_create.

boolean ibase_blob_close(integer blob)

The ibase_blob_close function writes changes made to a blob to the database.

integer ibase_blob_create(integer link)

The ibase_blob_create function creates a new blob. The link argument is optional
and will default to the last-opened connection. A blob identifier is returned.

boolean ibase_blob_echo(string blob)

The ibase_blob_echo function prints the contents of the named blob to the browser.

string ibase_blob_get(integer blob, integer bytes)

Use ibase_blob_get to get the specified number of bytes from a blob.

integer ibase_blob_import(integer file) integer
ibase_blob_import(integer link, integer file)

The ibase_blob_import function creates a blob and places the contents of an open file
into it. The file argument must be a file identifier as returned by fopen. You may call
ibase_blob_import with or without an open link. The file is closed after the import. The
blob identifier is returned.

object ibase_blob_info(string blob)

Use ibase_blob_info to get information about a blob. An object is returned with the
following properties: isnull, length, maxseg, numseg, stream.

integer ibase_blob_open(string blob)

Use ibase_blob_open to get a blob identifier for an existing blob.

boolean ibase_close(integer link)

Use ibase_close to close a connection created by ibase_connect. If a link is not
specified, the last opened link will be closed. The default transaction will be committed,
and other transactions will be rolled back.

boolean ibase_commit(integer link)

Core PHP Programming

IT-SC book 377

The ibase_commit function commits the default transaction on the specified link, or the
last link if none is specified.

integer ibase_connect(string path, string user, string
password)

Use ibase_connect to connect to an InterBase database. You must specify a path to
database file. The user and password arguments may be omitted. They default to those
set in php.ini using the ibase.default_user and ibase.default_password
directives.

A connection identifier is returned that is used by most of the other functions in this
section. When the script ends, the connection will be closed for you, but you can close it
manually with ibase_close. A second connection attempt to the same database as the
same user will return the same connection identifier.

Compare this function to ibase_pconnect.

string ibase_errmsg()

Use ibase_errmsg to get the last error message. FALSE is returned when no error
message is available.

integer ibase_execute(integer query, value bind, ...)

Use ibase_excute to execute a query prepared with ibase_prepare. If the query
contained ? placeholders, you must supply matching bind values following the query
identifier. A result identifier is returned if executing a select query.

object ibase_fetch_object(integer result, integer blob)

The ibase_fetch_object function returns an object that contains a property for each
column in the next result row. The name of the property will match the name of the
column. The blob argument is optional. If set to IBASE_TEXT, blob columns will be
returned as text. Otherwise the blob identifier is returned. FALSE is returned when no
rows remain.

array ibase_fetch_row(integer result, integer blob)

The ibase_fetch_row function operates identically to ibase_fetch_object except that
an array is returned. Instead of being referenced by name, columns are referenced by
number, starting with 0.

array ibase_field_info(integer result, integer field)

Core PHP Programming

IT-SC book 378

Use ibase_field_info to get information about a column in a result set. An associative
array is returned containing the following elements: alias, length, name, relation,
type.

boolean ibase_free_query(integer query)

Use ibase_free_query to free memory associated with a prepared query.

boolean ibase_free_result(integer result)

Use ibase_free_result to free memory associated with a result set.

integer ibase_num_fields(integer result)

The ibase_num_fields function returns the number of fields in a result set.

ibase_pconnect(string path, string user, string password,
string character_set)

The ibase_pconnect function works similarly to ibase_connect. The difference is that
connections are not closed by PHP or by your script. They persist with the server process
to be reused when later script executions need identical connections.

integer ibase_prepare(string query) integer
ibase_prepare(integer link, string query)

Use ibase_prepare to prepare a query for later execution with ibase_execute. If you
leave out the link argument, the last-opened link will be used. A query identifier is
returned.

integer ibase_query(string query, value bind, ...) integer
ibase_query(integer link, string query, value bind, ...)

The ibase_query function executes a query on an open connection. You may skip the
link identifier, causing the last-opened connection to be used. If the query contains ?
placeholders, you must match them with bind values that follow the query argument. A
result identifier is returned. It is used with functions such as ibase_fetch_row.

<?
 //connect to database
 if(!($dbLink = ibase_connect("mydatabase.gdb", "leon", "secret"))
 {
 print("Unable to connect!
\n");
 exit();
 }

Core PHP Programming

IT-SC book 379

 //begin transaction
 $dbTran = ibase_trans(IBASE_DEFAULT, $dbLink);

 //insert a message using bind parameters
 $Query = "INSERT INTO message " .
 "VALUES (?, ?, ?) ";

 if(!($result = ibase_query($dbLink, $Query, $inputID, $inputTitle,
$inputBody))
 {
 print("Unable to insert row!
\n");
 exit();
 }

 //release memory
 ibase_free_result($result);

 //dump table
 print("<TABLE BORDER=\"1\">\n");
 $Query = "SELECT * FROM message ";

 if(!($result = ibase_query($dbLink, $Query))
 {
 print("Unable to query table!
\n");
 exit();
 }

 //print headers
 print("<TR>\n");
 for($i=0; $i<ibase_num_fields($result); $i++)
 {
 $info = ibase_field_info($result, $i);
 print("<TH>{$info["name"]}</TH>\n");
 }
 print("</TR>\n");

 //get all rows
 while($row = ibase_fetch_row($result))
 {
 print("<TR>\n");
 for($i=0; $iibase_num_fields($result); $i++)
 {
 print("<TD>$row[$i]/<TD>\n");
 }
 print("</TR>\n");
 }

 print("</TABLE>\n");

 //release memory
 ibase_free_result($result);

 //commit transaction
 ibase_commit($dbTran);

 //close connection

Core PHP Programming

IT-SC book 380

 ibase_close($dbLink);
?>

boolean ibase_rollback(integer link)

The ibase_rollback function causes a transaction to roll back. The default transaction
on the specified link is rolled back. The last link will be used if none is specified.

boolean ibase_timefmt(string format)

Use ibase_timefmt to set the format for datetime columns. The format string should
follow the rules of strftime. The default format is "%m/%d/%Y %H:%M:%S". The
strftime function is described in Chapter 11, "Time, Date, and Configuration
Functions."

integer ibase_trans(integer flags, integer link)

The ibase_trans function returns a transaction identifier. The flags can be any
combination of the constants listed in Table 13.5. Use | to combine them.
IBASE_DEFAULT matches InterBase read, write, snapshot, and wait properties. The link
argument is optional. The last connection established will be used if it's left out.

Table 13.5. InterBase Constants
IBASE_COMMITED
IBASE_CONSISTENCY
IBASE_DEFAULT
IBASE_NOWAIT
IBASE_READ
IBASE_TEXT
IBASE_TIMESTAMP

mSQL

The functions in this section communicate with mSQL, a database that implements a
subset of SQL. The official site is at <http://www.hughes.com.au/>. A site supporting
Windows versions of mSQL is at <http://blnet.com/msqlpc/>.

There are a handful of mSQL functions that exist simply for backward compatibility. I
have chosen to leave them out. Only some of them are documented in the official PHP 3
manual. Their use is described in the PHP 2 documentation. For reference they are msql,
msql_createdb, msql_dbname, msql_dropdb, msql_freeresult, msql_listdbs,
msql_list-fields, msql_listtables, msql_numfields, msql_numrows, msql_
selectdb, msql_tablename.

Core PHP Programming

IT-SC book 381

Two mSQL extensions exist, one for mSQL version 1 and one for version 2. You must
load the appropriate extension to enable the functions in this section. Zeev Suraski wrote
both mSQL extensions.

integer msql_affected_rows(integer link)

The msql_affected_rows function returns the number of rows involved in the previous
query made on the given link. The link argument must be an integer returned by
msql_connect or msql_pconnect. For an example of use, see msql_db_query, below.

boolean msql_close(integer link)

The msql_close function closes the link to a database. If the link argument is left out, the
last-opened link is closed. Only links opened by msql_connect may be closed. Using
this function is not strictly necessary, since all nonpersistent links are automatically
closed when a script ends. For an example of use, see msql_db_query, below.

integer msql_connect(string host, string username, string
password)

The msql_connect function attempts to connect to the mSQL server at the specified host.
If the host argument is left out, the local host will be assumed. A link identifier is
returned. In the case where an open link exists, it will be returned rather than establishing
a second link. The connection is automatically closed at the end of the script.

You may add a colon and a port number to the host argument.

boolean msql_create_db(string database, integer link)

The msql_create_db function attempts to create a database. The link argument is
optional. If left out, the last-opened link will be used.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_create_db("store", $Link);
 msql_close($Link);
?>

boolean msql_data_seek(integer result, integer row)

Use msql_data_seek to move the internal row pointer to the specified row in a result set.
The result argument is as returned by msql_query.

<?

Core PHP Programming

IT-SC book 382

 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Result = msql_query("SELECT Name FROM customer", $Link);

 // jump to tenth customer
 msql_data_seek($Result, 10);

 $Row = msql_fetch_row($Result);

 print($Row[0]);

 msql_close($Link);
?>

integer msql_db_query(string database, string query, integer
link)

The msql_db_query function is identical to msql_query except that it specifies a
database rather than using the database selected with msql_ select_db. The query is
executed in the specified database and a result identifier is returned.

<?
 $Link = msql_connect("msql.clearink.com");
 $Query = "DELETE FROM customer";
 $Result = msql_db_query("store", $Query, $Link);

 $RowsAffected = msql_affected_rows($Link);
 print($RowsAffected . " rows deleted.");

 msql_close($Link);
?>

boolean msql_drop_db(string database, integer link)

The msql_drop_db function removes an entire database from the server. The link
argument is optional and, if omitted, the last connection opened will be used.

<?
 $Link = msql_connect("msql.clearink.com");

 if(msql_drop_db("store", $Link))
 {
 print("Database deleted!");
 }
 else
 {
 print("Database not deleted: ");

Core PHP Programming

IT-SC book 383

 print(msql_error());
 }

 msql_close($Link);
?>

string msql_error()

Use msql_error to retrieve the last error message returned by an mSQL function. See
msql_drop_db, above, for an example of use.

array msql_fetch_array(integer result, integer type)

The msql_fetch_array function returns an array of the data for the current row. The
result argument is as returned by msql_query. By default, result columns are returned
in two elements each: one referenced by number and one referenced by field name. The
optional type argument controls which elements are created. MSQL_NUM signals that only
numbered elements be created. MSQL_ASSOC signals that only named elements be created.
If you want both, you can explicitly request it with MSQL_BOTH.

Compare this function to msql_fetch_row and msql_fetch_object.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "SELECT * FROM customer";
 $Result = msql_query($Query, $Link);

 //fetch each row
 while($Row = msql_fetch_array($Result, MSQL_ASSOC))
 {
 print($Row["FirstName"] . "
\n");
 }

 msql_close($Link);
?>

object msql_fetch_field(integer result, integer field)

The msql_fetch_field function returns an object with properties that describe the
specified field. The field argument may be left out, and the next unfetched field will be
returned. The properties of the object are listed in Table 13.6.

<?

Core PHP Programming

IT-SC book 384

 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "SELECT * FROM item i, SKU s ";
 $Query .= "WHERE i.SKU = s.ID ";
 $Result = msql_query($Query, $Link);

 // get description of each field
 while($Field = msql_fetch_field($Result))
 {
 print("Name: " . $Field->name . "
\n");
 print("Table: " . $Field->table . "
\n");
 print("Not Null: " . $Field->not_null . "
\n");
 print("Primary Key: " . $Field->primary_key"
\n");
 print("Unique: " . $Field->unique . "
\n");
 print("Type: " . $Field->type . "
\n
\n");
 }

 msql_close($Link);
?>

Table 13.6. Properties of msql_fetch_field Object

Property Description
name Name of the column
not_null TRUE if the column cannot be null
primary_key TRUE if the column is a primary key
table Name of the table the column is from
type Datatype of the column
unique TRUE if the column is a unique key

object msql_fetch_object(integer result)

The msql_fetch_object function returns an object with a property for each column of
the resulting row. Each call to msql_fetch_object gets the next row from the results, or
returns FALSE when there are none left.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "SELECT * FROM item";
 $Result = msql_query($Query, $Link);

 while($Row = msql_fetch_object($Result))
 {
 print("$Row->ID: $Row->Name
\n");
 }

 msql_close($Link);
?>

Core PHP Programming

IT-SC book 385

array msql_fetch_row(integer result)

The msql_fetch_row function returns an array with one element for each resulting
column. FALSE is returned when no results are left. Columns arereferenced by integers
starting at zero. Compare this function to msql_fetch_array and msql_fetch_object.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "SELECT * FROM item";
 $Result = msql_query($Query, $Link);

 while($Row = msql_fetch_row($Result))
 {
 print($Row[0] . ": " . $Row[1] . "
\n");
 }

 msql_close($Link);
?>

boolean msql_field_seek(integer result, integer field)

Use msql_field_seek to move the internal field pointer to the specified field.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "SELECT * FROM item i, SKU s ";
 $Query .= "WHERE i.SKU = s.ID ";
 $Result = msql_query($Query, $Link);

 // get description of each field
 // starting with the third
 msql_field_seek($Result, 2);

 while($Field = msql_fetch_field($Result))
 {
 print("Name: " . $Field->name . "
\n");
 print("Table: " . $Field->table . "
\n");
 print("Not Null: " . $Field->not_null ."
\n");
 print("Primary Key: " . $Field->primary_key"
\n");
 print("Unique: " . $Field->unique . "
\n");
 print("Type: " . $Field->type . "
\n
\n");
 }

Core PHP Programming

IT-SC book 386

 msql_close($Link);
?>

string msql_fieldflags(integer result, integer field)

The msql_fieldflags function returns all the flags turned on for the specified field.
These may be primary key, unique, and not null.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "SELECT * FROM item";
 $Result = msql_query($Query, $Link);
 print("Field 0 flags are " .msql_fieldflags($Result, 0));

 msql_close($Link);
?>

integer msql_fieldlen(integer result, integer field)

The msql_fieldlen function returns the length of the specified field.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "SELECT * FROM item";
 $Result = msql_query($Query, $Link);

 print("Field 0 length is " . msql_fieldlen($Result, 0));

 msql_close($Link);
?>

string msql_fieldname(integer result, integer field)

The msql_fieldname function returns the name of the specified field.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "SELECT * FROM item";

Core PHP Programming

IT-SC book 387

 $Result = msql_query($Query, $Link);

 print("Field 0 is " . msql_fieldname($Result, 0));

 msql_close($Link);
?>

string msql_fieldtable(integer result, integer field)

The msql_fieldtable function returns the name of the table for the specified field.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "SELECT * FROM item";
 $Result = msql_query($Query, $Link);

 print("Field 0 is from " . msql_fieldtable($Result, 0));

 msql_close($Link);
?>

string msql_fieldtype(integer result, integer field)

The msql_fieldtype function returns the type of the specified field.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "SELECT * FROM item";
 $Result = msql_query($Query, $Link);

 print("Field 0 is " . msql_fieldtype($Result, 0));

 msql_close($Link);
?>

boolean msql_free_result(integer result)

When a script ends, all results are freed. If memory is a concern while your script is
running, use msql_free_result.

Core PHP Programming

IT-SC book 388

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "INSERT INTO store VALUES (0, 'Martinez')";
 $Result = msql_query($Query, $Link);

 msql_free_result($Result);

 msql_close($Link);
?>

integer msql_list_dbs(integer link)

The msql_list_dbs function returns a result identifier as if the database were queried
with msql_query. Any of the functions for fetching rows or fields may be used to get the
names of the databases. The link argument is optional. If left out, the last-opened
connection will be used.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Result = msql_list_dbs($Link);
 while($row_array = msql_fetch_row($Result))
 {
 print($row_array[0] . "
\n");
 }

 msql_close($Link);
?>

integer msql_list_fields(string database, string tablename,
integer link)

The msql_list_fields function returns a result identifier as if the database were
queried with msql_query. Any of the functions for fetching rows or fields may be used to
get the names of the fields. The link argument is optional. If left out, the last-opened
connection will be used.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Result = msql_list_fields("store", "item",$Link);
 while($row_array = msql_fetch_row($Result))
 {

Core PHP Programming

IT-SC book 389

 print($row_array[0] . "
\n");
 }

 msql_close($Link);
?>

integer msql_list_tables(string database, integer link)

The msql_list_tables function returns a result identifier as if the database were
queried with msql_query. Any of the functions for fetching rows or fields may be used to
get the names of the fields. The link argument is optional. If left out, the last-opened
connection will be used.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Result = msql_list_tables("store", $Link);
 while($row_array = msql_fetch_row($Result))
 {
 print($row_array[0] . "
\n");
 }

 msql_close($Link);
?>

integer msql_num_fields(integer result)

Use msql_num_fields to get the number of fields in a result set.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "SELECT * FROM item i, SKU s ";
 $Query .= "WHERE i.SKU = s.ID ";
 $Result = msql_query($Query, $Link);

 print(msql_num_fields($Result));

 msql_close($Link);
?>

integer msql_num_rows(integer result)

Core PHP Programming

IT-SC book 390

The msql_num_rows function returns the number of rows in the result set.

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "SELECT * FROM item i, SKU s ";
 $Query .= "WHERE i.SKU = s.ID ";
 $Result = msql_query($Query, $Link);

 print(msql_num_rows($Result));

 msql_close($Link);
?>

integer msql_pconnect(string host)

The msql_pconnect function is identical to the msql_connect function except that the
connection will not be closed when the script ends. This has meaning only when PHP is
compiled as an Apache module. These are called persistent links because they live as
long as the server process.

<?
 $Link = msql_pconnect("localhost");
?>

integer msql_query(string query, integer link)

Use msql_query to execute a query. The database used will be the one specified in a call
to the msql_select_db function. The link argument is optional. The last connection
made will be used if it is left out.

msql_regcase

This is an alias to sql_regcase, described in Chapter 9, "Data Functions."

string msql_result(integer result, integer row, string field)

The msql_result function returns a single field value for the given row. The field
argument can be interpreted in two ways. If it is a number, it will be used as a field offset,
starting with zero. Otherwise, it will be considered to be a column name.

The msql_result function is relatively slow. Its use should be avoided in favor of faster
functions such as msql_fetch_array.

Core PHP Programming

IT-SC book 391

<?
 $Link = msql_connect("msql.clearink.com");
 msql_select_db("store", $Link);

 $Query = "SELECT * FROM item i, SKU s ";
 $Query .= "WHERE i.SKU = s.ID ";
 $Result = msql_query($Query, $Link);

 $numRows = msql_num_rows($Result);

 for($index = 0; $index $numRows; $index++)
 {
 $item_ID = msql_result($Result, $index, "item.ID");
 $item_Name = msql_result($Result, $index, "item.Name");

 print("$item_ID: $item_Name
\n");
 }

 msql_close($Link);
?>

boolean msql_select_db(string database, integer link)

Use msql_select_db to select the database against which to make queries. As with most
other mSQL functions, the link identifier is not required.

MySQL

MySQL is a relational database with a license that allows you to use it cost-free for most
noncommercial purposes. It shares many features with mSQL because it was originally
conceived as a faster, more flexible replacement. Indeed, MySQL has delivered on these
goals. It easily outperforms even commercial databases. Not surprisingly, MySQL is the
database of choice for many PHP developers.

To find out more about MySQL, as well as obtain source code and binaries, visit the Web
site at <http://www.mysql.com/>. There are plenty of mirrors to aid your download
speed. Be sure to check out the excellent online manual.

As with mSQL, there were MySQL functions in PHP2 that are still supported in PHP3,
but their use is discouraged. I've chosen to leave these functions out of the reference. The
functions I've left out are mysql, mysql_cre- atedb, mysql_dbname, mysql_dropdb,
mysql_fieldflags, mysql_field-len, mysql_fieldname, mysql_fieldtable,
mysql_fieldtype, mysql_ freeresult, mysql_listdbs, mysql_listfields, mysql_listtables,
mysql_numfields, mysql_numrows, mysql_selectdb, mysql_tablename.

The MySQL extension was written by Zeev Suraski.

integer mysql_affected_rows(integer link)

Core PHP Programming

IT-SC book 392

The mysql_affected_rows function returns the number of rows affected by the last
query made to the specified database connection link. If the link argument is omitted,
the last-opened connection is assumed. If the last query was an unconditional delete, zero
will be returned. If you want to know how many rows were returned by a select
statement, use mysql_num_rows.

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //select the 'freetrade' database
 mysql_select_db("freetrade", $dbLink);

 //update some invoices
 $Query = "UPDATE invoice " .
 "SET Active = 'Y' " .
 "WHERE ID 100 ";
 $dbResult = mysql_query($Query, $dbLink);

 //let user know how many rows were updated
 $AffectedRows = mysql_affected_rows($dbLink);
 print("$AffectedRows rows updated.
\n");
?>

boolean mysql_change_user(string user, string password,
string database, integer link)

Use mysql_change_user to change the user for a database connection. The database
and link arguments are optional. If left out, the current database and the link last opened
are used. If the user cannot be changed, the current connection remains open with the
original user. This function requires MySQL version 3.23.3 or newer.

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //select the 'freetrade' database
 mysql_select_db("freetrade", $dbLink);

 //switch to admin user
 mysql_change_user("admin", "secret", "freetrade", $dbLink);
?>

boolean mysql_close(integer link)

Core PHP Programming

IT-SC book 393

Use mysql_close to close the connection to a database. The connect must have been
opened with mysql_connect. Use of this function is not strictly necessary, as all
nonpersistent links are closed automatically when the script finishes. The link argument
is optional, and when it's left out, the connection last opened is closed.

<?
 // open connection
 $Link = mysql_connect("localhost", "httpd", "");

 // close connection
 mysql_close($Link);
?>

integer mysql_connect(string host, string user, string
password)

The mysql_connect function begins a connection to a MySQL database at the specified
host. If the database is on a different port, follow the hostname with a colon and a port
number. You may alternatively supply a colon and the path to a socket if connecting to
localhost. This might be written as localhost:/tmp/sockets/mysql. All the arguments
are optional and will default to localhost, the name of the user executing the script, and an
empty string, respectively. The user executing the script is typically httpd, the Web
server.

Connections are automatically closed when a script finishes execution, though they may
be closed earlier with mysql_close. If you attempt to open a connection that is already
open, a second connection will not be made. The identifier of the previously open
connection will be returned.

FALSE is returned in the event of an error.

<?
 //establish connection
 if(!($dbLink = mysql_connect("localhost:3606", "freetrade", "")))
 {
 print("mysql_connect failed!
\n");
 }

 //select database
 if(!(mysql_select_db("freetrade", $dbLink)))
 {
 print("mysql_select_db failed!
\n");
 print(mysql_errno() . ": ");
 print(mysql_error() . "
\n");
 }
?>

Core PHP Programming

IT-SC book 394

boolean mysql_create_db(string database, integer link)

Use mysql_create_db to create a new database. Note that you must open a connection
with an account that has permission to create databases. If you leave out the link
argument, the last-opened connection will be used.

<?
 // open connection
 $dbLink = mysql_connect("localhost", "admin", "secret");

 //create database
 mysql_create_db("garbage", $dbLink);
?>

boolean mysql_data_seek(integer result, integer row)

The mysql_data_seek function moves the internal row pointer of a result set to the
specified row. Use this function with mysql_fetch_row to jump to a specific row. The
result argument must have been returned from mysql_query or a similar function.

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //select the 'freetrade' database
 mysql_select_db("freetrade", $dbLink);

 //get states from tax table
 $Query = "SELECT State " .
 "FROM tax ";
 $dbResult = mysql_query($Query, $dbLink);

 //jump to fifth row
 mysql_data_seek($dbResult, 4);

 //get row
 $row = mysql_fetch_row($dbResult);

 //print state name
 print($row[0]);
?>

integer mysql_db_query(string database, string query, integer
link)

Core PHP Programming

IT-SC book 395

The mysql_db_query function executes a query on the specified database and returns a
result identifier. If the link argument is omitted, the last-opened link will be used, or a
new one will be created if necessary.

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //truncate session table
 $Query = "DELETE FROM session ";
 $dbResult = mysql_db_query("freetrade", $Query, $dbLink);
?>

boolean mysql_drop_db(string database, integer link)

Use mysql_drop_db to delete a database. If the link argument is omitted, the last-
opened link will be used.

<?
 //open connection
 $dbLink = mysql_connect("localhost", "admin", "secret");

 //drop garbage database
 if(mysql_drop_db("garbage", $dbLink))
 {
 print("Database dropped.BR>");
 }
 else
 {
 print("Database drop failed!BR>");
 }
?>

integer mysql_errno(integer link)

The mysql_errno function returns the error number of the last database action. If the
optional link identifier is left out, the last connection will be assumed.

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //select the 'freetrade' database
 mysql_select_db("freetrade", $dbLink);

 //try to execute a bad query (missing fields)

Core PHP Programming

IT-SC book 396

 $Query = "SELECT FROM tax ";
 if(!($dbResult = mysql_query($Query, $dbLink)))
 {
 // get error and error number
 $errno = mysql_errno($dbLink);
 $error = mysql_error($dbLink);

 print("ERROR $errno: $error
\n");
 }
?>

string mysql_error(integer link)

Use mysql_error to get the textual description of the error for the last database action. If
the optional link identifier is left out, the last connection will be assumed.

array mysql_fetch_array(integer result, integer type)

The mysql_fetch_array function returns an array that represents all the fields for a row
in the result set. Each call produces the next row until no rows are left, in which case
FALSE is returned. By default, each field value is stored twice: once indexed by offset
starting at zero and once indexed by the name of the field. This behavior can be
controlled with the type argument. If the MYSQL_NUM constant is used, elements will be
indexed by field numbers only. If the MYSQL_ASSOC constant is used, elements will be
index by field names only. You can also use MYSQL_BOTH to force the default.

Compare this function to mysql_fetch_object and mysql_fetch_row.

Figure 13-1. mysq1_fetch_array.

Core PHP Programming

IT-SC book 397

object mysql_fetch_field(integer result, integer field)

Core PHP Programming

IT-SC book 398

Use the mysql_fetch_field function to get information about a field in a result set.
Fields are numbered starting with zero. The return value is an object with properties
described in Table 13.7.

If the field argument is left out, the next field in the set will be returned. This behavior
allows you to loop through each field easily.

Table 13.7. Properties of mysql_fetch_field Object

Property Description
blob TRUE if the column is a blob
max_length Maximum length
multiple_key TRUE if the column is a nonunique key
name Name of the column
not_null TRUE if the column cannot be null
numeric TRUE if the column is numeric
primary_key TRUE if the column is a primary key
table Name of the table
type Type of the column
unique_key TRUE if the column is a unique key
unsigned TRUE if the column is unsigned
zerofill TRUE if the column is zero-filled

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //select the 'freetrade' database
 mysql_select_db("freetrade", $dbLink);

 //get everything from address table
 $Query = "SELECT * " .
 "FROM address a, user u " .
 "WHERE u.Address = a.ID ";
 $dbResult = mysql_query($Query, $dbLink);

 // get description of each field
 while($Field = mysql_fetch_field($dbResult))
 {
 print("$Field->table, $Field->name, $Field->type
\n");
 }
?>

array mysql_fetch_lengths(integer result)

Use mysql_fetch_lengths to get an array of the maximum lengths for each of the fields
in a result set.

Core PHP Programming

IT-SC book 399

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //select the 'freetrade' database
 mysql_select_db("freetrade", $dbLink);

 //get everything from address table
 $Query = "SELECT * " .
 "FROM address ";
 $dbResult = mysql_query($Query, $dbLink);

 //get field lengths
 $lengths = mysql_fetch_lengths($dbResult);

 //print length of the third column
 print($lengths[2]);
?>

object mysql_fetch_object(integer result)

The mysql_fetch_object function is similar to mysql_fetch_array and
mysql_fetch_row. Instead of an array, it returns an object. Each field in the result set is a
property in the returned object. Each call to mysql_fetch_object returns the next row,
or FALSE if there are no rows remaining. This allows you to call mysql_fetch_object in
the test condition of a while loop to get every row.

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //select the 'freetrade' database
 mysql_select_db("freetrade", $dbLink);

 //get unique cities from address table
 $Query = "SELECT DISTINCT City, StateProv " .
 "FROM address ";
 $dbResult = mysql_query($Query, $dbLink);

 // get each row
 while($row = mysql_fetch_object($dbResult))
 {
 // print name
 print("$row->City, $row->StateProv<
\n");
 }
?>

array mysql_fetch_row(integer result)

Core PHP Programming

IT-SC book 400

The mysql_fetch_row function returns an array that represents all the fields for a row in
the result set. Each call produces the next row until no rows are left, in which case FALSE
is returned. Each field value is indexed numerically, starting with zero. Compare this
function to mysql_ fetch_array and mysql_fetch_object. There isn't much
difference in performance between these three functions.

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //select the 'freetrade' database
 mysql_select_db("freetrade", $dbLink);

 //get unique cities from address table
 $Query = "SELECT City, StateProv " .
 "FROM address ";
 $dbResult = mysql_query($Query, $dbLink);

 //get each row
 while($row = mysql_fetch_row($dbResult))
 {
 // print city, state
 print("$row[0], $row[1]<
\n");
 }
?>

string mysql_field_flags(integer result, integer field)

Use mysql_field_flags to get a description of the flags on the specified field. The flags
are returned in a string and separated by spaces. The flags you can expect are
auto_increment, binary, blob, enum, multiple_key, not_null, primary_key,
timestamp, unique_key, unsigned, and zerofill. Some of these flags may be
available only in the newest versions of MySQL. See mysql_list_fields for an
example of use.

integer mysql_field_len(integer result, integer field)

Use mysql_field_len to get the maximum number of characters to expect from a field.
The fields are numbered from zero. See mysql_list_fields for an example of use.

string mysql_field_name(integer result, integer field)

Use mysql_field_name to get the name of a column. The field argument is an offset
numbered from zero. See mysql_list_fields for an example of use.

boolean mysql_field_seek(integer result, integer field)

Core PHP Programming

IT-SC book 401

The mysql_field_seek function moves the internal field pointer to the specified field.
The next call to mysql_fetch_field will get information from this field. See
mysql_list_fields for an example of use.

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //select the 'freetrade' database
 mysql_select_db("freetrade", $dbLink);

 //get everything from address table
 $Query = "SELECT * " .
 "FROM address ";
 $dbResult = mysql_query($Query, $dbLink);

 //skip to second field
 mysql_field_seek($dbResult, 1);

 //get description of each field
 while($Field = mysql_fetch_field($dbResult))
 {
 print($Field->table, $Field->name, $Field->type
\N");
 }
?>

string mysql_field_table(integer result, integer field)

The mysql_field_table function returns the name of the table for the specified field. If
an alias is used, as in the example below, the alias is returned.

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //select the 'freetrade' database
 mysql_select_db("freetrade", $dbLink);

 //get everything from user table
 //get everything from address table
 $Query = "SELECT * " .
 "FROM address a, user u " .
 "WHERE u.Address = a.ID ";
 $dbResult = mysql_query($Query, $dbLink);

 $Fields = mysql_num_fields($dbResult);
 for($i = 0; $i $Fields; $i++)
 {
 print(mysql_field_table($dbResult, $i) . "
\n");
 }
?>

Core PHP Programming

IT-SC book 402

string mysql_field_type(integer result, integer field)

Use mysql_field_type to get the type of a particular field in the result set.

boolean mysql_free_result(integer result)

Use mysql_free_result to free any memory associated with the specified result set.
This is not strictly necessary, as this memory is automatically freed when a script finishes
executing.

<?
 // connect to server
 $Link = mysql_connect("localhost", "httpd", "");

 // select the 'store' database
 mysql_select_db("store", $Link);

 // get everything from customer table
 $Query = "SELECT * FROM customer ";
 $Result = mysql_query($Query, $Link);

 // free result set
 mysql_free_result($Result);
?>

integer mysql_insert_id(integer link)

After inserting into a table with an auto_increment field, the mysql_insert_id function
returns the id assigned to the inserted row. If the link argument is left out, the most
recent connection will be used.

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //select the 'freetrade' database
 mysql_select_db("freetrade", $dbLink);

 //insert a row
 $Query = "INSERT INTO user (Login, Password) " .
 "VALUES('leon', 'secret') ";
 $dbResult = mysql_query($Query, $dbLink);

 //get id
 print("ID is " . mysql_insert_id($dbLink));

Core PHP Programming

IT-SC book 403

integer mysql_list_dbs(integer link)

The mysql_list_dbs function queries the server for a list of databases. It returns a result
pointer that may be used with mysql_fetch_row and similar functions.

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //get list of databases
 $dbResult = mysql_list_dbs($dbLink);

 //get each row
 while($row = mysql_fetch_row($dbResult))
 {
 // print name
 print($row[0] . "
\n");
 }
?>

integer mysql_list_fields(string database, string table, integer
link)

The mysql_list_fields function returns a result pointer to a query on the list of fields
for a specified table. The result pointer may be used with any ofthe functions that get
information about columns in a result set: mysql_field_flags, mysql_field_len,
mysql_field_name, mysql_field_type. The link argument is optional.

Figure 13-2. mysq1_list_fields.

Core PHP Programming

IT-SC book 404

integer mysql_list_tables(string database, integer link)

Use mysql_list_tables to get a result pointer to a list of tables for a specified database.
The result pointer may be used in any of the functions for fetching rows from a result set.
The link argument is optional.

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //get list of tables
 $dbResult = mysql_list_tables("freetrade", $dbLink);

Core PHP Programming

IT-SC book 405

 //get each row
 while($row = mysql_fetch_row($dbResult))
 {
 //print name
 print($row[0] . "
\n");
 }
?>

integer mysql_num_fields(integer result)

The mysql_num_fields function returns the number of fields in a result set. See
mysql_list_fields for an example of use.

integer mysql_num_rows(integer result)

The msyql_num_rows function returns the number of rows in a result set. See
mysql_result for an example of use.

integer mysql_pconnect(string host, string user, string
password)

The mysql_pconnect function operates like mysql_connect except that the connection
will be persistent. That is, it won't be closed when the script ends. The connection will
last as long as the server process lasts, so that if a connection is attempted later from the
same process, the overhead of opening a new connection will be avoided.

A link identifier is returned. This identifier is used in many of the other functions in this
section.

<?
 //open persistent connection
 $dbLink = mysql_pconnect("localhost", "freetrade", "");
?>

integer mysql_query(string query, integer link)

Use mysql_query to execute a query. If the link argument is omitted, the last connection
made is used. If there has been no previous connection, PHP will connect to the local
host. If the query performs an insert, delete, or update, a boolean value will be returned.
Select queries return a result identifier. See mysql_fetch_object for an example of use.

string mysql_result(integer result, integer row, string field)

Core PHP Programming

IT-SC book 406

The mysql_result function returns the value of the specified field in the specified row.
The field argument may be a number, in which case it is considered a field offset. It
may also be the name of a column, either with the table name or without. It could also be
an alias.

In general, this function is very slow. It's better to use mysql_fetch_row or a similar
function.

<?
 //connect to server as freetrade user, no password
 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'freetrade' database
 mysql_select_db("freetrade", $dbLink);

 // get everything from customer table
 $Query = "SELECT * FROM " .
 "user u " .
 "WHERE u.Login like 'A%' ";
 $dbResult = mysql_query($Query, $dbLink);

 // get number of rows
 $rows = mysql_num_rows($dbResult);

 for($i = 0; $i $rows; $i++)
 {
 $name = mysql_result($dbResult, $i, "u.Login");
 print("$name
\n");
 }
?>

boolean mysql_select_db(string database, integer link)

Use mysql_select_db to select the default database. Most of the other examples in this
section use mysql_select_db.

ODBC

Open Database Connectivity (ODBC) has become an industry standard for
communicating with a database. The model is simple. Client software is designed to use
an ODBC API. Vendors write drivers that implement this API on the client side and talk
natively to their database on the server side. This allows application developers to write
one application that can communicate with many different databases simply by changing
the driver, which is an external file.

ODBC uses SQL as its language for communicating with any database, even when the
database isn't relational. Microsoft offers drivers that allow you to query text files and

Core PHP Programming

IT-SC book 407

Excel workbooks. A good place to start learning more about ODBC is Microsoft's page at
<http://www.microsoft.com/data/odbc/ >.

Microsoft has offered free ODBC drivers for some time, but only for their operating
systems. ODBC drivers for UNIX are harder to come by. Most database manufacturers
offer drivers, and there are third parties, like Intersolv, that sell optimized drivers for both
Windows and UNIX platforms.

Most of the database with native support in PHP can also be accessed via ODBC. There
are also numerous databases that can only be accessed viaODBC by PHP. Two that
others have tried are Solid and Empress.

Stig Bakken, Andreas Karajannis and Frank Kromann have contributed to the creation of
the ODBC extension.

boolean odbc_autocommit(integer connection, boolean on)

The odbc_autocommit function sets whether queries are automatically committed when
executed. By default this is on. The connection argument is an integer returned by the
odbc_connect or odbc_pconnect functions. This function has to be used intelligently, as
not all ODBC drivers support commits and rollbacks.

<?
 $Connection = odbc_connect("store", "sa", "sa");

 // turn off autocommit
 odbc_autocommit($Connection, FALSE);
?>

boolean odbc_binmode(integer result, integer mode)

Use odbc_binmode to set the way binary columns return data for a result set. When
binary data are returned by the driver, each byte is represented by hexadecimal codes. By
default, PHP will convert these codes into raw binary data. If you have to use the
odbc_longreadlen function to set the maximum length of long data to anything other
than zero, then the modes in Table 13.8 apply. If the maximum read length is zero, the
data are always converted to raw binary data.

<?
 // get a GIF from a database and send it to browser

 // connect to database
 $Connection = odbc_connect("store", "admin", "secret");

 // execute query
 $Query = "SELECT picture ";

Core PHP Programming

IT-SC book 408

 $Query .= "FROM employee ";
 $Query .= "WHERE id=17 ";
 $Result = odbc_do($Connection, $Query);

 // make sure binmode is set for binary pass through
 odbc_binmode($Result, ODBC_BINMODE_PASSTHRU);

 // make sure longreadlen mode
 // is set for echo to browser
 odbc_longreadlen($Result, 0);

 // get the first row, ignore the rest
 odbc_fetch_row($Result);

 // send header so browser knows it's a gif
 header("Content-type: image/gif");

 // get the picture
 odbc_result($Result, 1);
?>

Table 13.8. ODBC Binary Data Modes

Mode Description
ODBC_BINMODE_PASSTHRU Pass through as binary data
ODBC_BINMODE_RETURN Return as hexadecimal codes
ODBC_BINMODE_CONVERT Return with data converted to a string

odbc_close(integer connection)

Use odbc_close to close a connection to a database. If there are open transactions for the
connection, an error will be returned and the connection will not be closed.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

 // execute query
 $Query = "SELECT price ";
 $Query .= "FROM catalog ";
 $Query .= "WHERE id=10 ";
 $Result = odbc_do($Connection, $Query);

 odbc_fetch_row($Result)

 $price = odbc_result($Result, 1);

 print("$price
\n");

 odbc_close($Connection);
?>

Core PHP Programming

IT-SC book 409

odbc_close_all()

The odbc_close_all function closes every connection you have open to ODBC data
sources. Like odbc_close, it will report an error if you have an open transaction on one
of the connections.

<?
 // connect to database three times
 $Connection1 = odbc_connect("store", "guest", "guest");
 $Connection2 = odbc_connect("store", "guest", "guest");
 $Connection3 = odbc_connect("store", "guest", "guest");

 // close all the connections
 odbc_close_all();
?>
?>

boolean odbc_commit(integer connection)

Use odbc_commit to commit all pending actions for the specified connection. If
automatic commit is turned on, as is default, this function has no effect. Also, make sure
your driver supports transactions before using this function.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

 // turn off autocommit
 odbc_autocommit($Connection, FALSE);

 // put everything on sale
 $Query = "UPDATE catalog ";
 $Query .= "SET price = price * 0.9 ";
 $Result = odbc_do($Connection, $Query);

 // commit
 if(odbc_commit($Connection))
 {
 print("Commit successful!
\n");
 }

 odbc_close($Connection);
?>

integer odbc_connect(string dsn, string user, string password,
integer cursor_type)

Core PHP Programming

IT-SC book 410

Use odbc_connect to connect to an ODBC data source. A connection identifier is
returned, which is used by most of the other functions in this section. The user and
password arguments are required, so if your driver does not require them, pass empty
strings. The optional cursor_type argument forces the use of a particular cursor so that
you may avoid problems with some ODBC drivers. Using the SQL_CUR_USE_ODBC
constant for cursor type may avoid problems with calling stored procedures or getting
row numbers.

string odbc_cursor(integer result)

Use odbc_cursor to fetch the name of a cursor for a result set.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

 // execute query
 $Query = "SELECT name, price ";
 $Query .= "FROM catalog ";
 $Result = odbc_do($Connection, $Query);

 print("Cursor: " . odbc_cursor($Result) . "
\n");

 while(odbc_fetch_row($Result))
 {
 $name = odbc_result($Result, 1);
 $price = odbc_result($Result, 2);

 print("$name: $price
\n");
 }

 odbc_close($Connection);
?>

integer odbc_do(integer connection, string query)

Use odbc_do to execute a query on a connection. A result identifier is returned, and is
used in many of the other functions for fetching result data.

integer odbc_exec(integer connection, string query)

The odbc_exec function is an alias for odbc_do.

integer odbc_execute(integer result, array parameters)

The odbc_execute function executes a prepared statement. The result argument is an
identifier returned by odbc_prepare. The parameters argument is an array that must be

Core PHP Programming

IT-SC book 411

passed by reference and will be set with the value of the result columns. See
odbc_prepare for an example of use.

integer odbc_fetch_into(integer result, array fields) integer
odbc_fetch_into(integer result, integer row, array fields)

The odbc_fetch_into function gets the specified row for the specified result set and
puts the columns into the fields array. The fields argument must be passed by reference.
The number of columns in the result set is returned. The row argument may be omitted, in
which case the next row in the set is returned.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

 // execute query
 $Query = "SELECT name, price ";
 $Query .= "FROM catalog ";
 $Result = odbc_do($Connection, $Query);

 while(odbc_fetch_into($Result, &$fields))
 {
 $name = $fields[0];
 $price = $fields[1];
 print("$name: $price
\n");
 }

 odbc_close($Connection);
?>

boolean odbc_fetch_row(integer result, integer row)

Use odbc_fetch_row to get a row of data from a result set. The data for the row is stored
in internal memory, ready to be retrieved with the odbc_result function. The row
argument is optional and, if left out, the next available row will be returned. FALSE will
be returned when there are no more rows in the result set. See the odbc_result function
for an example of use.

integer odbc_field_len(integer result, integer field)

Use odbc_field_len to get the length of a field in a result set. Fields are numbered
starting with one.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

Core PHP Programming

IT-SC book 412

 // execute query
 $Query = "SELECT name, price ";
 $Query .= "FROM catalog ";
 $Result = odbc_do($Connection, $Query);

 print(odbc_field_len($Result, 1));

 odbc_close($Connection);
?>

string odbc_field_name(integer result, integer field)

Use odbc_field_name to get the name of a field in a result set. Fields are numbered
starting with one.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

 // execute query
 $Query = "SELECT name, price ";
 $Query .= "FROM catalog ";
 $Result = odbc_do($Connection, $Query);

 print(odbc_field_name($Result, 1));

 odbc_close($Connection);
?>

string odbc_field_type(integer result, integer field)

Use odbc_field_type to get the type of a field in a result set. Fields are numbered
starting with one.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

 // execute query
 $Query = "SELECT name, price ";
 $Query .= "FROM catalog ";
 $Result = odbc_do($Connection, $Query);

 print(odbc_field_type($Result, 1));

 odbc_close($Connection);
?>

Core PHP Programming

IT-SC book 413

boolean odbc_free_result(integer result)

Use odbc_free_result to free the memory associated with the result set. This is not
strictly necessary, but it's a good idea if you are worried about running out of memory. If
autocommit is disabled and you free a result set before calling odbc_commit, the
transaction will be rolled back.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

 // execute query
 $Query = "SELECT name, price ";
 $Query .= "FROM catalog ";
 $Result = odbc_do($Connection, $Query);

 // free the result set
 odbc_free_result($Result);

 odbc_close($Connection);
?>

boolean odbc_longreadlen(integer result, integer length)

Use odbc_longreadlen to set the maximum length for values of any columns of type
long. This includes binary columns such as longvarbinary. By default the maximum
length is zero, which has the special meaning of causing fetched columns to be echoed to
the browser. Any other positive number will cause returned values to be truncated to the
specified length.

Note that it is not always apparent that a field is considered to be a long by the ODBC
driver. For example, a memo column in Microsoft Access is a long. Data appearing in the
wrong place are a sign of fetching a long where you didn't expect it. One strategy to
avoid these problems is to always call longreadlen.

See odbc_binmode for an example of use.

integer odbc_num_fields(integer result)

Use odbc_num_fields to find the number of fields in the result set.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

Core PHP Programming

IT-SC book 414

 // execute query
 $Query = "SELECT name, price ";
 $Query .= "FROM catalog ";
 $Result = odbc_do($Connection, $Query);

 print(odbc_num_fields($Result));

 odbc_close($Connection);
?>

integer odbc_num_rows(integer result)

The odbc_num_rows function returns the number of rows in the set, or the number of
rows affected by a delete or insert if the driver supports it.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

 // execute query
 $Query = "SELECT name, price ";
 $Query .= "FROM catalog ";
 $Result = odbc_do($Connection, $Query);

 print(odbc_num_rows($Result));

 odbc_close($Connection);
?>

integer odbc_pconnect(string dsn, string user, string
password)

The odbc_pconnect function operates similarly to odbc_connect. A connection is
attempted to the specified Data Source Name (DSN) and a connection identifier is
returned. The connection should not be closed with odbc_close. It will persist as long as
the Web server process. The next time a script executes odbc_pconnect, PHP will first
check for existing connections.

<?
 // connect to database
 $Connection = odbc_pconnect("store", "guest", "guest");
?>

integer odbc_prepare(integer connection, string query)

Core PHP Programming

IT-SC book 415

The odbc_prepare function parses a query and prepares it for execution. A result
identifier that may be passed to odbc_execute is returned. Preparing statements can be
more efficient than making the driver reparse statements. This is usually the case where
you have many rows to insert into the same table. To specify a value to be filled in later,
use a question mark.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

 // prepare query
 $Query = "INSERT INTO catalog (ID, Name, Price) ";
 $Query .= "VALUES(?, ?, ?) ";
 $Result = odbc_prepare($Connection, $Query);

 // insert
 // 0, 2000 Calendar, 20.00
 // 1, 2001 Calendar, 20.50
 // 2, 2002 Calendar, 21.00
 for($index = 2000; $index = 2002; $index++)
 {
 $values[0] = $index-2000;
 $values[1] = "$index Calendar";
 $values[2] = 20.00 + (0.50 * ($index-2000));

 odbc_execute($Result, $values);
 }

 odbc_close($Connection);
?>

string odbc_result(integer result, string field)

Use odbc_result to get the value of a field for the current row. Fields may be referenced
by number or name. If by using numbers, start counting fields with 1. If you specify a
field by name, do not include the table name.

This function is affected by the settings controlled by odbc_binmode and
odbc_longreadlen. An important fact to keep in mind is that while in most cases the
value of the field will be returned, fields that contain long data will be echoed to the
browser instead by default. Use odbc_longreadlen to change this behavior.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

 // execute query
 $Query = "SELECT name, price ";
 $Query .= "FROM catalog ";

Core PHP Programming

IT-SC book 416

 $Result = odbc_do($Connection, $Query);

 while(odbc_fetch_row($Result))
 {
 $name = odbc_result($Result, 1);
 $price = odbc_result($Result, 2);
 print("$name: $price
\n");
 }

 odbc_close($Connection);
?>

integer odbc_result_all(integer result, string format)

The odbc_result_all function will dump all the rows for a result set to the browser.
The number of rows is returned. The dumped rows will be formatted in a table. The field
names will be printed in a header row with TH tags. The optional format argument will
be inserted inside the initial table tag so that you may set table attributes.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

 // execute query
 $Query = "SELECT name, price ";
 $Query .= "FROM catalog ";
 $Result = odbc_do($Connection, $Query);

 // dump all results
 odbc_result_all($Result, "BORDER=1");

 odbc_close($Connection);
?>

boolean odbc_rollback(integer connection)

Use odbc_rollback to abandon all pending transactions. By default all queries are
automatically committed, but this behavior may be modified with odbc_autocommit. Not
all databases support transactions.

<?
 // connect to database
 $Connection = odbc_connect("store", "guest", "guest");

 // turn off autocommit
 odbc_autocommit($Connection, FALSE);

Core PHP Programming

IT-SC book 417

 // put everything on sale
 $Query = "UPDATE catalog ";
 $Query .= "SET price = price * 0.9 ";
 $Result = odbc_do($Connection, $Query);

 // rollback
 odbc_rollback($Connection);

 odbc_close($Connection);
?>

integer odbc_setoption(integer id, integer function, integer
option, integer parameter)

The odbc_setoption function changes the configuration of the ODBC driver for an
entire connection or a single result set. Its purpose is to allow access to any ODBC setting
in order to avoid problems with buggy ODBC drivers. To use this function, you ought to
understand ODBC in greater detail than the average user. You will need to know the
values of the various options available to you.

The id argument is either a connection identifier or a result set identifier. Since
odbc_setoption wraps two C API functions, SQLSetConnectOption and
SQLSetStmtOption, you must specify which to use with the function argument. The
option argument is an integer that identifies one of the many options available on the
ODBC driver. The parameter argument is the value to use with the option.

Oracle

Oracle is one of the most popular relational databases in the world. It is an industrial-
strength engine preferred by large corporations using databases of exceeding complexity.
Oracle database administrators are scarce and command high salaries. A full explanation
of working with Oracle is far beyond the scope of this text. Fortunately you will find
many books about Oracle for sale, as well as free documentation on the Oracle Web site.
In particular, I recommend Oracle Call Interface Programmer's Guide, which exists in
several versions. I found it at the following URL <http://technet.oracle.
com/doc/server.804/a58234/toc.htm>. This document describes the Oracle Call
Interface which PHP uses.

PHP supports two generations of Oracle libraries, Version 7 and Version 8. The functions
that use Oracle 7 begin with ora_, such as ora_logon. The functions that work with
Oracle 8 begin with oci, such as ocilogon. The Oracle 8 library supports connecting to
older Oracle databases. I've included descriptions of the older functions because it's
possible you're in the situation of not having access to the newer libraries. Aside from
compiling Oracle support into PHP, you may also load an extension using the dl
function.

Core PHP Programming

IT-SC book 418

The Oracle 7 functions require two environment variables to be set: ORACLE_HOME and
ORACLE_SID. They are most likely not set for your Web server, so you must use the
putenv function to set them. You will notice code to accomplish this in the examples
below.

Thies Arntzen, Stig Bakken, Mitch Golden, Andreas Karajannis, and Rasmus Lerdorf
contributed to the Oracle 7 extension. Oracle 8 support was added to PHP by Stig Bakken
and Thies Arntzen.

Table 13.9 lists constants created by the Oracle 8 Extension. When Oracle is installed, it
creates a test user. The login is scott and the password is tiger. I'll take advantage of
this in the examples below.

Table 13.9. All Oracle 8 Constants
OCI_ASSOC
OCI_BOTH
OCI_B_BFILE
OCI_B_BIN
OCI_B_BLOB
OCI_B_CFILEE
OCI_B_CLOB
OCI_B_CURSOR
OCI_B_ROWID
OCI_COMMIT_ON_SUCCESS
OCI_DEFAULT
OCI_DESCRIBE_ONLY
OCI_DTYPE_FILE
OCI_DTYPE_LOB
OCI_DTYPE_ROWID
OCI_D_FILE
OCI_D_LOB
OCI_D_ROWID
OCI_EXACT_FETCH
OCI_NUM
OCI_RETURN_LOBS
OCI_RETURN_NULLS
SQLT_BFILEE
SQLT_BLOB
SQLT_CFILEE
SQLT_CLOB
SQLT_RDD

boolean ocibindbyname (integer statement, string placeholder,
reference variable, integer length, integer type)

Core PHP Programming

IT-SC book 419

The ocibindbyname function binds an Oracle placeholder to a PHP variable. You must
supply a valid statement identifier as created by ociparse, the name of the placeholder, a
reference to a PHP variable, and the maximum length of the bind data. You may use a
value of -1 to use the length of the variable passed as the variable argument.

The optional type argument specifies a data type and is necessary if you wish to bind to
an abstract data type. Use one of the following constants to set the data type:
OCI_B_BLOB, OCI_B_CFILE, OCI_B_CLOB, OCI_B_FILE, OCI_B_ROWID. Make sure you
use ocinewdescriptor before binding to an abstract data type. You also need to use -1
for the length argument.

<?
 //set-up data to insert
 $NewEmployee = array(
 array(8001, 'Smith', 'Clerk'),
 array(8002, 'Jones', 'Analyst'),
 array(8003, 'Atkinson', 'President')
);

 //connect to database
 $Connection = ocilogon("scott", "tiger");

 //assemble query
 $Query = "INSERT INTO emp (EMPNO, ENAME, JOB, HIREDATE) ";
 $Query .= "VALUES (:empno, :ename, :job, SYSDATE) ";
 $Query .= "RETURNING ROWID INTO :rowid ";

 //parse query
 $Statement = ociparse($Connection, $Query);

 //create descriptor the abstract data type
 $RowID = ocinewdescriptor($Connection, OCI_D_ROWID);

 //bind input and output variables
 ocibindbyname($Statement, ":empno", &$EmployeeNumber, 32);
 ocibindbyname($Statement, ":ename", &$EmployeeName, 32);
 ocibindbyname($Statement, ":job", &$Job, 32);
 ocibindbyname($Statement, ":rowid", &$RowID, -1, OCI_B_ROWID);

 //loop over each new employee
 while(list($key, $EmployeeInfo) = each($NewEmployee))
 {
 list($EmployeeNumber, $EmployeeName, $Job) =
$EmployeeInfo;

 //execute query, do not automatically commit
 ociexecute($Statement, OCI_DEFAULT);

 print("$EmployeeNumber has ROWID $RowID
\n");
 }

 //free the statement
 ocifreestatement($Statement);

Core PHP Programming

IT-SC book 420

 //undo the inserts
 //Normally, you won't do this, if we undo the inserts
 //each time, we can run the example over and over
 ocirollback($Connection);

 //close connection
 ocilogoff($Connection);
?>

boolean ocicancel(integer statement)

The ocicancel function fetches the next row from a statement. Internally it calls the
OCIStmtFetch function, which is part of OCI, specifying zero for the number of rows. In
every other way, it is identical to ocifetch.

boolean ocicolumnisnull(integer statement, value column)

Use ocicolumnisnull to test whether a column is null. You may specify columns by
number, in which case columns are numbered starting with 1, or you may specify
columns by name. See ocifetch for an example of use.

string ocicolumnname(integer statement, integer column)

The ocicolumnname function returns the name of a column given the column number.
Columns are numbered starting with 1. See ocifetch for an example of use.

integer ocicolumnsize(integer statement, value column)

The ocicolumnsize function returns the size of a column. You may specify columns by
number, in which case columns are numbered starting with 1, or you may specify
columns by name. See ocifetch for an example of use.

value ocicolumntype(integer statement, integer column)

Use ocicolumntype to get the type of the specified column. You may specify columns
by number, in which case columns are numbered starting with 1, or you may specify
columns by name. The name of the type will be returned if it is one of the following:
BFILE, BLOB, CHAR, CLOB, DATE, LONG RAW, LONG, NUMBER, RAW, REFCURSOR, ROWID,
VARCHAR. Otherwise, an integer code from the data type will be returned. See ocifetch
for an example of use.

boolean ocicommit(integer connection)

Core PHP Programming

IT-SC book 421

The ocicommit function commits all previous statements executed on the connection. By
default, statements are committed when executed. You can override this functionality
when you call ociexecute, by specifying a mode.

boolean ocidefinebyname(integer statement, string column,
reference variable, integer type)

The ocidefinebyname function associates a column with a PHP variable. When the
statement is executed, the value of the column will be copied into the variable. The
statement argument must be an integer returned by ociparse. The column name must
be written in upper case, otherwise Oracle will not recognize it. Unrecognized column
names do not produce errors. Since the variable you pass in ocidefinebyname will be
modified, you need to pass it by reference. That mean preceding it with an ampersand (&).

The type argument appears to be necessary only if you are attaching to an abstract data
type, such as a ROWID. Abstract data types require ocinewdescriptor be used prior to
ocidefinebyname. If the type argument is left out, the variable will be set as a null-
terminated string.

<?
 //connect to database
 $Connection = ocilogon("scott", "tiger");

 //assemble query
 $Query = "SELECT ENAME, HIREDATE ";
 $Query .= "FROM emp ";
 $Query .= "WHERE JOB='CLERK' ";

 //parse query
 $Statement = ociparse($Connection, $Query);

 //associate two columns with variables
 ocidefinebyname($Statement, "ENAME", &$EmployeeName);
 ocidefinebyname($Statement, "HIREDATE", &$HireDate);

 //execute query
 ociexecute($Statement);

 //fetch each row
 while(ocifetch($Statement))
 {
 print("$EmployeeName was hired $HireDate
\n");
 }

 //free the statement
 ocifreestatement($Statement);

 //close connection
 ocilogoff($Connection);
?>

Core PHP Programming

IT-SC book 422

array ocierror(integer identifier)

If an error has occurred, the ocierror function returns an associative array that describes
it. If no error has occurred, FALSE is returned. The identifier argument may be either a
statement identifier or a connection identifier. The returned array will have two elements,
code and message. You may also call ocierror with no argument to get information
about a failed login. See ocifetch for an example of use.

boolean ociexecute(integer statement, integer mode)

Use ociexecute to execute a statement. The mode argument is optional. It controls
whether the statement will be committed after execution. By default,
OCI_COMMIT_ON_EXECUTE is used. If you do not wish to commit the transaction
immediately, use OCI_DEFAULT. See ocifetch for an example of use.

boolean ocifetch(integer statement)

The ocifetch function prepares the next row of data to be read with ociresult. When
no rows remain, FALSE is returned.

<?
 //connect to database
 $Connection = ocilogon("scott", "tiger");

 //assemble query
 $Query = "SELECT * ";
 $Query .= "FROM emp ";

 //parse query
 $Statement = ociparse($Connection, $Query);

 //execute query
 ociexecute($Statement);

 //check that the query executed sucessfully
 if($Error = ocierror($Statement))
 {
 print($Error["code"] . ": " . $Error["message"] .
"
\n");
 exit;
 }

 //start HTML table
 print("<TABLE>\n");

 //build headers from column information
 print("<TR>\n");
 for($i=1; $i = ocinumcols($Statement); $i++)
 {

Core PHP Programming

IT-SC book 423

 print("<TH>");

 //print a line like "<TH>ENAME VARCHAR2(10)</TH>"
 print(ocicolumnname($Statement, $i) . " ");
 print(ocicolumntype($Statement, $i));
 print("(" . ocicolumnsize($Statement, $i) . ")");

 print("</TH>\n");
 }
 print("</TR>\n");

 //fetch each row
 while(ocifetch($Statement))
 {
 print("<TR>\n");

 //loop over each column
 for($i=1; $i = ocinumcols($Statement); $i++)
 {
 //print a line like "<TD>SMITH/TD>"
 print("<TD>");
 if(ocicolumnisnull($Statement, $i))
 {
 print("(null)");
 }
 else
 {
 print(ociresult($Statement, $i));
 }
 print("</TD>\n");
 }

 print("</TR>\n");
 }

 //close table
 print("</TABLE>\n");

 //free the statement
 ocifreestatement($Statement);

 //close connection
 ocilogoff($Connection);
?>

boolean ocifetchinto(integer statement, reference data, integer
mode)

Use ocifetchinto to get the next row of data from an executed statement and place it in
an array. The data argument will contain an array that by default will be indexed by
integers starting with 1. The optional mode argument controls how the array is indexed.
You may add the constants listed in Table 13.10 to get the features you desire.

Core PHP Programming

IT-SC book 424

Table 13.10. Constants for Use with ocifetchinto

Constant Description
OCI_ASSOC Return columns indexed by name
OCI_NUM Return columns indexed by number
OCI_RETURN_NULLS Create elements for null columns
OCI_RETURN_LOBS Return values of LOBs instead of descriptors

<?
 //connect to database
 $Connection = ocilogon("scott", "tiger");

 //assemble query
 $Query = "SELECT * ";
 $Query .= "FROM emp ";

 //parse query
 $Statement = ociparse($Connection, $Query);

 //execute query
 ociexecute($Statement);

 //check that the query executed sucessfully
 if($Error = ocierror($Statement))
 {
 print($Error["code"] . ": " . $Error["message"] .
"
\n");
 exit;
 }

 //start HTML table
 print("<TABLE>\n");

 //fetch each row
 while(ocifetchinto($Statement, $Data,
 OCI_NUM + OCI_RETURN_NULLS + OCI_RETURN_LOBS))
 {
 print("<TR>\n");

 //loop over each column
 while(list($key, $value) = each($Data))
 {
 //print a line like "<TD>SMITH</TD>"
 print("<TD>$value</TD>\n");
 }

 print("</TR>\n");
 }

 //close table
 print("</TABLE>\n");

 //free the statement
 ocifreestatement($Statement);

Core PHP Programming

IT-SC book 425

 //close connection
 ocilogoff($Connection);
?>

integer ocifetchstatement(integer statement, reference data)

The ocifetchstatement function places an array with all the result data in the data
argument and returns the number of rows. The data array is indexed by the names of the
columns. Each element is an array itself which is indexed by integers starting with zero.
Each element in this subarray corresponds to a row.

<?
 //connect to database
 $Connection = ocilogon("scott", "tiger");

 //assemble query
 $Query = "SELECT * ";
 $Query .= "FROM emp ";

 //parse query
 $Statement = ociparse($Connection, $Query);

 //execute query
 ociexecute($Statement);

 print("<TABLE>\n");

 //fetch all rows into array
 if($Rows = ocifetchstatement($Statement, &$Data))
 {
 while(list($key, $value) = each($Data))
 {
 print("<TR>\n");

 //name of column
 print("<TH>$key/TH>\n");

 //print data
 for($i=0; $i < $Rows; $i++)
 {
 print("<TD>$value[$i]/<TD>\n");
 }

 print("</TR>\n");
 }
 }

 print("</TABLE>\n");

 //free the statement
 ocifreestatement($Statement);

Core PHP Programming

IT-SC book 426

 //close connection
 ocilogoff($Connection);
?>

boolean ocifreecursor(integer cursor)

Use ocifreecursor to free the memory associated with a cursor you created with
ocinewcursor.

boolean ocifreestatement(integer statement)

Use ocifreestatement to free the memory associated with a statement. The statement
argument is an integer returned by ociparse.

ociinternaldebug(boolean on)

The ociinternaldebug function controls whether debugging information is generated.
The debug output will be sent to the browser. It is off by default, of course.

boolean ocilogoff(integer connection)

Use ocilogoff to close a connection.

integer ocilogon(string user, string password, string sid)

The ocilogon function establishes a connection to an Oracle database. The identifier it
returns is used to create statements, cursors, and descriptors. The user and password
arguments are required. The optional sid argument specifies the server; if it is left out,
the ORACLE_SID environment variable will be used.

If you attempt to create a second connection to the same database, you will not really get
another connection. This means that commits or rollbacks affect all statements created by
your script. If you want a separate connection, use ocinlogon instead.

integer ocinewcursor(integer connection)

Use ocinewcursor to create a cursor. The cursor identifier that is returned is similar to a
statement identifier. Use ocifreecursor to free the memory associated with a cursor.
You can use a cursor to get the data returned by a stored procedure.

<?
 //open connection
 $Connection = ocilogen ("scott", "tiger");

 //create cursor

Core PHP Programming

IT-SC book 427

 $Cursor = ocinewcursor ($Connection);

 //create statement that calls a stored procedure
 $Query = "BEGIN ";
 $Query .= "docalculation;(:price); ";
 $Query .= "END; ";
 $Statement = ociparse ($Connection, $Query);

 //bind placeholder to cursor
 ocibindbyname ($Statement, "price", &$Cursor, -1, OCI_B_CURSOR);

 //execute statement
 ociexecute ($Statement);

 //execute cursor
 ociexecute($Cursor);

 //loop over results in cursor
 while (ocifetchinto ($Cursor, &$Results))
 {
 print("$Results
\n")
 }

 //free memory for cursor
 ocifreecursor ($Cursor);

 //free memory for statement
 ocifreestatement ($Statement);

 //close connection
 ocilogoff ($Connection);
?>

string ocinewdescriptor(integer connection, integer type)

The ocinewdescriptor function allocates memory for descriptors and LOB locators.
The type defaults to being a file, but you may specify OCI_D_FILE, OCI_D_LOB, or
OCI_D_ROWID. See ocibindbyname for an example of use.

integer ocinlogon(string user, string password, string sid)

The ocinlogon function establishes a unique connection to an Oracle database. The
identifier it returns is used to create statements, cursors, and descriptors. The user and
password arguments are required. The optional sid argument specifies the server, and if
left out, the ORACLE_SID environment variable will be used.

Compare this function to ocilogon and ociplogon.

integer ocinumcols(integer statement)

Core PHP Programming

IT-SC book 428

The ocinumcols function returns the number of columns in a statement. See ocifetch
for an example of use.

integer ociparse(integer connection, string query)

The ociparse function creates a statement from a query. It requires a valid connection
identifier.

integer ociplogon(string user, string password, string sid)

The ociplogon function establishes a persistent connection to an Oracle database. These
connections exist as long as the server process. When you request a persistent connection,
you may get a connection that already exists, thus saving the overhead of establishing a
connection.

The returned identifier is used to create statements, cursors, and descriptors. The user
and password arguments are required. The optional sid argument specifies the server,
and if left out, the ORACLE_SID environment variable will be used.

Compare this function to ocilogon and ocinlogon.

string ociresult(integer statement, value column)

Use ociresult to get the value of a column on the current row. The column may be
identified by number or name. Columns are numbered starting with 1. Results are
returned as strings, except in the case of LOBs, ROWIDs, and FILEs. See ocifetch for
an example of use.

boolean ocirollback(integer connection)

Use ocirollback to issue a rollback operation on the given connection. By default, calls
to ociexecute are committed automatically, so be sure to override this functionality if
you wish to use ocirollback.

Keep in mind that if you used ocilogon or ociplogon to get more than one connection,
they may not be unique. Therefore issuing a rollback will affect all statements. To avoid
this situation use ocinlogon instead.

integer ocirowcount(integer statement)

The ocirowcount function returns the number of rows affected by an update, insert, or
delete.

string ociserverversion(integer connection)

Core PHP Programming

IT-SC book 429

Use ociserverversion to get a string describing the version of the server for a
connection.

integer ocisetprefetch(integer statement, integer size)

The ociprefetch function sets the size of a buffer that Oracle uses to prefetch results
into. The size argument will be multiplied by 1024 to set the actual number of bytes.

string ocistatementtype(integer statement)

Use ocistatementtype to get a string that describes the type of the statement. The types
you can expect are ALTER, BEGIN, CREATE, DECLARE, DELETE, DROP, INSERT, SELECT,
UNKNOWN, and UPDATE.

boolean ora_bind(integer cursor, string variable, string
parameter, integer length, integer type)

The ora_bind function binds a PHP variable to a parameter in an Oracle query. This
causes data to flow between the two entities. You must call ora_parse before binding
any variables. The type parameter is optional. It specifies whether data may go only into
or out of the Oracle parameter. By default, data may go both ways. The type may be
defined using the following constants: ORA_BIND_IN, ORA_BIND_INOUT, ORA_BIND_OUT.

<?
 //in case these aren't set for httpd
 putenv("ORACLE_HOME=/usr/local/oracle7");
 putenv("ORACLE_SID=ORCL");

 //connect to server
 $Connection = ora_logon("scott", "tiger");

 //open cursor
 $Cursor = ora_open($Connection);

 $Query = "DECLARE php_in INTEGER; ";
 $Query .= "BEGIN ";
 $Query .= ":php_out := :php_in + 3; ";
 $Query .= "END;";

 //parse query
 ora_parse($Cursor, $Query);
 ora_bind($Cursor, "input", ":php_in", 11, ORA_BIND_IN);
 ora_bind($Cursor, "output", ":php_out", 11, ORA_BIND_OUT);

 $input = 10;

 //execute query
 ora_exec($Cursor);

 print("$output
\n");

Core PHP Programming

IT-SC book 430

 //close the oracle cursor
 ora_close($Cursor);

 //disconnect.
 ora_logoff($Connection);
?>

boolean ora_close(integer cursor)

The ora_close function closes a connection opened by ora_open. See ora_bind for an
example of use.

string ora_columnname(integer cursor, integer column)

The ora_columnname function returns the name of the specified column. Columns are
numbered from zero. See ora_exec for an example of use.

integer ora_columnsize(integer cursor, string column)

The ora_columnsize function returns the size of the specified column. Columns are
numbered from zero. Alternatively, you may specify a column by its name. See
ora_exec for an example of use.

string ora_columntype(integer cursor, integer column)

The ora_columntype function returns the data type of the specified column. Columns
are numbered from zero. Alternatively, you may specify a column by its name. The type
will be one of the following: CHAR, CURSOR, DATE, LONG, LONG RAW, NUMBER, ROWID,
VARCHAR, VARCHAR2. See ora_exec for an example of use.

boolean ora_commit(integer connection)

The ora_commit function commits all the pending transactions on the connection. By
default, all transactions are committed after a call to ora_exec.

boolean ora_commitoff(integer connection)

Use ora_commitoff to turn off automatic commits. By default, PHP commits each
transaction.

boolean ora_commiton(integer connection)

Use ora_commiton to turn on automatic commits. By default, PHP commits each
transaction.

Core PHP Programming

IT-SC book 431

integer ora_do(integer connection, string query)

The ora_do function executes a query on the given connection. PHP takes care of
creating a cursor, parsing the query, and executing it. A cursor identifier is returned.

<?
 //in case these aren't set for httpd
 putenv("ORACLE_HOME=/usr/local/oracle7");
 putenv("ORACLE_SID=ORCL");

 // connect to server
 if($Connection = ora_logon("scott", "tiger"))
 {
 $Query = "SELECT ENAME ";
 $Query .= "FROM emp ";
 $Query .= "WHERE ENAME LIKE 'SMI%' ";

 if($Cursor = ora_do($Connection, $Query))
 {
 ora_fetch($Cursor);

 print(ora_columnname($Cursor, 0) . "
\n");

 // Close the Oracle cursor
 ora_close($Cursor);
 }

 // disconnect.
 ora_logoff($Connection);
 }
?>

string ora_error(integer identifier)

The ora_error function returns a string that describes the error for the last command
sent to the Oracle database. The identifier may be either a connection identifier or a
cursor identifier.

The message takes the form of XXX-NNNNN, where XXX tells you where the error came
from and NNNNN tells you the error number. If you want to look up a description of the
error, you can use Oracle's oerr command. See ora_exec for an example of use.

integer ora_errorcode(integer identifier)

The ora_errorcode function returns the error number for the last command sent to the
Oracle server. The identifier may be either a connection identifier or a cursor identifier.
See ora_exec for an example of use.

Core PHP Programming

IT-SC book 432

boolean ora_exec(integer cursor)

The ora_exec function executes a query previously parsed by the ora_parse function.
Compare this function to ora_do.

<?
 //in case these aren't set for httpd
 putenv("ORACLE_HOME=/usr/local/oracle7");
 putenv("ORACLE_SID=ORCL");

 function reportError($id, $message)
 {
 print("$message
\n");

 print("Error Code: " . ora_errorcode($id) . "
\n");

 print("Error Message: " . ora_error($id) . "
\n");
 }

 //connect to server
 if(!($Connection = ora_logon("scott", "tiger")))
 {
 print("Could not connect to database!
\n");
 exit;
 }

 //open cursor
 if(!($Cursor = ora_open($Connection)))
 {
 reportError($Connection, "Cursor could not be opened!");
 exit;
 }

 $Query = "SELECT * ";
 $Query .= "FROM emp ";

 //parse query
 if(!ora_parse($Cursor, $Query))
 {
 reportError($Cursor, "Statement could not be parsed!");
 exit;
 }

 // execute query
 if(!ora_exec($Cursor))
 {
 reportError($Cursor, "Statement could not be executed!");
 exit;
 }

 //start table
 print("<TABLE BORDER=\"1\">\n");

 //print header row that describes each column
 print("<TR>\n");

Core PHP Programming

IT-SC book 433

 for($i = 0; $i ora_numcols($Cursor); $i++)
 {
 print("<TH>");

 // get column info
 print(ora_columnname($Cursor, $i) . ": ");
 print(ora_columntype($Cursor, $i) . " ");
 print("(" . ora_columnsize($Cursor, $i) . ")");

 print("</TH>\n");
 }

 print("</TR>\n");

 // get each row
 while(ora_fetch($Cursor))
 {
 print("<TR>\n");

 //loop over each column
 for($i = 0; $i ora_numcols($Cursor); $i++)
 {
 print("<TD>");

 // get column
 print(ora_getcolumn($Cursor, $i));

 print("</TD>\n");
 }

 print("</TR>\n");
 }

 //close table
 print("</TABLE>\n");

 print("
\n");
 print("Rows: " . ora_numrows($Cursor));
 print("
\n");

 // Close the Oracle cursor
 ora_close($Cursor);

 // disconnect.
 ora_logoff($Connection);
?>

boolean ora_fetch(integer cursor)

The ora_fetch function causes a row from an executed query to be fetched into the
cursor. This allows you to call ora_getcolumn. See ora_exec for an example of use.

Core PHP Programming

IT-SC book 434

integer ora_fetch_into(integer cursor, reference fields, integer
flags)

The ora_fetch_into function gets the next row from the cursor and puts it into the
fields argument, which must be passed by reference. Fields will contain an array
indexed by numbers, starting with zero. The number of fields fetched is returned. The
optional flags argument is a bit field that uses two constants, ORA_FETCHINTO_ASSOC
and ORA_FETCHINTO_NULLS. The first instructs ora_fetch_into to create array elements
named by their database fields. The second allows causes null columns to be represented
as empty strings.

<?
 //in case these aren't set for httpd
 putenv("ORACLE_HOME=/usr/local/oracle7");
 putenv("ORACLE_SID=ORCL");

 //connect to server
 if(!($Connection = ora_logon("scott", "tiger")))
 {
 print("Could not connect to database!
\n");
 exit;
 }

 $Query = "SELECT EMPNO ";
 $Query .= "FROM emp ";

 if(!($Cursor = ora_do($Connection, $Query)))
 {
 print("Cursor could not be opened!
\n");
 print("Error Code: " . ora_errorcode($Connection) .
"
\n");
 print("Error Message: " . ora_error($Connection) .
"
\n");
 exit;
 }
 while(ora_fetch_into($Cursor, &$Column))
 {
 print("$Column[0]
\n");
 }

 // Close the Oracle cursor
 ora_close($Cursor);

 // disconnect.
 ora_logoff($Connection);
?>

string ora_getcolumn(integer cursor, integer column)

Core PHP Programming

IT-SC book 435

The ora_getcolumn function returns the value of the column for the current row.
Columns are indexed starting with zero. Long columns are limited to 64K. See ora_exec
for an example of use.

boolean ora_logoff(integer connection)

Use ora_logoff to disconnect from the database server. See ora_exec for an example of
use.

integer ora_logon(string user, string password)

The ora_logon function begins a connection with an Oracle database server. A
connection identifier is returned. See ora_exec for an example of use. As stated at the
beginning of this section, you must define environment variables that specify the server
in order to make a successful connection.

integer ora_numcols(integer cursor)

The ora_numcols function returns the number of columns for a query that has been
executed. See ora_exec for an example of use.

integer ora_numrows(integer cursor)

The ora_numrows function returns the number of rows in the result set for an executed
query. See ora_exec for an example of use.

integer ora_open(integer connection)

The ora_open function opens a cursor for the given connection. See ora_ exec for an
example of use.

boolean ora_parse(integer cursor, string query)

The ora_parse function parses a query and readies it for execution. See ora_exec for an
example of use.

integer ora_plogon(string user, string password)

The ora_plogon function returns a connection identifier. A persistent connection will be
created. It will last as long as the server process. Later calls to either ora_logon or
ora_plogon will find persistent connections and use them instead of creating new ones.
Connections created with ora_plogon should not be used with ora_logoff.

boolean ora_rollback(integer connection)

Core PHP Programming

IT-SC book 436

The ora_rollback function performs a rollback on the given connection. Automatic
commits must be turned off first.

Postgres

Postgres was originally developed at the University of California, Berkeley. It introduced
many of the advanced object-relational concepts becoming popular in commercial
databases. PostgreSQL is the most current incarnation of Postgres and is considered to be
version 6. It implements almost all of the SQL specification. Best of all, it's free.

As with other sections in this chapter, the descriptions of the functions can't stand alone.
You will have to study PostgreSQL to fully understand how they work. More information
may be found at the official PostgreSQL Web site at <http://www.postgresql.org/>.
Zeev Suraski wrote the original Postgres extension. Jouni Ahto added support for large
objects.

boolean pg_close(integer connection)

Use pg_close to close a connection to a PostgreSQL database. See pg_exec for an
example of use.

integer pg_cmdtuples(integer result)

The pg_cmdtuples function returns the number of instances affected by the last query.
This includes DELETE, INSERT, and UPDATE statements, but not SELECT statements.

<?
 //connect to database
 $Connection = pg_connect("", "", "", "", "leon");

 $Query = "INSERT INTO item ";
 $Query .= "VALUES ('hammer', 15.00) ";

 //execute query
 $Result = pg_exec($Connection, $Query);

 //tell user how many rows were inserted
 print(pg_cmdtuples($Result) . " rows inserted.
\n");

 //close connection
 pg_close($Connection);
?>

integer pg_connect(string connection)

integer pg_connect(string host, string port, string database)

Core PHP Programming

IT-SC book 437

integer pg_connect(string host, string port, string options,
string database)

integer pg_connect(string host, string port, string options,
string tty, string database)

The pg_connect function returns a connection identifier to a PostgreSQL database. The
prototype displayed above is actually only one of several configurations for the
arguments.

If you provide only one argument, then it is assumed to be a connection string. This
should be in the style expected by PostgreSQL. If you provide three arguments,
pg_connect expects host, port, and database, in that order. If you provide four
arguments, pg_connect expects host, port, options, and database. Finally, you may
provide all five arguments in the order described in the last prototype. If blanks are used
for any argument, a sensible default will be used.

Compare this function to pg_pconnect. See pg_exec for an example of use.

string pg_dbname(integer connection)

Use pg_dbname to get the name of the current database. See pg_exec for an example of
use.

string pg_errormessage(integer connection)

The pg_errormessage function returns the error message for the last database action.
See pg_exec for an example of use.

integer pg_exec(integer connection, string query)

The pg_exec function executes a query on the given connection. A result identifier is
returned.

<?
 //connect to database
 if(!($Connection = pg_connect("", "", "", "", "leon")))
 {
 print("Could not establish connection.
\n");
 exit;
 }

 //print information about connection
 print("Connection established
\n");
 print("Host: " . pg_host($Connection) . "
\n");
 print("Port: " . pg_port($Connection) . "
\n");
 print("Database: " . pg_dbname($connection) . "
\n");
 print("Options: " . pg_options($connection) . "
\n");

Core PHP Programming

IT-SC book 438

 print("
\n");

 //create query
 $Query = "SELECT * ";
 $Query .= "FROM item";

 //execute query
 if(!($Result = pg_exec($Connection, $Query)))
 {
 print("Could not execute query: ");
 print(pg_errormessage($Connection));
 print("
\n");
 exit;
 }

 // print each row in a table
 print("<TABLE>\n");

 // print header row
 print("<TR>\n");

 for($Field=0; $Field pg_numfields($Result); $Field++)
 {
 print("<TD>");

 print(pg_fieldname($Result, $Field) . " ");
 print(pg_fieldtype($Result, $Field));
 print("(" . pg_fieldsize($Result, $Field) . ")");

 print("</TD>\n");
 }
 print("/TR>\n");

 //loop through rows
 for($Row=0; $Row pg_numrows($Result); $Row++)
 {
 print("<TR>\n");
 for($Field=0; $Field pg_numfields($Result); $Field++)
 {
 print("<TD>");

 if(pg_fieldisnull($Result, $Row, $Field))
 {
 $price = "NULL";
 }
 else
 {
 print(pg_result($Result, $Row, $Field));
 }

 print("</TD>\n");
 }

 print("</TR>\n");
 }

 print("/TABLE>\n");

Core PHP Programming

IT-SC book 439

 // free the result and close the connection
 pg_freeresult($Result);
 pg_close($Connection);
?>

array pg_fetch_array(integer result, integer row)

The pg_fetch_array function returns an array containing every field value for the given
row. The values are indexed by number, starting with zero, and by column name. Each
call to pg_fetch_array returns the next row, or FALSE when no rows remain. Compare
this function to pg_fetch_object and pg_fetch_row.

<?
 //connect to database
 if(!($Connection = pg_connect("", "", "", "", "leon")))
 {
 print("Could not establish connection.
\n");
 exit;
 }

 //create query
 $Query = "SELECT * ";
 $Query .= "FROM item";

 //execute query
 if(!($Result = pg_exec($Connection, $Query)))
 {
 print("Could not execute query: ");
 print(pg_errormessage($Connection));
 print("
\n");
 exit;
 }

 //loop over each row
 while($Row = pg_fetch_array($Result, $Row))
 {
 print($Row["Name"] . "
\n");
 }

 // free the result and close the connection
 pg_freeresult($Result);
 pg_close($Connection);
?>

object pg_fetch_object(integer result, integer row)

The pg_fetch_object function returns an object with a property for every field. Each
property is named after the field name. Each call to pg_fetch_object returns the next

Core PHP Programming

IT-SC book 440

row, or FALSE when no rows remain. Compare this function to pg_fetch_array and
pg_fetch_row.

<?
 //connect to database
 if(!($Connection = pg_connect("", "", "", "", "leon")))
 {
 print("Could not establish connection.
\n");
 exit;
 }

 //create query
 $Query = "SELECT * ";
 $Query .= "FROM item";

 //execute query
 if(!($Result = pg_exec($Connection, $Query)))
 {
 print("Could not execute query: ");
 print(pg_errormessage($Connection));
 print("
\n");
 exit;
 }

 //loop over each row
 while($Row = pg_fetch_object($Result, $Row))
 {
 print("$Row->Name
\n");
 }

 // free the result and close the connection
 pg_freeresult($Result);
 pg_close($Connection);
?>

array pg_fetch_row(integer result, integer row)

The pg_fetch_row function returns the values of all the fields in a row. The fields may
are indexed by their field number, starting with zero. Each call to pg_fetch_object
returns the next row, or FALSE when no rows remain. Compare this function to
pg_fetch_array, and pg_fetch_object.

<?
 //connect to database
 if(!($Connection = pg_connect("", "", "", "", "leon")))
 {
 print("Could not establish connection.
\n");
 exit;
 }

Core PHP Programming

IT-SC book 441

 //create query
 $Query = "SELECT * ";
 $Query .= "FROM item";

 //execute query
 if(!($Result = pg_exec($Connection, $Query)))
 {
 print("Could not execute query: ");
 print(pg_errormessage($Connection));
 print("
\n");
 exit;
 }

 //loop over each row
 while($Row = pg_fetch_row($Result, $Row))
 {
 print("$Row[0]
\n");
 }

 // free the result and close the connection
 pg_freeresult($Result);
 pg_close($Connection);
?>

boolean pg_fieldisnull(integer result, integer row, string field)

The pg_fieldisnull function returns TRUE if the specified field is NULL. Fields are
counted from 0. See pg_exec for an example of use.

string pg_fieldname(integer result, integer field)

The pg_fieldname function returns the name of the field in the result set specified by the
field number, which starts counting at zero. See pg_exec for an example of use.

integer pg_fieldnum(integer result, string field)

The pg_fieldnum function returns the number of the field given its name. Numbering
begins with 0. If an error occurs, negative one (-1) is returned.

<?
 print(pg_fieldnum($Result, "name"));
?>

integer pg_fieldprtlen(integer result, integer row, string field)

The pg_fieldprtlen function returns the printed length of a particular field value. You
may specify the field either by number, starting at zero, or by name.

Core PHP Programming

IT-SC book 442

<?
 print(pg_fieldprtlen($Result, $Row, 2));
?>

integer pg_fieldsize(integer result, string field)

The pg_fieldsize function returns the size of the field, which may be specified by name
or number. Fields are numbered from zero. See pg_exec for an example of use.

string pg_fieldtype(integer result, string field)

The pg_fieldtype function returns the type of the specified field. The field argument
may be a number or a name. Fields are numbered starting with zero. See pg_exec for an
example of use.

boolean pg_freeresult(integer result)

The pg_freeresult function frees any memory associated with the result set. Ordinarily
it is not necessary to call this function, as all memory will be cleared when the script
ends. See pg_exec for an example of use.

integer pg_getlastoid()

The pg_getlastoid function returns the object ID (OID) of the last object inserted into a
table if the last call to pg_exec was an INSERT statement. Negative one (-1) is returned
if there is an error.

<?
 //connect to database
 $Connection = pg_connect("", "", "", "", "leon");

 $Query = "INSERT INTO item (name, price) ";
 $Query .= "VALUES ('hammer', 15.00)";

 $Result = pg_exec($Connection, $Query);

 print("ID of inserted item: " . pg_getlastoid() . "
\n");

 pg_close($Connection);
?>

string pg_host(integer connection)

Core PHP Programming

IT-SC book 443

The pg_host function returns the name of the host for the connection. See pg_exec for
an example of use.

pg_loclose(integer file)

The pg_loclose function closes a large object. The file argument is a file identifier
returned by pg_loopen. See pg_loopen for an example of use.

integer pg_locreate(integer connection)

The pg_locreate function creates a large object and returns the OID. The object is
created with both read and write access.

<?
 $Object = pg_locreate($Connection);
?>

integer pg_loopen(integer connection, integer object, string
mode)

The pg_loopen function opens a large object. The object argument is a valid large object
ID and the mode may be one of r, w, rw. A file identifier is returned.

<?
 $Object = pg_locreate($Connection);
 $File = pg_loopen($Connection, $Object, "r");
 pg_loclose($File);
?>

string pg_loread(integer file, integer length)

The pg_loread function returns the large object as a string. The length argument
specifies a maximum length to return.

<?
 $Object = pg_locreate($Connection);
 $File = pg_loopen($Connection, $Object, "r");
 $Contents = pg_loread($File, 4096);
?>

pg_loreadall(integer file)

Core PHP Programming

IT-SC book 444

The pg_loreadall function reads an entire large object and sends it directly to the
browser.

<?
 $File = pg_loopen($Connection, $Object, "r");
 pg_loreadall($File);
?>

pg_lounlink(integer file, integer object)

Use pg_lounlink to delete a large object.

<?
 $Object = pg_locreate($Connection);
 $File = pg_loopen($Connection, $Object, "r");
 pg_lounlink($File, $Object);
?>

pg_lowrite(integer file, string buffer)

The pg_lowrite function writes the named buffer to the large object.

<?
 $Object = pg_locreate($Connection);
 $File = pg_loopen($Connection, $Object, "w");
 pg_lowrite($File, "some text");
?>

integer pg_numfields(integer result)

The pg_numfields function returns the number of fields in the result set. See pg_exec
for an example of use.

integer pg_numrows(integer result)

Use pg_numrows to get the number of rows in the result set. See pg_exec for an example
of use.

string pg_options(integer connection)

Core PHP Programming

IT-SC book 445

The pg_options function returns the options used when the connection was opened. See
pg_exec for an example of use.

integer pg_pconnect(string host, string port, string options,
string tty, string database)

The pg_pconnect function operates identically to pg_connect, except that a persistent
connection is created. This connection will last as long as the server process, so it may be
recycled. This saves the overhead time of opening a connection.

<?
 $Connection = pg_pconnect("", "", "", "", "leon");
?>

integer pg_port(integer connection)

The pg_port function returns the port number used in the pg_connect function. See
pg_exec for an example of use.

string pg_result(integer result, integer row, string field)

Use pg_result to get the value of a specific field in a result set. Rows and fields are
numbered from zero, but fields may also be specified by name. See pg_exec for an
example of use.

string pg_tty(integer connection)

The pg_tty function returns the tty name used for debugging and supplied with the
pg_connect function. See pg_exec for an example of use.

Sybase

Sybase offers an industrial-strength database that stands among other big competitors
such as Oracle, Informix, and IBM's DB2. Unlike these other databases, Sybase is more
available to developers with small budgets because of partnerships with application
vendors. InterShop's electronic commerce server comes with a Sybase database.
Microsoft's SQL Server 6.5 is a dressed-up version of Sybase. In fact, PHP's Sybase
functions are able to connect to SQL Server databases. For the sake of code readability,
there are function aliases for all the Sybase functions that start with mssql_ instead of
sybase_, but I've left them out of the reference to save space. Table 13.11 lists all
mssql_ aliases.

Table 13.11. MSSQL Functions

mssql_close

Core PHP Programming

IT-SC book 446

mssql_connect
mssql_data_seek
mssql_fetch_array
mssql_fetch_field
mssql_fetch_object
mssql_fetch_row
mssql_field_length
mssql_field_name
mssql_field_seek
mssql_field_type
mssql_free_result
mssql_get_last_message
mssql_min_error_severity
mssql_min_message_severity
mssql_num_fields
mssql_num_rows
mssql_pconnect
mssql_query
mssql_result
mssql_select_db

When support for Sybase is compiled for PHP, one of two libraries may be used. One is
the older DB-Library. The other is its replacement, Client-Library. These two libraries
are not compatible with each other, so PHP has special code to adapt either of them into a
single set of functions. Consequently, some of these functions are present when using
DB-Library and not when using Client-Library. Also, it is possible to compile PHP for
Windows using an MSSQL library. This library is really just the DB-Library, but thePHP
extension creates only mssql_ functions. It also contains three functions unavailable in
the Sybase extension: mssql_field_length, mssql_field_name, and
mssql_field_type.

Sybase's home page is <http://www.sybase.com/ >. If you want to learn more about the
two libraries, check out the online documentation

< http: //sybooks.sybase.com/onlinebooks/group-
cn/cng1110e/ctref/@Generic_Bookview>.

Tom May and Zeev Suraski both contributed to the sybase extension.

integer sybase_affected_rows(integer link)

Use sybase_affected_rows to get the number of rows affected by the last delete, insert,
or update statement on a given connection. If the optional link argument is left out, the
most recently opened connection will be used. Note that this function is not useful for

Core PHP Programming

IT-SC book 447

determining the number of rows returned by a select statement. Also, this function is
available only when using Client-Library.

<?
 //open connection as admin
 $Link = sybase_pconnect("db1", "sa", "sa");

 //use the store database
 sybase_select_db("store", $Link);

 //take 10% off all items that cost
 //more than ten dollars
 $Query = "UPDATE item ";
 $Query .= "SET Price = Price * 0.90 ";
 $Query .= "WHERE Price > 10.00 ";
 $Result = sybase_query($Query, $Link);

 //get number of rows changed
 $RowsChanged = sybase_affected_rows($Link);

 print("$RowsChanged prices updated.
\n");

 //close connection
 sybase_close($Link);
?>

boolean sybase_close(integer link)

The sybase_close function closes a connection to a database. Its use is not strictly
necessary, since PHP will close connections for you when your script ends. You can
leave out the link argument, and the last connection to be opened will be closed.

integer sybase_connect(string server, string user, string
password)

The sybase_connect function returns a connection identifier based on the server, user
and password arguments. The server must be a valid server name as defined in the
interfaces file. All the arguments are optional, and if left out, PHP will use sensible
defaults. Connections created with sybase_connect will be closed automatically when
your script completes. Compare this function with sybase_pconnect.

boolean sybase_data_seek(integer result, integer row)

The sybase_data_seek function moves the internal row pointer for a result to the
specified row. Rows are numbered starting with zero. Use this function with
sybase_fetch_array, sybase_fetch_object or sybase_fetch_ row to move
arbitrarily among the result set.

Core PHP Programming

IT-SC book 448

<?
 //move to sixth row
 sybase_data_seek($Result, 5);
?>

array sybase_fetch_array(integer result)

The sybase_fetch_array function returns an array that contains the values of all the
fields for the next row. Each call to sybase_fetch_array gets the next row in the result
set, or returns FALSE if no rows remain.

Each field is returned in two elements. One is indexed by the field number, starting with
zero. The other is indexed by the name of the field. Compare this function to
sybase_fetch_object and sybase_fetch_row.

<?
 //connect
 $Link = sybase_pconnect();

 //use the store database
 sybase_select_db("store", $Link);

 //get all items
 $Result = sybase_query("SELECT * FROM item ");

 print("<TABLE BORDER=\"1\">\n");

 //get rows
 while($Row = sybase_fetch_array($Result))
 {
 print("<TR>\n");

 print("<TD>" . $Row["Name"] . "</TD>\n");

 print("<TD>" . $Row["Price"] . "</TD>\n");

 print("</TR>\n");
 }

 print("</TABLE>\n");

?>

object sybase_fetch_field(integer result, integer field)

The sybase_fetch_field function returns an object that describes a field in the result
set. The field argument is optional. If left out, the next field is returned. The object

Core PHP Programming

IT-SC book 449

contains the properties described in Table 13.12. See sybase_result for an example of
use.

object sybase_fetch_object(integer result)

The sybase_fetch_object function returns an object with a property for each of the
fields in the next row. Each call to sybase_fetch_object gets the next row in the result
set, or returns FALSE if no rows remain. Compare this function to sybase_fetch_array
and sybase_fetch_row.

Table 13.12. sybase_fetch_field Object Properties

Property Description
column_source The name of the table the column belongs to.
max_length The maximum size of the field.
name Name of the column.
numeric If the column is numeric, this property will be true (1).

<?
 //connect
 $Link = sybase_pconnect();

 //use the store database
 sybase_select_db("store", $Link);

 //get all items
 $Result = sybase_query("SELECT * FROM item ");

 print("<TABLE BORDER=\"1\">\n");

 //get rows
 while($Row = sybase_fetch_object($Result))
 {
 print("<TR>\n");

 print("<TD>$Row->Name</TD>\n");

 print("<TD>$Row->Price</TD>\n");

 print("</TR>\n");
 }

 print("</TABLE>\n");

?>

array sybase_fetch_row(integer result)

The sybase_fetch_row function returns an array of all the field values for the next row.
The fields are indexed by integers starting with zero. Each call to sybase_fetch_row

Core PHP Programming

IT-SC book 450

gets the next row in the result set, or returns FALSE if no rows remain. Compare this
function to sybase_fetch_array and sybase_fetch_object.

<?
 //connect
 $Link = sybase_pconnect();

 //use the store database
 sybase_select_db("store", $Link);

 //get all items
 $Result = sybase_query("SELECT * FROM item ");

 print("<TABLE BORDER=\"1\">\n");

 //get rows
 while($Row = sybase_fetch_array($Result))
 {
 print("<TR>\n");

 print("<TD>" . $Row[0] . "</TD>\n");

 print("<TD>" . $Row[1] . "</TD>\n");

 print("</TR>\n");
 }

 print("</TABLE>\n");

?>

boolean sybase_field_seek(integer result, integer field)

The sybase_field_seek function moves the internal field pointer to the specified field.
Fields are numbered starting with zero. If you leave out the field argument, the internal
pointer will be moved to the next field. This is the same internal pointer used by
sybase_fetch_field.

<?
 // go back to first field
 sybase_field_seek($result, 0);
?>

boolean sybase_free_result(integer result)

Core PHP Programming

IT-SC book 451

The sybase_free_result function frees memory associated with a result set. It is not
strictly necessary to call this function. All memory is freed when a script finishes
executing.

string sybase_get_last_message()

The sybase_get_last_message function returns the last message from the Sybase
database. This function is not available if you're using Client-Library instead of DB-
Library.

<?
 print(sybase_get_last_message());
?>

sybase_min_client_serverity(integer severity)

This function is available only when using Client-Library. It sets the minimum severity
for messages sent from the client interface to be turned into PHP error messages.

sybase_min_error_severity(integer severity)

Use sybase_min_error_severity to set the minimum severity level for errors to be
turned into PHP error messages. This function is available only when using DB-Library.

sybase_min_message_severity(integer severity)

Use sybase_min_message_severity to set the minimum severity level for messages to
be turned into PHP error messages. This function is available only when using DB-
Library.

sybase_min_server_severity(integer severity)

This function is available only when using Client-Library. It sets the minimum level for
messages from the server interface to cause PHP error messages to be generated.

integer sybase_num_fields(integer result)

The sybase_num_fields function returns the number fields in the given result set. See
sybase_result for an example of use.

integer sybase_num_rows(integer result)

The sybase_num_rows function returns the number of rows in a result set. See
sybase_result for an example of use.

Core PHP Programming

IT-SC book 452

integer sybase_pconnect(string server, string username, string
password)

The sybase_pconnect function is identical to sybase_connect, except that connections
created with this function persist after the script ends. The connection lasts as long as the
server process does, so if the process executes another PHP script, the connection will be
reused. Connections created with sybase_pconnect should not be closed with
sybase_close.

integer sybase_query(string query, integer connection)

The sybase_query function executes a query on the given connection and returns a
result identifier. This is used by many of the other functions in this section. If the
connection argument is left out, the last opened connection is used.

string sybase_result(integer result, integer row, string field)

The sybase_result function returns the value of a particular field, identified by row and
field. The field argument may be an integer or the name of a field. Fields and rows are
numbered starting with zero. If performance is an issue, considering using
sybase_fetch_row, which is much faster.

<?
 //connect using defaults
 $Link = sybase_connect();

 //use the store database
 sybase_select_db("store", $Link);

 //get all items
 $Result = sybase_query("SELECT * FROM item ");

 print("<TABLE BORDER=\"1\">\n");

 //header row
 $Fields = sybase_num_fields($Result);
 for($i = 0; $i < $Fields; $i++)
 {
 $Field = sybase_fetch_field($Result);

 print("<TR>\n");
 print("<TH>");
 print($Field->column_source);
 print(".");
 print($Field->name);
 print("(");
 print($Field->max_length);
 print(")");
 print("</TH>\n");
 print("</TR>\n");

Core PHP Programming

IT-SC book 453

 }

 // data rows
 $Rows = sybase_num_rows($Result);
 for($n = 0; $n < $Rows; $n++)
 {
 print("<TR>\n");

 for($i = 0; $i < $Fields; $i++)
 {
 print("<TD>");
 print(sybase_result($Result, $n, $i));
 print("</TD>\n");
 }

 print("</TR>\n");
 }

 print("</TABLE>\n");

 sybase_free_result($Result);

 sybase_close($Link);
?>

boolean sybase_select_db(string database, integer connection)

The sybase_select_db function selects the database to use on the database server. If the
connection argument is omitted, the last connection created will be used. See
sybase_fetch_array for an example.

Core PHP Programming

IT-SC book 454

Chapter 14. MISCELLANEOUS FUNCTIONS

Apache

Aspell

COM

Gettext

IMAP

Java

LDAP

Semaphores

Shared Memory

SNMP

WDDX

XML

The functions in this section do not fit neatly into any other section of the functional
reference. They are not available by default when compiling PHP, and most of them
require extra libraries. While none are essential to building PHP scripts, some are quite
useful in the right context. Because you may not be familiar with all the technologies in
this chapter, I've attempted to give a brief synopsis and links to Web sites where you can
learn more.

The list of extensions is growing rapidly. A few didn't make it into this edition of the
book for several reasons. Some are very specialized, and perhaps not of general interest.
Others are relatively immature, so I couldn't rely on them not to change. Most of them are
documented in the online manual, and people, myself included, are working on
documenting the others. It is likely that several new extensions will be created between
the time this text is finished and when they become available. The extensions that I know
exist and have chosen not to cover are: CyberCash, DAV, DOM, FDF, Hyperwave,
ICAP, MCAL, NIS, PDF, Readline, Recode.

Apache

The functions in this section are available only when PHP is compiled as a module for the
Apache Web server.

Core PHP Programming

IT-SC book 455

object apache_lookup_uri(string uri)

The apache_lookup_uri function evaluates a URI, or Universal Resource Identifier,
and returns an object containing properties describing the URI. This function is a wrapper
for a function that's part of the Apache Web Server's API: sub_req_lookup_uri.
Consequently, you must be running PHP as an Apache module in order to use this
function. The exact meaning of most of the returned object's properties is beyond this
text. They mirror the properties of Apache's request_rec structure. The
sub_req_lookup_uri function is contained in Apache's http_request.c source
file, and the comments there may satisfy the truly curious.

Table 14.1 lists the properties of the returned object.

Table 14.1. Properties of the Object Returned by apache_lookup_uri

apache_lookup_uri
allowed
args
boundary
byterange
bytes_sent
clength
content_type
filename
handler
method
mtime
no_cache
no_local_copy
path_info
request_time
send_bodyct
status
status_line
the_request
unparsed_uri
uri

Figure 14-1. apache_lookup_uri.

Core PHP Programming

IT-SC book 456

string apache_note(string name, string value)

The apache_note function allows you to fetch and set values in Apache's note table.
The current value of the named entry is returned. If the optional value argument is
present, then the value of the entry will be changed to the supplied value. The notes table
exists for the duration of the request made to the Apache Web Server and is available to
any modules activated during the request. This function allows you to communicate with
other Apache modules. One possible use of this functionality is the passing of
information to the logging module.

Like apache_lookup_uri, the apache_note function deals with request records
inside the Apache API. And like apache_lookup_uri, this function is available only
when PHP is run as an Apache module. This function is a wrapper for the table_get
and table_set functions that are part of the Apache API.

<?

Core PHP Programming

IT-SC book 457

 apache_note("session_id", $session_id);
?>

array getallheaders()

The getallheaders function returns every header sent by both the server and the
browser. Some of these are turned into environment variables, which are then made
available as variables inside your PHP script. Since this function relies on the Apache
API, it is available only when you run PHP as an Apache module.

Figure 14-2. getallheaders.

Core PHP Programming

IT-SC book 458

Core PHP Programming

IT-SC book 459

boolean virtual(string filename)

The virtual function is available only when PHP is an Apache module. It is equivalent to
writing <!— #include virtual filename—>, which is an Apache subrequest.
You may wish to refer to the Apache documentation to learn more. Use the include and
require functions if you want to parse a PHP script. FALSE is returned on error.

<?
 virtual("ssi-example.shtml");
?>

Aspell

The Aspell library is used to verify the spelling of a word. It is the result of an open
source project run by Kevin Atkinson. The official Web site is
<http://metalab.unc.edu/kevina/aspell/>. In order for PHP to use Aspell, the
functions must be loaded as an extension. At the time of this writing, no win32 extension
existed for Aspell, so its functionality is available to UNIX users only. Mark Musone
added Aspell support to PHP.

integer aspell_new(string dictionary, string personal_words)

Use aspell_new to load a dictionary into the system. An identifier is returned that
must be used in subsequent calls to Aspell functions. The second argument is optional
and specifies a personal dictionary.

<?
 //create a test sentence
 $text = "Thiss sentense haz some spellling erors.";

 //load dictionary
 $aspell_link = aspell_new('english');

 //tokenize sentence
 for($word = strtok($text, ' ');
 $word != ''; $word = strtok(' '))
 {
 //check for unrecognized words
 if(!aspell_check($aspell_link, $token))
 {
 //try checking raw version
 if(!aspell_check_raw($aspell_link,
$token))

Core PHP Programming

IT-SC book 460

 {
 //word not recognized, get
suggestions
 $suggestion =
aspell_suggest($aspell_link, $token);

 print("Unrecognized word:
 $token
\n");

 while(list($index, $word) =
each($suggestion))
 {
 print("$val
\n");
 }

 print("
\n");
 }
 }
 }
?>

boolean aspell_check(integer link, string word)

The aspell_check function returns true if the word argument is found in the
dictionary specified by the link argument. This function attempts to trim extraneous
characters before validating the spelling.

boolean aspell_check_raw(integer link, string word)

This function behaves like aspell_check, except that it makes no attempt to trim
extraneous characters.

array aspell_suggest(integer link, string word)

The aspell_suggest function returns an array of suggested spellings for a word. The
link argument is an integer returned by the aspell_new function.

COM

The component object model (COM) is a framework that allows sharing of executable
modules without recompiling. If you have used Windows for any time at all, you are
aware of dynamic-link libraries (DLLs), collections of functions a program can load on
demand. Many programs can share a DLL, which goes a long way toward the principle of
reuse. Unfortunately, DLLs that work well with some programming languages don't work

Core PHP Programming

IT-SC book 461

at all with others. COM seeks to solve this problem. COM objects are accessible by C++,
Visual Basic, Java, and PHP.

A tutorial on COM is beyond the scope of this text, of course. Microsoft's list of
"noteworthy" books about COM is relatively long
<http://www.microsoft.com/com/tech/com. asp>. However, you could keep
busy just reading the articles online. You might read Dr. GUI's Gentle Guide to COM
first <http://www.microsoft. com/com/news/drgui.asp>.

To use a COM object in PHP, you first load it with com_load. After that, you can
invoke methods with com_invoke, and you get and set properties with com_propget
and com_propset.

Zeev Suraski added COM support to PHP.

com_get

Use com_get as an alias for com_propget.

value com_invoke(integer object, string method, argument,
argument, ...)

The com_invoke function invokes a method on a COM object. You must specify a
valid object resource identifier and the name of a method. If the method takes arguments,
you list them after the method name.

integer com_load(string module, string server)

The com_load function loads the named COM object and returns a resource identifier
to be used by the other COM functions. The optional server argument allows you to
specify a remote server. FALSE is returned when the load fails. The module is named by
its ProgID.

<?
 //load object
 if(!($beeper = com_load("BeepCntMod.BeepCnt")))
 {
 print("Could not load object!
\n");
 exit();
 }

 //print current value of count
 print(com_propget($beeper, "Count") . "
\n");

 //change count

Core PHP Programming

IT-SC book 462

 com_propset($beeper, "Count", 6);

 //make a beep
 com_invoke($beeper, "Beep");
?>

value com_propget(integer object, string property)

The com_propget function returns the value of a property on a COM object.

com_propput

Use com_propput as an alias for com_propset.

boolean com_propset(integer object, string property, value
data)

The com_propset function changes the value of a property.

com_set

Use com_set as an alias for com_propset.

Gettext

The Gettext functions are based on work by the GNU Translation Project. They aim to
make it easier to write programs that send messages to users in their preferred language.
You can read more about gettext on the GNU site <http://www.gnu.
org/software/gettext/gettext.html>. The PHP functions are wrappers for the
gettext library. Detailed documentation is available on the Web <http://www.gnu.
org/manual/gettext/index .html>. The Gettext functions rely on translation
tables. These are usually given either .po or .mo extensions and are collected into
directories. There is a global area for these files, but you can override that directory using
bindtextdomain.

The Gettext functions were added to PHP by Alex Plotnick.

string bindtextdomain(string domain, string directory)

The bintextdomain function sets the path for a domain.

string dcgettext(string domain, string message, int category)

Core PHP Programming

IT-SC book 463

The dcgettext function allows you to override the current domain for a single
message lookup, and it also allows you to specify a category. The gettext manual
questions the usefulness of this function.

string dgettext(string domain, string message)

The dgettext function allows you to override the current domain for a single message
lookup.

string gettext(string message) string _(string message)

The Gettext function attempts to return a translated string. The message argument is
used as both the key to the translation table and the default text if a translation is not
found. The underscore character is an alias for the gettext function to help reduce
cluttering your code.

<?
 //set language to Spanish
 putenv("LANG=es");

 //specify location of translation tables
 bindtextdomain("error_messages", "./locale");

 //choose domain
 textdomain("error_messages");

 //print a test message
 print(gettext("This book is named Core PHP
Programming"));
?>

string textdomain(string domain)

The textdomain function sets the domain to search within when calls are made to
gettext. The domain is usually the name of your application. The previous domain is
returned. If you just want to get the current setting, pass an empty string. The default
domain is called messages.

IMAP

IMAP is the Internet Message Access Protocol. It was developed in 1986 at Stanford
University; however, it has been overshadowed by less sophisticated mail protocols, such

Core PHP Programming

IT-SC book 464

as POP (Post Office Protocol). IMAP allows the user to manipulate mail on the server as
if it existed locally.

PHP implements IMAP 4, the latest incarnation described in RFmessagesC 1730. More
information may be obtained at <http://www.imap.org/>, the IMAP Connection.

IMAP support may be compiled directly into PHP or loaded as an extension. The
extension has benefited from the work of many authors: Kaj-Michael Lang, Rasmus
Lerdorf, Rex Logan, Mark Musone, Antoni Pamies Olive, Zeev Suraski, and Brian
Wang.

string imap_8bit(string text)

The imap_8bit function converts an 8-bit string into a quote-printable string.

<?
 $qtext = imap_8bit($text);
?>

array imap_alerts()

The imap_alerts function returns all the alerts generated by IMAP functions as an
array and clears the stack of alerts.

integer imap_append(integer stream, string mailbox, string
message, string flags)

The imap_append function appends a message to a mailbox. The stream argument is
an integer returned by imap_open. The flags argument is optional.

<?
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon","password");
 imap_append($mailbox, "INBOX", "This is a message");
 imap_close($mailbox);
?>

string imap_base64(string text)

Core PHP Programming

IT-SC book 465

Use imap_base64 to decode base64 text. This routine is part of the IMAP extension;
base64_decode is a built-in PHP function that offers the same functionality.

<?
 $clear_text = imap_base64($encoded_text);
?>

string imap_binary(string text)

Use imap_binary to convert an 8-bit string into a base64 string.

<?
 $base64_text = imap_binary($clear_text);
?>

string imap_body(integer stream, integer message, integer
flags)

The imap_body function returns the body of the specified message. The optional flags
argument is a bit field that accepts the constants listed in Table 14.2. You can use the |
operator to combine them.

Table 14.2. imap_body Flags

Constant Description
FT_INTERNAL Return the body using local line-end characters instead of CRLF.
FT_NOT Do not fetch header lines.
FT_PEEK Do not mark this message being read.
FT_PREFETCHTEXT Fetch the text when getting the header.
FT_UID The message argument is a UID.

<?
 // get first message and print it
 $mailbox = imap_open("{mail.server.com}INBOX", "leon",
"password");
 $message = imap_body($mailbox, FT_INTERNAL);
 imap_close($mailbox);

 print($message);
?>

Core PHP Programming

IT-SC book 466

object imap_bodystruct(integer stream, integer message,
integer section)

The imap_bodystruct function returns an object describing the
structure of a body section. The object will contain the following
properties: bytes, description, disposition, dparameters,
encoding, id, ifdescrip-tion, ifdisposition, ifdparameters,
ifid, ifparameters, ifsubtype, lines, parameters, subtype,
type. The elements such as ifsubtype that begin with if are
booleans that signal whether the similarly named elements are
present.

object imap_check(integer stream)

The imap_check function returns information about the current mailbox in the form of
an object. Table 14.3 lists the properties of the object. If the connection has timed out,
FALSE is returned.

Table 14.3. Return Elements for imap_check

Property Description
Date Date of the most recent message
Driver Driver being used
Mailbox Name of the mailbox
Nmsgs Number of messages
Recent Number of recent messages

<?
 //check for new messages

 $mailbox = imap_open("{mail.server.com}INBOX",
"leon","secret");

 // Check messages
 $check = imap_check($mailbox);
 print($check->Date,"
\n");
 print("Connection Type: ",$check->Driver,"
\n");
 print("Mbox: ",$check->Mailbox,"
\n");
 print("Number Messages: ",$check->Nmsgs);
 print("Recent: ",$check->Recent,"
\n");

 // show headers for messages
 $nMessages=imap_num_msg($mailbox);
 for($index=1; $index <= $nMesssages ; $index++)

Core PHP Programming

IT-SC book 467

 {
 $header = imap_header($mailbox, $index);
 print($header->date . "
\n");
 print($header->to . "
\n");
 print($header->from . "
\n");
 print($header->cc . "
\n");
 print($header->replyTo . "
\n");
 print($header->subject . "
\n");
 print("
\n");
 print("<PRE>");
 print(imap_body($mbox,$i));
 print("</PRE>\n<HR>\n");
 }

 imap_close($mbox);
?>

string imap_clearflag_full(integer stream, string sequence,
string flag, string options)

The imap_clearflag_full function deletes a flag on a sequence of messages. The
options argument, if supplied, may be set to ST_UID, which signals that the
sequence argument contains UIDs instead of message numbers.

<?
 $mailbox = imap_open("{news.server.com/nntp:119}",
"leon", "password");
 imap_clearflag_full($mailbox, "12-15", "U", ST_UID);
 imap_close($mailbox);
?>

boolean imap_close(integer stream, integer flags)

Use imap_close to close a connection to a mailbox. The stream argument is an integer
returned by imap_open. The optional flags argument may be set to CL_EXPUNGE,
which will cause the mailbox to be expunged before closing.

imap_create

You may use imap_create as an alias for imap_createmailbox.

Core PHP Programming

IT-SC book 468

boolean imap_createmailbox(integer stream, string mailbox)

Use imap_createmailbox to create a mailbox.

<?
 // create a mailbox called PHP List
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon","password");
 imap_createmailbox($mailbox, "PHP List");
 imap_close($mailbox);
?>

boolean imap_delete(integer stream, integer message)

The imap_delete function marks a message for deletion. Use imap_expunge to
cause the message to be permanently deleted.

<?
 // delete message number 3
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon","password");
 imap_delete($mailbox, 3);
 imap_close($mailbox);
?>

boolean imap_deletemailbox(integer stream, string mailbox)

The imap_deletemailbox function deletes the named mailbox.

<?
 // delete a mailbox
 $mailbox = imap_open("{mail.server.com}INBOX",
 "leon","password");
 imap_deletemailbox($mailbox, "PHP List");
 imap_close($mailbox);
?>

array imap_errors()

Core PHP Programming

IT-SC book 469

Use imap_errors to get an array of all errors generated by IMAP functions, removing
them from an internal stack. You can use imap_last_error to get just the last error.

boolean imap_expunge(integer stream)

Use imap_expunge to remove all messages marked for deletion.

<?
 //expunge messages
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon", "password");
 imap_expunge($mailbox);
 imap_close($mailbox);
?>

array imap_fetch_overview(integer stream, integer message)

The imap_fetch_overview function returns an array that gives an overview of a
message's headers. The array contains the following elements: answered, date,
deleted, draft, flagged, from, message_id, msgno, recent,
references, seen, size, subject, uid.

string imap_fetchbody(integer stream, integer message,
integer part, integer flags)

The imap_fetchbody function gets a specific part of a message. The body parts are
encoded in base64 and must be passed through imap_base64 to be viewed as clear
text. The flags argument accepts the flags described in Table 14.2.

<?
 // get first part of first message
 $mailbox=imap_open("{mail.server.com}INBOX", "leon",
"password");
 $part1 = imap_fetchbody($mailbox, 1, 1);
 imap_close($mailbox);
?>

string imap_fetchheader(integer stream, integer message,
integer flags)

Core PHP Programming

IT-SC book 470

Use imap_fetchheader to get the complete RFC 822 header text for a message. The
flags argument is a bitfield that takes the following constants: FT_UID,
FT_INTERNAL and FT_PREFETCHTEXT. The FT_UID and FT_INTERNAL constants
have the same meaning as when used with the imap_body function. The
FT_PREFETCHTEXT constant causes the message body to be fetched at the same time.

<?
 $mailbox=imap_open("{mail.server.com}INBOX", "leon",
"password");
 print(imap_fetchheader($mailbox, 1, FT_PREFETCHTEXT));
 imap_close($mailbox);
?>

object imap_fetchstructure(integer stream, integer message)

The imap_fetchstructure returns an object with information about the specified
message. Table 14.4 lists the properties of this object.

Table 14.4. imap_fetchstructure Properties

Property Datatype
type Integer
encoding Integer
ifsubtype Boolean
subtype String
ifdescription Boolean
description String
ifid Boolean
id String
lines Integer
bytes Integer
ifdisposition Boolean
disposition String
ifdparameters Boolean
dparameters Array of Objects
ifparameters Boolean
parameters Array of Objects
parts Array of Objects

<?
 // get structure for first message

Core PHP Programming

IT-SC book 471

 $mailbox = imap_open("{mail.server.com}INBOX", "leon",
"password");
 $structure = imap_fetchstructure($mailbox, 1);
 imap_close($mailbox);
?>

imap_fetchtext

You may use imap_fetchtext as an alias for imap_body.

array imap_getmailboxes(integer stream, string reference,
string pattern)

The imap_getmailboxes function returns detailed information about mailboxes in
the form of an array of objects. The reference argument is an IMAP server in the
normal form: "{server:port}". The pattern argument controls which mailboxes are
returned. An asterisk (*) matches all mailboxes, and a percentage symbol (%) matches all
mailboxes at a particular level.

The returned objects contain three properties: name, delimiter, and attributes, a
bitfield that may be tested against the constants listed in Table 14.5.

<?
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon", "password");
 $boxes = imap_getmailboxes($mailbox,
"{mail.server.com:25}", "*");
 imap_close($mailbox);

 for(list($box) = each($boxes))
 {
 print("$box->name
\n");
 }
?>

array imap_getsubscribed(integer stream, string reference,
string pattern)

This function returns subscribed mailboxes. The reference and pattern arguments
are optional.

Core PHP Programming

IT-SC book 472

Table 14.5. Constants in the attributes Property

Constant Description
LATT_NOINFERIORS The mailbox contains no other mailboxes.
LATT_NOSELECT The mailbox is a container only and cannot be opened.
LATT_MARKED The mailbox is marked.
LATT_UNMARKED The mailbox is unmarked.

object imap_header(integer stream, integer message, integer
from_length, integer subject_length)

The imap_header function returns an object with properties matching message
headers. The from_length and subject_length arguments are optional. These
values govern the fetchfrom and fetchsubject properties, respectively. Table
14.6 lists the properties of the returned object.

Table 14.6. imap_header Properties

Property Description
Answered A if answered, blank otherwise.

bcc Array of objects with the following properties: adl, host,
mailbox, personal.

bccaddress Full bcc: line, limited to 1024 characters.

cc Array of objects with the following properties: adl, host,
mailbox, personal.

ccaddress Full cc: line, limited to 1024 characters.
Date Date for the message.
date Date for the message.
Deleted D if marked for deletion, blank otherwise.
Draft X if a draft, blank otherwise.
fetchfrom The from: line limited by the from_length argument.
fetchsubject The subject: line limited by the subject_length argument.
Flagged F if flagged, blank otherwise.
followup_to Full followup_to: line, limited to 1024 characters.

from Array of objects with the following properties: adl, host,
mailbox, personal.

fromaddress Full from: line, limited to 1024 characters.
in_reply_to The in_reply_to: line.
MailDate Mail date
message_id Unique ID assigned by mail server.
Msgno Message number
newsgroups The newsgroups: line.
Recent
references The references line.

Core PHP Programming

IT-SC book 473

remail

reply_to Array of objects with the following properties: adl, host,
mailbox, personal.

reply_toaddress The entire reply_to: line, limited to 1024 characters.

return_path Array of objects with the following properties: adl, host,
mailbox, personal.

return_pathaddress The entire return_path: line, limited to 1024 characters.

sender Array of objects with the following properties: adl, host,
mailbox, personal.

senderaddress The entire sender: line, limited to 1024 characters.
Size Size of the message.
subject Subject of the message.
Subject Subject of the message.

to Array of objects with the following properties: adl, host,
mailbox, personal.

toaddress The entire to: line, limited to 1024 characters.
udate Timestamp
Unseen U if the message is unread, blank otherwise.

<?
 $mailbox = imap_open("{mail.server.com}INBOX", "leon",
"password");
 $header = imap_header($mailbox, 1);
 print("Subject: " . $header->subject);
 imap_close($mailbox);
?>

imap_headerinfo

The imap_headerinfo function is an alias for imap_header.

array imap_headers(integer stream)

The imap_headers function returns an array of strings, one element per message.
Each string summarizes the headers for the message.

<?
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon", "password");
 $headers = imap_headers($mailbox);
 for($index = 0; $index < count($headers); $index++)
 {

Core PHP Programming

IT-SC book 474

 print($headers[$index] . "
\n");
 }
 imap_close($mailbox);
?>

string imap_last_error()

Use imap_last_error to get the last error generated by an IMAP function.

imap_list

The imap_list function is an alias to imap_listmailbox.

imap_list_full

The imap_list_full function is an alias to imap_getmailboxes.

array imap_listmailbox(integer stream)

Use imap_listmailbox to get the name of every mailbox in an array.

<?
 $mailbox=imap_open("{mail.server.com}INBOX",
"leon","password");
 $mailboxes = imap_listmailbox($mailbox);
 for($index = 0; $index < count($mailboxes);
$index++)
 {
 print($mailboxes[$index] . "
\n");
 }
 imap_close($mailbox);
?>

imap_listscan

The imap_listscan function is an alias for imap_scanmailbox.

integer imap_mail(string to, string subject, string message,
string headers, string cc, string bcc, string rpath)

Core PHP Programming

IT-SC book 475

The imap_mail function is an alternative to the mail function. The difference is the
arguments for specific headers.

string imap_mail_compose(array envelope, array body)

The imap_mail_compose function returns a MIME message given arrays describing
the envelope and body. The envelope argument may contain the following elements:
bcc, cc, date, from, message_id, reply_to, return_path, to. The body
argument may contain the following elements: bytes, contents.data, encoding,
id, lines, md5, subtype, type.

boolean imap_mail_copy(integer stream, string list, string
mailbox, integer flags)

The imap_mail_copy function copies messages into another mailbox. The list of
messages can be a list of messages or a range. The optional flags argument is a bitfield
that may be set with CP_UID, which specifies that the list contains UIDs, or CP_MOVE,
which instructs the function to delete the original messages after copying. This last
functionality may be accomplished with the imap_mail_move function.

<?
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon", "password");
 imap_mail_copy($mailbox, "OLD", "17");
 imap_close($mailbox);
?>

boolean imap_mail_move(integer stream, string list, string
mailbox)

The imap_mail_move function moves messages from the current mailbox to a new
mailbox. The list of messages can be a list of messages or a range.

<?
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon", "password");
 imap_mail_move($mailbox, "OLD", "17");
 imap_close($mailbox);
?>

Core PHP Programming

IT-SC book 476

object imap_mailboxmsginfo(integer stream)

Use imap_mailboxmsginfo to return information about the current mailbox. The
object will have the properties listed in Table 14.7.

<?
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon", "password");
 $info = imap_mailboxmsginfo($mailbox);
 print("Driver: " . $info->Driver);
 imap_close($mailbox);
?>

integer imap_msgno(integer stream, integer uid)

The imap_msgno function returns the message number based on a UID. To get the UID
based on message number, use imap_uid.

Table 14.7. Properties for imap_mailboxmsginfo

Date
Driver
Mailbox
Nmsgs
Recent
Size
Unread

integer imap_num_msg(integer stream)

The imap_num_msg function returns the number of messages in the current mailbox.

<?
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon", "password");
 print("Number of Messages: " .
imap_num_recent($mailbox));
 imap_close($mailbox);
?>

integer imap_num_recent(integer stream)

Core PHP Programming

IT-SC book 477

The imap_num_recent function returns the number of recent messages in the current
mailbox.

<?
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon", "password");
 print("Number of Messages: " .
imap_num_msg($mailbox));
 imap_close($mailbox);
?>

integer imap_open(string mailbox, string username, string
password, integer flags)

Use imap_open to begin a connection to a mail server. The mailbox argument is
usually formed by adding a hostname to the beginning of the mailbox. The hostname is
enclosed in curly braces. Adding /pop3 causes the imap_open function to connect to
a POP server instead of an IMAP server. Adding /nntp allows you to connect to a
usenet server. You may also specify a port number, using a colon to separate it from the
hostname. A stream identifier is returned. Use this identifier with the IMAP functions
that require a stream. The optional flags argument is a bitfield that uses the constants
listed in Table 14.8.

Table 14.8. Constants Used by imap_open

Constant Description
CL_EXPUNGE Expunge mailboxes automatically on close.
OP_ANONYMOUS Don't use .newsrc file if connecting to an NNTP server.
OP_DEBUG Debug protocol negotiations
OP_EXPUNGE Expunge connections.
OP_HALFOPEN Open connection, but not a mailbox.
OP_PROTOTYPE Return driver prototype.
OP_READONLY Open in read-only mode.
OP_SECURE Don't do nonsecure authentication.
OP_SHORTCACHE Use short caching.
OP_SILENT Don't pass up events.

<?
 //connect to a normal IMAP server
 $mailbox = imap_open("{mail.server.com:143}INBOX",
"leon", "password");

 //connect to a POP3 server

Core PHP Programming

IT-SC book 478

 $mailbox =
imap_open("{mail.server.com/pop3:110}INBOX", "leon",
"password");

 //connect to a NNTP server
 $mailbox =
imap_open("{mail.server.com/nntp:119}INBOX", "leon",
 "password");
?>

boolean imap_ping(integer stream)

The imap_ping function checks the stream to makes sure it is still alive. If new mail
has arrived, it will be detected when this function is called.

<?
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon", "password");
 imap_ping($mailbox);
 imap_close($mailbox);
?>

integer imap_popen(string mailbox, string username, string
password, integer flags)

The imap_popen function opens a persistent connection to an IMAP server. This
connection is not closed until the calling process ends, so it may be reused by many page
requests. At the time of this writing the code behind this function was unfinished.

string imap_qprint(string text)

The imap_qprint function converts a quote-printable string into an 8-bit string.

<?
 $converted = imap_qprint($qstring);
?>

imap_rename

Core PHP Programming

IT-SC book 479

You may use imap_rename as an alias for imap_renamemailbox.

boolean imap_renamemailbox(integer stream, string
old_name, string new_name)

The imap_renamemailbox function changes the name of a mailbox.

<?
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon", "password");
 imap_renamemailbox($mailbox, "PHP", "PHP List");
 imap_close($mailbox);
?>

boolean imap_reopen(integer stream, string username, string
password, integer flags)

Use imap_reopen to open a connection that has died. Operation is identical to
imap_open.

<?
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon", "password");

 // if connection is dead, reopen
 if(!imap_ping($mailbox))
 {
 imap_reopen($mailbox, "leon", "password");
 }

 imap_close($mailbox);
?>

array imap_rfc822_parse_adrlist(string address, string host)

The imap_rfc_parse_adrlist function parses an email address given a default
host and returns an array of objects. Each object has the following properties: mailbox,
host, personal, adl. The mailbox property is the name before the @. The host
property is the destination machine or domain. The personal property is the name of

Core PHP Programming

IT-SC book 480

the recipient. The adl property is the source route, the chain of machines the mail will
travel, if the address is specified in that style.

As the name of the function suggests, this function implements addresses according to
RFC 822.

<?
 $address = "Leon Atkinson <leon@clearink.com>,
vicky";
 $info = imap_rfc822_parse_adrlist($address,
"clearink.com");
 while(list($adr_info) = each($info))
 {
 print("$adr_info->personal ");
 print("$adr_info->mailbox ");
 print("$adr_info->host ");
 print("$adr_info->adl
\n");
 }
?>

string imap_rfc822_write_address(string mailbox, string host,
string personal_info)

The imap_rfc822_write_address returns an email address. As its name suggests,
this function implements addresses according to RFC 822.

<?
 print(imap_rfc822_write_address("leon",
"clearink.com", "Leon
 Atkinson"));
?>

imap_scan

You may use imap_scan as an alias for imap_scanmailbox.

array imap_scanmailbox(integer stream, string fragment)

The imap_scanmailbox function returns an array of mailbox names that contain the
given fragment.

Core PHP Programming

IT-SC book 481

<?
 $mailbox = imap_open("{news.server.com/nntp:119}",
 "leon", "password");
 $name = imap_scanmailbox($mailbox, "alt.");
 while(list($match) = each($name))
 {
 print("$match
\n");
 }
 imap_close($mailbox);
?>

array imap_search(integer stream, string criteria, integer
flags)

Use imap_search to get a list of message numbers based on search criteria. The
criteria argument is a list of search codes separated by spaces. The codes are listed in
Table 14.9. Some of them take an argument, which must always be surrounded by
double quotes. The optional flags argument may be set to SE_UID to cause UIDs to be
returned instead of message numbers.

Table 14.9. imap_search Criteria Codes

ALL
ANSWERED
BCC "string"
BEFORE "date"
BODY "string"
CC "string"
DELETED
FLAGGED
FROM "string"
KEYWORD "string"
NEW
OLD
ON "date"
RECENT
SEEN
SINCE "date"
SUBJECT "string"
TEXT "string"
TO "string"
UNANSWERED
UNDELETED

Core PHP Programming

IT-SC book 482

UNFLAGGED
UNKEYWORD "string"
UNSEEN

<?
 //get list of unread messages from Leon
 $mailbox = imap_open("{mail.server.com:143}INBOX",
 "leon", "password");
 $msgs = imap_search($mailbox, "UNSEEN FROM
\"leon\"");
 imap_close($mailbox);
?>

string imap_setflag_full(integer stream, string sequence, string
flag, string options)

The imap_setflag_full function sets a flag on a sequence of messages. The
options argument, if supplied, may be set to ST_UID, which signals that the
sequence argument contains UIDs instead of message numbers.

<?
 $mailbox = imap_open("{mail.server.com:143}INBOX",
 "leon", "password");
 imap_setflag_full($mailbox, "12-15", "U", ST_UID);
 imap_close($mailbox);
?>

array imap_sort(integer stream, integer criteria, integer
reverse, integer options)

Use the imap_sort function to get a sorted list of message numbers based on sort
criteria. The criteria argument must be one of the constants defined in Table
14.10. If the reverse argument is set to 1, the sort order will be reversed. The
options argument is a bitfield that may be set with SE_UID, specifying that UIDs are
used, or SE_NOPREFETCH, which will stop messages from being prefetched.

Table 14.10. Criteria Constants for imap_sort

Constant Description
SORTARRIVAL Arrival date
SORTDATE Message date

Core PHP Programming

IT-SC book 483

SORTFROM First mailbox in from: line
SORTSIZE Size of message
SORTSUBJECT Message subject
SORTCC First mailbox in cc: line
SORTO First mailbox in to: line

<?
 $mailbox = imap_open("{mail.server.com:143}",
 "leon", "password");
 $list = imap_sort($mailbox, SORTFROM, 0,
SE_NOPREFETCH);
 while(list($msg_num) = each($list))
 {
 print("$msg_num ");
 }
 imap_close($mailbox);
?>

object imap_status(integer stream, string mailbox, integer
options)

The imap_status function returns an object with properties describing the status of a
mailbox. The only property guaranteed to exist is flags, which tells you which other
properties exist. You choose the properties to generate with the options argument.
Constants to use for options are listed in Table 14.11.

Table 14.11. imap_status Options

Constant Description
SA_ALL Turns on all properties
SA_MESSAGES Number of messages in mailbox
SA_RECENT Number of recent messages
SA_QUOTA Disk space used by mailbox
SA_QUOTA_ALL Disk space used by all mailboxes
SA_UIDNEXT Next UID to be used
SA_UIDVALIDITY Flag for the validity of UID data
SA_UNSEEN Number of new messages

<?
 $mailbox = imap_open("{mail.server.com}INBOX",
 "leon", "password");
 $status = imap_status($mailbox, "INBOX",
 SA_UNSEEN | SA_MESSAGES);

Core PHP Programming

IT-SC book 484

 print("$status->unseen of $status->messages new
messages");
 imap_close($mailbox);
?>

boolean imap_subscribe(integer stream, string mailbox)

Use imap_subscribe to subscribe to a mailbox.

<?
 $mailbox = imap_open("{mail.server.com}INBOX", "leon",
"password");
 imap_subscribe($mailbox, "PHP");
 imap_close($mailbox);
?>

integer imap_uid(integer stream, integer message)

The imap_uid function returns the UID for the given message. To get the message
number based on UID, use imap_msgno.

boolean imap_undelete(integer stream, integer message)

The imap_undelete function removes the deletion mark on a message.

<?
 // delete message number 3, then undelete
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon", "password");
 imap_delete($mailbox, 3);
 imap_undelete($mailbox, 3);
 imap_close($mailbox);
?>

boolean imap_unsubscribe(integer stream, string mailbox)

Use imap_unsubscribe to unsubscribe to a mailbox.

Core PHP Programming

IT-SC book 485

<?
 $mailbox = imap_open("{mail.server.com}INBOX",
"leon", "password");
 imap_unsubscribe($mailbox, "PHP");
 imap_close($mailbox);
?>

string imap_utf7_decode(string data)

The imap_utf7_decode function takes UTF-7 encoded text and returns plain text.

string imap_utf7_encode(string data)

The imap_utf7_encode function returns UTF-7 encoded text.

Java

The coolest addition to PHP in 1999 was the code Sam Ruby added to allow PHP to use
Java objects. Java is Sun's object-oriented language intended to be platform independent.
Java is very popular, and you won't have any trouble finding books, Web sites, and free
source code. Perhaps the best place to get information about Java used on Web servers is
the Java Apache Project <http://java.apache.org/>.

The Java extension doesn't create any new functions, but it exposes a class called Java.
You can use the new operator to instantiate any class in your class path. An object is
returned that can be treated like any other PHP object. Its properties and methods match
the Java class.

<?
 /*
 ** Adapted from Sam Ruby's example
 */

 //get version of Java
 $system = new Java("java.lang.System");
 print("Java version: " .
 $system->getProperty("java.version") .
 "
\n");

 //print formatted date
 $formatter = new Java("java.text.SimpleDateFormat",
 "EEEE, MMMM dd, yyyy 'at' h:mm:ss a zzzz");

Core PHP Programming

IT-SC book 486

 print($formatter->format(new Java("java.util.Date"))
. "
\n");
?>

LDAP

LDAP is an acronym for Lightweight Directory Access Protocol. It is a universal method
of storing directory information and is a partial implementation of the X.500 standard.
LDAP was first described in RFC 1777 and RFC 1778.

Through TCP/IP, clients can access a centralized address book containing contact
information, public encryption keys, and similar information. Many servers are live on
the Internet. Dante, a nonprofit organization, maintains a list of LDAP servers organized
by country at <http://www.dante.net/np/pdi.html>. A full discussion of LDAP
is beyond the scope of this book, but abundant information can be found on the Web. A
good starting point is the University of Michigan at <http://www.umich.
edu/~dirsvcs/ldap/index.html>.

The functions in this section require either compiling LDAP support into the PHP
module, or loading an extension module with dl. At the time of this writing, no
extension existed for Windows. You can find a suitable LDAP library at the University of
Michigan site stated above.

The LDAP module is the result of collaboration by Amitay Isaacs, Rasmus Lerdorf,
Gerrit Thomson, and Eric Warnke.

boolean ldap_add(integer link, string dn, array entry)

The ldap_add function adds entries to the specified DN at the object level. The entry
argument is an array of the attribute values. If an attribute can have multiple values, the
array element should be an array itself. See the mail attribute in the example below. If
you wish to add attributes at the attribute level, use ldap_mod_add.

<?
 //connect to LDAP server
 if(!($ldap=ldap_connect("ldap.php.net")))
 {
 die("Could not connect to LDAP server!");
 }

 //set login DN
 $dn="cn=root, dc=php, dc=net";

 //attempt to bind to DN using password
 if(!ldap_bind($ldap, $dn, ""))

Core PHP Programming

IT-SC book 487

 {
 die("Unable to bind to `$dn'!");
 }

 // create entry
 $entry["cn"]="John";
 $entry["sn"]="Smith";
 $entry["mail"][0]="jsmith123@hotmail.com";
 $entry["mail"][1]="smith@bigfoot.com";
 $entry["objectclass"]="person";
 $entry["telephonenumber"] = "123-123-1234";
 $entry["mobile"] = "123-123-1235";
 $entry["pager"] = "123-123-1236";
 $entry["o"] = "ACME Web Design";
 $entry["title"] = "Vice President";
 $entry["department"] = "Technology";

 //create new entry's DN
 $dn = "cn=John Smith, dc=php, dc=net";

 //add entry
 if(ldap_add($ldap, $dn, $entry))
 {
 print("Entry Added!\n");
 }
 else
 {
 print("Add failed!");
 }

 //close connection
 ldap_close($ldap);
?>

boolean ldap_bind(integer link, string dn, string password)

Use ldap_bind to bind to a directory. Use the optional dn and password arguments
to identify yourself. Servers typically require authentication for any commands that
change the contents of the directory.

boolean ldap_close(integer link)

The ldap_close function closes the connection to the directory server.

integer ldap_connect(string host, integer port)

Core PHP Programming

IT-SC book 488

The ldap_connect function returns an LDAP connection identifier, or FALSE when
there is an error. Both arguments are optional. With no arguments, ldap_connect
returns the identifier of the current open connection. If the port argument is omitted,
port 389 is assumed.

integer ldap_count_entries(integer link, integer result)

The ldap_count_entries function returns the number of entries in the specified
result set. The result argument is a result identifier returned by ldap_read.

boolean ldap_delete(integer link, string dn)

The ldap_delete function removes an entry from the directory.

<?
 // connect to LDAP server
 if(!($ldap=ldap_connect("ldap.php.net")))
 {
 die("Unable to connect to LDAP server!");
 }

 //set login DN
 $dn="cn=root, dc=php, dc=net";

 //attempt to bind to DN using password
 if(!ldap_bind($ldap, $dn, "secret"))
 {
 die("Unable to bind to `$dn'!");
 }

 //delete entry from directory
 $dn="cn=John Smith, dc=clearink, dc=com";
 if(ldap_delete($ldap, $dn))
 {
 print("Entry Deleted!\n");
 }
 else
 {
 print("Delete failed!\n");
 }

 //close connection
 ldap_close($ldap);
?>

Core PHP Programming

IT-SC book 489

string ldap_dn2ufn(string dn)

The ldap_dn2ufn translates a DN into a more user-friendly form, with type specifiers
stripped.

<?
 $dn = "cn=John Smith, dc=php, dc=net";
 print(ldap_dn2ufn($dn));
?>

integer ldap_errno(integer link)

The ldap_errno function returns the error number for the last error on a connection.

string ldap_error(integer link)

The ldap_error function returns a description of the last error on a connection.

string ldap_err2str(integer error)

Use ldap_err2str to convert an error number to a textual description.

array ldap_explode_dn(string dn, boolean attributes)

The ldap_explode_dn function splits a DN returned by ldap_get_dn into an
array. Each element is a Relative Distinguished Name, or RDN. The array contains an
element indexed by count that is the number of RDNs. The attributes argument
specifies whether values are returned with their attribute codes.

<?
 //set test DN
 $dn = "cn=Leon Atkinson, o=Clear Ink, c=US";

 $rdn = ldap_explode_dn($dn, FALSE);

 for($index = 0; $index < $rdn["count"]; $index++)
 {
 print("$rdn[$index]
\n");
 }
?>

Core PHP Programming

IT-SC book 490

string ldap_first_attribute(integer link, integer result, integer
pointer)

The ldap_first_attribute function returns the first attribute for a given entry.
The pointer argument must be passed as a reference. This variable stores a pointer in
the list of attributes. The ldap_get_attributes function is probably more
convenient.

integer ldap_first_entry(integer link, integer result)

The ldap_first_entry function returns an entry identifier for the first entry in the
result set. This integer is used in the ldap_next_entry function. Use
ldap_get_entries to retrieve all entries in an array.

boolean ldap_free_entry(integer entry)

The ldap_free_entry function frees memory associated with an entry. The entry
identifier is obtained through either ldap_first_entry or ldap_next_entry.

boolean ldap_free_result(integer result)

Use ldap_free_result to clear any memory used for a result returned by
ldap_read or ldap_search.

array ldap_get_attributes(integer link, integer result)

Use ldap_get_attributes to get a multidimensional array of all the attributes and
their values for the specified result identifier. Attributes may be referenced by their
names or by a number. The count element specifies the number of elements. Multivalue
attributes have a count element as well, and each element is referenced by number. This
function allows you to browse a directory, discovering attributes you may not have
known existed.

string ldap_get_dn(integer ldap, integer result)

The ldap_get_dn function returns the DN for the specified result.

array ldap_get_entries(integer link, integer result)

The ldap_get_entries function returns a three-dimensional array containing every
entry in the result set. An associative element, count, returns the number of entries in
the array. Each entry is numbered from zero. Each entry has a count element and a dn

Core PHP Programming

IT-SC book 491

element. The attributes for the entry may be referenced by name or by number. Each
attribute has its own count element and a numbered set of values.

array ldap_get_values(integer link, integer entry, string
attribute)

The ldap_get_values function returns an array of every value for a given attribute.
The values will be treated as strings. Use ldap_get_values_len if you need to get
binary data.

<?
 //connect to LDAP server
 if(!($ldap=ldap_connect("ldap.php.net")))
 {
 die("Could not connect to LDAP server!");
 }

 //set up search criteria
 $dn = "cn=John Smith, dc=php, dc=net";
 $filter = "sn=*";
 $attributes = array("givenname", "sn", "mail");

 //perform search
 if(!($result = ldap_read($ldap, $dn, $filter,
$attributes)))
 {
 die("Nothing Found!");
 }

 $entry = ldap_first_entry($ldap, $result);
 $values = ldap_get_values($ldap, $entry, "mail");

 print($values["count"] . " Values:\n");

 for($index=0; $index < $values["count"]; $index++)
 {
 print("$values[$index]\n");
 }

 print("\n");

 ldap_free_result($result);
?>

Core PHP Programming

IT-SC book 492

integer ldap_get_values_len(integer link, integer entry, string
attribute)

This function operates identically to ldap_get_values, except that it works with
binary entries.

integer ldap_list(integer link, string dn, string filter, array
attributes)

The ldap_list function returns all objects at the level of the given DN. The
attributes argument is optional. If given, it limits results to objects containing the
specified attributes.

Figure 14-3. ldap_list.

Core PHP Programming

IT-SC book 493

Core PHP Programming

IT-SC book 494

boolean ldap_mod_add(integer link, string dn, array entry)

The ldap_mod_add function adds attributes to a DN at the attribute level. Compare
this to ldap_add, which adds attributes at the object level.

boolean ldap_mod_del(integer link, string dn, array entry)

Use ldap_mod_del to remove attributes from a DN at the attribute level. Compare this
to ldap_delete, which removes attributes at the object level.

boolean ldap_mod_replace(integer link, string dn, array entry)

The ldap_mod_replace function replaces entries for a DN at the attribute level.
Compare this to ldap_modify, which replaces attributes at the object level.

boolean ldap_modify(integer link, string dn, array entry)

The ldap_modify function modifies an entry. Otherwise, it behaves identically to
ldap_add.

string ldap_next_attribute(integer link, integer entry, integer
pointer)

The ldap_next_attribute function is used to traverse the list of attributes for an
entry. The pointer argument is passed by reference.

<?
 //connect to LDAP server
 if(!($ldap=ldap_connect("ldap.itd.umich.edu")))
 {
 die("Could not connect to LDAP server!");
 }

 // list organizations in the US
 $dn = "o=University of Michigan, c=US";
 $filter = "objectClass=*";

 //perform search
 if(!($result = ldap_list($ldap, $dn, $filter)))
 {
 die("Nothing Found!");
 }

 // get all attributes for first entry
 $entry = ldap_first_entry($ldap, $result);

Core PHP Programming

IT-SC book 495

 $attribute = ldap_first_attribute($ldap, $entry,
&$pointer);
 while($attribute)
 {
 print("$attribute
\n");
 $attribute = ldap_next_attribute($ldap,$entry,
&$pointer);
 }

 ldap_free_result($result);
?>

integer ldap_next_entry(integer link, integer entry)

The ldap_next_entry function returns the next entry in a result set. Use
ldap_first_entry to get the first entry in a result set.

<?
 //connect to LDAP server
 if(!($ldap=ldap_connect("ldap.itd.umich.edu")))
 {
 die("Could not connect to LDAP server!");
 }

 // list organizations in the US
 $dn = "o=University of Michigan, c=US";
 $filter = "objectClass=*";

 //perform search
 if(!($result = ldap_list($ldap, $dn, $filter)))
 {
 die("Nothing Found!");
 }

 //get each entry
 $entry = ldap_first_entry($ldap, $result);
 do
 {
 //dump all attributes for each entry
 $attribute = ldap_get_attributes($ldap,
$entry);
 print("<PRE>");
 var_dump($attribute);

Core PHP Programming

IT-SC book 496

 print("</PRE>\n");
 print("<HR>\n");
 }
 while($entry = ldap_next_entry($ldap, $entry));

 ldap_free_result($result);
?>

integer ldap_read(integer link, string dn, string filter, array
attributes)

The ldap_read function functions similarly to ldap_list and ldap_search.
Arguments are used in the same manner, but ldap_read searches only in the base DN.

integer ldap_search(integer link, string dn, string filter, array
attributes)

The ldap_search function behaves similarly to ldap_list and ldap_read. The
difference is that it finds matches from the current directory down into every subtree. The
attributes argument is optional and specifies a set of attributes that all matched
entries must contain.

<?
 /*
 ** Function: compareEntry
 ** This function compares two entries for
 ** the purpose of sorting.
 */
 function compareEntry($left, $right)
 {
 $ln = strcmp($left["last"], $right["last"]);
 if($ln == 0)
 {
 return(strcmp($left["first"],
 $right["first"]));
 }
 else
 {
 return($ln);
 }
 }

 //connect to LDAP server

Core PHP Programming

IT-SC book 497

 if(!($ldap=ldap_connect("ldap.php.net")))
 {
 die("Could not connect to LDAP server!");
 }

 //set up search criteria
 $dn = "dc=php, dc=net";
 $filter = "sn=Atkinson";
 $attributes = array("givenname", "sn");

 //perform search
 if(!($result = ldap_search($ldap, $dn, $filter,
$attributes)))
 {
 die("Nothing Found!");
 }

 //get all the entries
 $entry = ldap_get_entries($ldap, $result);

 print("There are " . $entry["count"] . "
people.
\n");

 //pull names out into array so we can sort them
 for($i=0; $i < $entry["count"]; $i++)
 {
 //Note how we only use the first entry. This
 //code assumes people only have one first
name,
 //and one last name.
 $person[$i]["first"] =
$entry[$i]["givenname"][0];
 $person[$i]["last"] = $entry[$i]["sn"][0];
 }

 //sort by last name, then first name using
 //compareEntry (defined above)
 usort($person, "compareEntry");

 //loop over each entry
 for($i=0; $i < $entry["count"]; $i++)
 {
 print($person[$i]["first"] . " " .
 $person[$i]["last"] . "
\n");
 }

 //free memory used by search

Core PHP Programming

IT-SC book 498

 ldap_free_result($result);
?>

boolean ldap_unbind(integer link)

The ldap_unbind function is an alias for ldap_close.

Semaphores

PHP offers an extension for using System V semaphores. If your operating system
supports this feature, you may add this extension to your installation of PHP. At the time
of this writing, only the Solaris, Linux, and AIX operating systems were known to
support semaphores.

Semaphores are a way to control a resource so that it is used by a single entity at once,
and they were inspired by the flags used to communicate between ships. The idea to use
an integer counter to ensure single control of a resource was described first by Edsger
Dijkstra in the early 1960s for use in operating systems.

A complete tutorial on semaphores is beyond the scope of this text. Semaphores are a
standard topic for college computer science courses, and you will find adequate
descriptions in books about operating systems. The Webopedia's page
<http://webopedia. internet.com/TERM/s/semaphore.html> is
unfortunately brief at the time of this writing. The whatis.com Web site
<http://www.whatis.com/> references Unix Network Programming by W. Richard
Stevens, which was published by Prentice Hall. The second edition was published in
1997 as two volumes. You can find out more about it on the Prentice Hall Professional
Technical Reference Web site <http://www.phptr.
com/ptrbooks/ptr_013490012X.html>.

Keep in mind that these PHP functions are wrappers for System V semaphore functions.
Understanding them well may aid you in using the PHP functions. If you are interested in
finding out exactly how PHP interacts with System V semaphores, I recommend reading
the source code, particularly the sysvsem.c file. Tom May's comments are very clear.

boolean sem_acquire(integer identifier)

The sem_acquire function attempts to acquire a semaphore you've identified with the
sem_get function. The function will block until the semaphore is acquired. Note that it
is possible to wait forever while attempting to acquire a semaphore. One way is if a script
acquires a semaphore to its limit and then tries to acquire it another time. In this case the
semaphore can never decrement.

Core PHP Programming

IT-SC book 499

If you do not release a semaphore with sem_release, PHP will release it for you and
display a warning.

<?
 /*
 ** Semaphore example
 **
 ** To see this in action, try opening two or more
 ** browsers and load this script at the same time.
 ** You should see that each script will execute the
 ** fake procedure when it alone has acquired the
 ** semaphore. Pay attention to the output of the
 ** microtime function in each browser window.
 */

 //Define integer for this semaphore
 //This simply adds to readability
 define("SEM_COREPHP", 1970);

 //Get or create the semaphore
 //This semaphore can be acquired only once
 $sem = sem_get(SEM_COREPHP, 1);

 //acquire semaphore
 if(sem_acquire($sem))
 {
 //perform some atomic function
 print("Faking procedure... " . microtime());
 sleep(3);
 print("Finishing fake procedure... " .
microtime());

 //release semaphore
 sem_release($sem);
 }
 else
 {

 //we failed to acquire the semaphore
 print("Failed to acquire semaphore!
\n");
 }
?>

Core PHP Programming

IT-SC book 500

integer sem_get(integer key, integer maximum, integer
permission)

Use sem_get to receive an identifier for a semaphore. If the semaphore does not exist, it
will be created. The optional maximum and permission arguments are used only
during creation. The maximum argument controls how many times a semaphore may be
acquired. It defaults to 1. The permission argument controls read and write privileges
to the semaphore in the same way file permissions do. It defaults to 0x666, which is read
and write access for all users. The key argument is used to identify the semaphore
among processes in the system. The integer returned by sem_get may be unique each
time it is called, even when the same key is specified.

boolean sem_release(integer identifier)

Use sem_release to reverse the process of the sem_acquire function.

Shared Memory

PHP offers an extension for using System V shared memory. It follows the same
restrictions as the System V semaphore functions, above. That is, your operating system
must support this functionality. Solaris, Linux, and AIX are known to work with shared
memory.

Shared memory is virtual memory shared by separate processes. It helps solve the
problem of communication between processes running on the same machine. An obvious
method might be to write information to a file, but access to permanent storage is
relatively slow. Shared memory allows the creation of system memory that may be
accessed by multiple processes, which is much faster. Since exclusive use of this memory
is essential, you must use some sort of locking. This is usually done with semaphores. If
you use the shared memory functions, make sure you include support for System V
semaphores as well.

A full discussion of the use of shared-memory functions is beyond the scope of this text. I
found a short description of shared memory at whatis.com
<http://www.whatis.com/>. You may also pursue college courses about operating
systems, or Unix Network Programming by W. Richard Stevens to learn more about
shared memory.

The shared memory extension was added to PHP by Christian Cartus.

integer shm_attach(integer key, integer size, integer
permissions)

The shm_attach function returns an identifier to shared memory. The key argument
is an integer that specifies the shared memory. The shared memory will be created if

Core PHP Programming

IT-SC book 501

necessary, in which case the optional size and permissions arguments will be used
if present.

The size of the memory segment defaults to a value defined when PHP is compiled.
Minimum and maximum values for the size are dependent on the operating system, but
reasonable values to expect are a 1-byte minimum and a 128K maximum. There are also
limits on the number of shared memory segments. Normal limits are 100 total segments
and 6 segments per process.

The permissions for a memory segment default to 0x666, which is read and write
permission to all users. This value operates like those used to set file permissions.

As with semaphores, calling shm_attach for the same key twice will return two
different identifiers, yet they will both point to the same shared memory segment
internally.

Keep in mind that shared memory does not expire automatically. You must free it using
shm_remove.

<?
 /*
 ** Shared Memory example
 **
 ** This example builds on the semaphore example
 ** by using shared memory to communicate between
 ** multiple processes. This example creates shared
 ** memory but does not release it. Make sure you
 ** run the shm_remove example when you're done
 ** experimenting with this example.
 */

 //Define integer for semaphore key
 define("SEM_COREPHP", 1970);

 //Define integer for shared memory key
 define("SHM_COREPHP", 1970);

 //Define integer for variable key
 define("SHMVAR_MESSAGE", 1970);

 //Get or create the semaphore
 //This semaphore can only be acquired once
 $sem = sem_get(SEM_COREPHP, 1);

 //acquire semaphore
 if(sem_acquire($sem))

Core PHP Programming

IT-SC book 502

 {
 //attach to shared memory
 //make the memory 1K in size
 $mem = shm_attach(SHM_COREPHP, 1024);

 //attempt to get message variable, which
 //won't be there the first time
 if($old_message = shm_get_var($mem,
SHMVAR_MESSAGE);
 {
 print("Previous value: $old_message
\n");
 }

 //create new message
 $new_message = getmypid() . " here at " .
microtime();

 //set new value
 shm_put_var($mem, SHMVAR_MESSAGE,
$new_message);

 //detach from shared memory
 shm_detach($mem);

 //release semaphore
 sem_release($sem);
 }
 else
 {
 //we failed to acquire the semaphore
 print("Failed to acquire semaphore!
\n");
 }
?>

boolean shm_detach(integer identifier)

Use shm_detach to free the memory associated with the identifier for a shared
memory segment. This does not release the shared memory itself. Use shm_remove to
do this.

value shm_get_var(integer identifier, integer key)

The shm_get_var function returns a value stored in a variable with shm_put_var.

boolean shm_put_var(integer identifier, integer key, value)

Core PHP Programming

IT-SC book 503

The shm_put_var function sets the value for a variable in a shared memory segment.
If the variable does not exist, it will be created. The variable will last inside the shared
memory until removed with shm_remove_var, or when the shared memory segment
itself is destroyed with shm_remove. The value argument will be serialized with the
same argument used for the serialize function. That means you may use any PHP
value or variable—with one exception: at the time of this writing, objects lose their
methods when serialized.

boolean shm_remove(integer identifier)

Use shm_remove to free a shared memory segment. All variables in the segment will
be destroyed, so it is not strictly necessary to remove them. If you do not remove shared
memory segments with this function, they may exist perpetually.

<?
 /*
 ** Shared Memory example 2
 **
 ** This example removes shared memory created
 ** by the previous shared memory example.
 */

 //Define integer for semaphore key
 define("SEM_COREPHP", 1970);

 //Define integer for shared memory key
 define("SHM_COREPHP", 1970);

 //Define integer for variable key
 define("SHMVAR_MESSAGE", 1970);

 //Get or create the semaphore
 //This semaphore can be acquired only once
 $sem = sem_get(SEM_COREPHP, 1);

 //acquire semaphore
 if(sem_acquire($sem))
 {
 //attach to shared memory
 //make the memory 1K in size
 $mem = shm_attach(SHM_COREPHP, 1024);

 //remove variable
 shm_remove_var($mem, SHMVAR_MESSAGE);

 //remove shared memory

Core PHP Programming

IT-SC book 504

 shm_remove($mem);

 //release semaphore
 sem_release($sem);
 }
 else
 {
 //we failed to acquire the semaphore
 print("Failed to acquire semaphore!
\n");
 }
?>

boolean shm_remove_var(integer identifier, integer key)

The shm_remove_var function frees the memory associated with a variable within a
shared memory segment.

SNMP

SNMP, the Simple Network Management Protocol, is a protocol for Internet network
management. It was first described in RFC 1089. One place to start learning about SNMP
is SNMP Research at < http://www.snmp.com/>. To use these functions under
UNIX, you must have the UCD SNMP libraries. You can find them at <http://ucd-
snmp.ucdavis.edu/>. Documentation at this site is more specific to the library PHP
uses. I've attempted to follow their examples by translating them into equivalent PHP
code.

At the time of this writing, no SNMP extension for Windows was available for PHP4.
Presumably, the name would be php_snmp.dll. PHP3's library was called
php3_snmp.dll. It did not use the UCD SNMP libraries and was available under
Windows NT only. You can activate an extension with the dl function or with the
extension directive in php.ini.

Mike Jackson, Rasmus Lerdorf, and Steven Lawrance have contributed to the SNMP
extension.

boolean snmp_get_quick_print()

The snmp_get_quick_print function returns the status of the UCD SNMP library's
quick_print setting. Consequently, this function is unavailable to Windows users.
The quick_print setting controls how verbose object values are. By default,
quick_print is FALSE, and values include types and other information. The UCD
SNMP manual provides more information.

Core PHP Programming

IT-SC book 505

snmp_set_quick_print(boolean on)

The snmp_set_quick_print function sets the value of the UCD SNMP library's
quick_print setting. Consequently, this function is unavailable to Windows users.
See the description of snmp_get_quick_print for a brief description of the
quick_print setting.

string snmpget(string host, string community, string object,
integer timeout, integer retries)

The snmpget function returns the value of the specified object. The host may be
numerical or named. You must also specify the community and the object. Optionally,
you may supply a timeout in seconds and a number of times to retry a connection.

<?
 //find out how long the system has been up
 //should return something like
 //Timeticks: (586731977) 67 days, 21:48:39.77
 if($snmp = snmpget("ucd-snmp.ucdavis.edu",
 "demopublic", "system.sysUpTime.0"))
 {
 print($snmp);
 }
 else
 {
 print("snmpget failed!");
 }
?>

boolean snmpset(string host, string community, string object,
string type, string value, integer timeout, integer retries)

The snmpset function sets the value of the specified object. The host may be numerical
or named. You must also specify the community and the object. The type argument is a
one-character string. Table 14.12 lists valid types. Optionally, you may supply a
timeout in seconds and a number of times to retry a connection.

<?
 //show current value of the demo string
 $snmp = snmpget("ucd-snmp.ucdavis.edu",
 "demopublic", "ucdDemoPublicString.0");
 print("$snmp (original value)
\n");

Core PHP Programming

IT-SC book 506

 //set it to something else
 snmpset("ucd-snmp.ucdavis.edu",
 "demopublic", "ucdDemoPublicString.0",
 "s", "Core PHP Programming");

 //see current value of the demo string
 $snmp = snmpget("ucd-snmp.ucdavis.edu",
 "demopublic", "ucdDemoPublicString.0");
 print("$snmp (new value)
\n");
?>

snmprealwalk

This function is an alias to snmpwalk.

array snmpwalk(string host, string community, string object,
integer timeout, integer retries)

The snmpwalk function returns an array of all objects in the tree that starts at the
specified object. You can use an empty string for the object parameter to get all
objects. Optionally, you may supply a timeout in seconds and a number of times to retry a
connection.

Table 14.12. SNMP Types

Type Description
a IP Address
d Decimal String
i Integer
o Object ID
s String
t Time Ticks
u Unsigned Integer
x Hex String
D Double
F Float
I Signed 64-bit Integer
U Unsigned 64-bit Integer

<?
 //get all the SNMP objects
 $snmp = snmpwalk("ucd-snmp.ucdavis.edu",
"demopublic", "");

Core PHP Programming

IT-SC book 507

 reset($snmp);
 while(list($key, $value) = each($snmp))
 {
 print($value . "
\n");
 }
?>

array snmpwalkoid(string host, string community, string
object, integer timeout, integer retries)

The snmpwalkoid function is an alias to snmpwalk.

WDDX

The Web Distributed Data Exchange, or WDDX, is an XML language for describing data
in a way that facilitates moving it from one programming environment to another. The
intent is to relieve difficulty associated with sending data between applications that
represent data differently. Traditionally this has been done by designing special interfaces
for each case. For instance, you may decide that your PERL script will write out its three
return data separated with tabs, using a regular expression to extract the text you later
convert to integers. WDDX intends to unify the effort into a single interface. If you wish
to learn more about WDDX, visit the home site at <http://www.wddx.org/>.

In order to use the functions in this section, you need only use --with-wddx when
configuring PHP prior to compilation. At the time of this writing WDDX support wasn't
compiled into the Windows binaries.

Andrei Zmievski added WDDX support to PHP.

wddx_add_vars(integer packet_identifier, string variable, ...)

The wddx_add_vars function is one of three functions for creating packets
incrementally. After creating a packet with wddx_packet_start, you may add as
many variables as you wish with wddx_add_vars. After the packet_identifier
argument, you may pass strings with the names of variables in the local scope or arrays of
strings. If necessary, PHP will explore multidimensional arrays for names of variables.
The variables will be added to the packet until you use wddx_packet_end to create
the actual packet as a string. See wddx_packet_start, below, for an example of use.

value wddx_deserialize(string packet)

The wddx_deserialize function returns a variable representing the data contained in
a WDDX packet. If the packet contains a single value, it will be returned as an

Core PHP Programming

IT-SC book 508

appropriate type. If the packet contains multiple values in a structure, an associative array
will be returned.

<?
 //simulate WDDX packet
 $packet = "<wddxPacket version='0.9'>";
 $packet .= "<data>";
 $packet .= "<string>Core PHP Programming</string>";
 $packet .= "</data>";
 $packet .= "</wddxPacket>";

 //pull data out of packet
 $data = wddx_deserialize($packet);

 //test the type of the variable
 if(is_array($data))
 {
 //loop over each value
 foreach($data as $key=>$value)
 {
 print("$key: $value
\n");
 }
 }
 else
 {
 //simply print the value
 print("$data
\n");
 }
?>

string wddx_packet_end(integer packet_identifier)

The wddx_packet_end function returns a string for the packet created with
wddx_packet_start and wddx_add_vars. See wddx_packet_start, below,
for an example of use.

integer wddx_packet_start(string comment)

The wddx_packet_start function returns an identifier to a WDDX packet you can
build as you go. The optional comment argument will be placed in the packet if
supplied. Use the returned packet identifier with wddx_add_vars and
wddx_packet_end.

Core PHP Programming

IT-SC book 509

<?
 //create test data
 $Name = "Leon Atkinson";
 $Email = "corephp@leonatkinson.com";
 $Residence = "Martinez";

 $Info = array("Email", "Residence");

 //start packet
 $wddx = wddx_packet_start("Core PHP Programming");

 //add some variables to the packet
 wddx_add_vars($wddx, "Name", $Info);

 //create packet
 $packet = wddx_packet_end($wddx);

 //print packet for demonstration purposes
 print($packet);
?>

string wddx_serialize_value(value data, string comment)

The wddx_serialize_value function creates a WDDX packet containing a single
value. The data will be encoded with no name. The optional comment field will be added
to the packet as well.

<?
 print(wddx_serialize_value("Hello, World",
 "An example from Core PHP Programming"));
?>

string wddx_serialize_vars(string variable, ...)

Use wddx_serialize_vars to create a packet containing many variables. You may
specify any number of variable names in the local scope. Each argument may be a string
or an array. PHP will recursively explore multidimensional arrays for more names of
variables if necessary. A WDDX packet is returned.

<?
 //create test data

Core PHP Programming

IT-SC book 510

 $Name = "Leon Atkinson";
 $Email = "corephp@leonatkinson.com";
 $Residence = "Martinez";

 $Info = array("Email", "Residence");

 //print packet
 print(wddx_serialize_vars("Name", $Info));
?>

XML

Although the functions in this section come last, they are among the most important
functions available. The extensible markup language, XML, has steadily grown in
popularity since being introduced in 1996. XML is a first cousin to HTML in that it, too,
is derived from SGML, a generalized markup language that is nearly 20 years old. Like
HTML, XML documents surround textual data with tags. Unlike HTML, XML can be
used to communicate any type of data. The best place to start learning about XML is its
home page at the W3C <http://www.w3.org/XML/>. Among the resources there,
you will find book recommendations.

The functions in this section wrap the Expat library developed by James Clark
<http://www.jclark.com/xml/>. This library is part of the PHP distribution, and its
purpose is parsing XML documents. These functions work differently from other PHP
extensions. A stream of data is fed to the parser. As complete parts of the data are
recognized, events are triggered. These parts are the tags and the data they surround. You
register the events with a handler, a function you write. You may specify FALSE for the
name of any handler, and those events will be ignored.

In order to avoid repeating large blocks of code, I've written one example that uses most
of the functions in this section. It's near the description of
xml_set_element_handler and Figure 14.5. You will always need to create a
parser. You will also want to create handlers for character data and starting and ending
tags. Some of the other handlers may not be of use in most applications. You can leave
them out, and that data will be ignored by the parser.

Figure 14-5. xml_set_element_handler.

Core PHP Programming

IT-SC book 511

Stig Bakken added the XML extension to PHP.

string utf8_decode(string data)

The utf8_decode function takes UTF-8 text and returns ISO-8859-1 text.

string utf8_encode(string data)

The utf8_encode function returns the data argument as UTF-8 text.

string xml_error_string(integer error)

The xml_error_string function returns the description for the given error code.

integer xml_get_current_byte_index(integer parser)

The xml_get_current_byte_index function returns the number of bytes parsed
so far.

integer xml_get_current_column_number(integer parser)

Core PHP Programming

IT-SC book 512

The xml_get_current_column_number function returns the column number in
the source file where the parser last read data. This function is useful for reporting where
an error occurred.

integer xml_get_current_line_number(integer parser)

The xml_get_current_line_number function returns the line number in the
source file where the parser last read data. This function is useful for reporting where an
error occurred.

integer xml_get_error_code(integer parser)

The xml_get_error_code function returns the last error code generated on the given
parser. Constants are defined for all the errors. They are listed in Table 14.13. If no
error has occurred, XML_ERROR_NONE is returned. If given an invalid parser identifier,
FALSE is returned.

boolean xml_parse(int parser, string data, boolean final)

The xml_parse function scans over data and calls handlers you have registered. The
size of the data argument is not limited. You could parse an entire file or a few bytes at
a time. A typical use involves fetching data within a while loop.

The final argument is optional. It tells the parser that the data you are passing is the
end of the file.

boolean xml_parse_into_struct(int parser, string data, array
structure, array index)

The xml_parse_info_struct function parses an entire document and creates an
array to describe it. You must pass the structure argument as a reference. Elements
numbered from zero will be added to it. Each element will contain an associative array
indexed by tag, type, level, and value. The index argument is optional. You
must pass it by reference as well. It will contain elements indexed by distinct tags found
in the XML file. The value of each element will be a list of integers. These integers are
indices into the structure array. It allows you to index the elements of the
structure array that match a given tag.

If you set any handlers, they will be called when you use xml_parse_into_struct.

Figure 14-4. xml_parse_into_struct.

Core PHP Programming

IT-SC book 513

Core PHP Programming

IT-SC book 514

Table 14.13. XML Error Constants
XML_ERROR_ASYNC_ENTITY
XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF
XML_ERROR_BAD_CHAR_REF
XML_ERROR_BINARY_ENTITY_REF
XML_ERROR_DUPLICATE_ATTRIBUTE
XML_ERROR_EXTERNAL_ENTITY_HANDLING
XML_ERROR_INCORRECT_ENCODING
XML_ERROR_INVALID_TOKEN
XML_ERROR_JUNK_AFTER_DOC_ELEMENT
XML_ERROR_MISPLACED_XML_PI
XML_ERROR_NONE
XML_ERROR_NO_ELEMENTS
XML_ERROR_NO_MEMORY
XML_ERROR_PARAM_ENTITY_REF
XML_ERROR_PARTIAL_CHAR
XML_ERROR_RECURSIVE_ENTITY_REF
XML_ERROR_SYNTAX
XML_ERROR_TAG_MISMATCH
XML_ERROR_UNCLOSED_CDATA_SECTION
XML_ERROR_UNCLOSED_TOKEN
XML_ERROR_UNDEFINED_ENTITY
XML_ERROR_UNKNOWN_ENCODING

integer xml_parser_create(string encoding)

Calling xml_parser_create is the first step in parsing an XML document. An
identifier to be used with most of the other functions is returned. The optional
encoding argument allows you to specify the character set used by the parser. The
three character sets accepted are ISO-8859-1, US-ASCII, and UTF-8. The default is
ISO-8859-1.

boolean xml_parser_free(integer parser)

The xml_parser_free function releases the memory being used by the parser.

xml_parser_get_option(integer parser, integer option)

The xml_parser_get_option function returns an option's current value. Table
14.14 lists the available options.

xml_set_object(integer parser, object container)

Core PHP Programming

IT-SC book 515

The xml_set_object function associates an object with a parser. You must pass the
parser identifier and a reference to an object. This is best done within the object using the
this variable. After using this function, PHP will call methods of the object instead of
the functions in the global scope when you name handlers.

<?
 class myParser
 {
 var $parser;

 function parse($filename)
 {
 //create parser
 if(!($this->parser =
xml_parser_create()))
 {
 print("Could not create
parser!
\n");
 exit();
 }

 //associate parser with this object
 xml_set_object($this->parser, &$this);

 //register handlers
 xml_set_character_data_handler($this-
>parser,
 "cdataHandler");
 xml_set_element_handler($this->parser,
 "startHandler", "endHandler");

 /*
 ** Parse file
 */
 if(!($fp = fopen($filename, "r")))
 {
 print("Couldn't open
example.xml!
\n");
 xml_parser_free($this->parser);
 return;
 }

 while($line = fread($fp, 1024))
 {
 xml_parse($this->parser, $line,
feof($fp));

Core PHP Programming

IT-SC book 516

 }

 //destroy parser
 xml_parser_free($this->parser);
 }

 function cdataHandler($parser, $data)
 {
 print($data);
 }

 function startHandler($parser, $name,
$attributes)
 {
 switch($name)
 {
 case 'EXAMPLE':
 print("<HR>\n");
 break;
 case 'TITLE':
 print("");
 break;
 case 'CODE':
 print("<PRE>");
 break;
 default:
 //ignore other tags
 }
 }

 function endHandler($parser, $name)
 {
 switch($name)
 {
 case 'EXAMPLE':
 print("<HR>\n");
 break;
 case 'TITLE';
 print("");
 break;
 case 'CODE':
 print("</PRE>");
 break;
 default:
 //ignore other tags
 }
 }

Core PHP Programming

IT-SC book 517

 }

 $p = new myParser;
 $p->parse("example.xml");
?>

xml_parser_set_option(integer parser, integer option, value
data)

Use xml_parser_set_option to change the value of an option. Table 14.14 lists
the available options.

Table 14.14. XML Option Constants
XML_OPTION_CASE_FOLDING
XML_OPTION_SKIP_TAGSTART
XML_OPTION_SKIP_WHITE
XML_OPTION_TARGET_ENCODING

boolean xml_set_character_data_handler(integer parser,
string function)

Character data is the text that appears between tags, and
xml_set_character_data_handler sets the function executes when it is
encountered. Character data may span many lines and may cause several events. PHP
will not concatenate the data for you.

The function specified in the function argument must take two arguments. The first is
the parser identifier, an integer. The second is a string containing the character data.

boolean xml_set_default_handler(integer parser, string
function)

The xml_set_default_handler function captures any text not handled by the
other handlers. This includes the DTD declaration and the XML tag.

The function specified in the function argument must take two arguments. The first is
the parser identifier, an integer. The second is a string containing the data.

boolean xml_set_element_handler(integer parser, string start,
string end)

Use xml_set_element_handler to assign the two functions that handle start tags
and end tags.

Core PHP Programming

IT-SC book 518

The start argument must name a function you've created that takes three arguments.
The first function is the parser identifier. The second is the name of the start tag found.
The third is an array of the attributes for the start tag. The indices of this array are the
attribute names. The elements are in the same order as they appeared in the XML.

The second function handles end tags. It takes two arguments, the first of which is the
parser identifier. The other is the name of the tag.

boolean xml_set_external_entity_ref_handler(integer parser,
string function)

XML entities follow the form of HTML entities. They start with an ampersand and end
with a semicolon. Between these two characters is the name of the entity. An external
entity is defined in another file. This takes the form <!ENTITY externalEntity
SYSTEM "entities.xml"> in your XML file. Each time the entity appears in the
body of the XML file, the handler you specify in
xml_set_external_entity_ref_handler is called.

The handler function must take five arguments. First is the parser identifier. Next is a
string containing the names of the entities open for this parser. Then come the base, the
system ID, and the public ID.

boolean xml_set_notation_decl_handler(integer parser, string
function)

The handler registered with xml_set_notation_decl_handler receives notation
declarations. This are formed like <!NOTATION jpg SYSTEM
"/usr/local/bin/jview"> and are meant to suggest a program for handling a
data type.

The handler must take five arguments, the first of which is the parser identifier. The
second is the name of the notation entity. The rest are base, system ID, and public ID, in
that order.

boolean xml_set_processing_instruction_handler(integer
parser, string function)

The xml_set_processing_instruction_handler function registers the
function that handles tags of the following form: <?target data?>. This may be
familiar; it's how PHP code is embedded in files. The target keyword identifies the
type of data inside the tag. Everything else is data.

The function argument must specify a function that takes three arguments. The first is
the parser identifier. The second is the target. The third is the data.

Core PHP Programming

IT-SC book 519

boolean xml_set_unparsed_entity_decl_handler(integer
parser, string function)

This function specifies a handler for external entities that contain an NDATA element.
These take the form of <!ENTITY php-pic SYSTEM "php.jpg" NDATA jpg>,
and they specify an external file.

Core PHP Programming

IT-SC book 520

Part III: ALGORITHMS

An algorithm is a recipe for solving a problem. This section discusses broad problems in
computer science and how to solve them, all in the context of PHP. These problems are
inherent in any programming endeavor, but in most cases PHP makes handling them
easier. However, the particular circumstances of the Web offer the seasoned programmer
a new set of challenges. This section will bring theses issues to your attention.

Chapter 15 examines sorting and searching, along with a related topic, random
numbers. Although PHP has built-in functions for sorting data, this chapter explores the
theory behind sorting and develops sorting algorithms in PHP. This gives you the
knowledge to code custom sorting functions when the need arises.

Chapter 16 discusses parsing and string evaluation. Much of this chapter is about
regular expressions, a powerful way to describe patterns that are compared to strings.
These are useful for validating user input.

Chapter 17 describes integrating PHP with a database. MySQL is used in the examples
because it's Open Source. Databases allow you to manipulate data in powerful ways and
are necessary for many Web applications.

Chapter 18 is about network issues, such as sending HTTP headers. Because PHP
scripts execute as Web pages, network issues appear frequently.

Chapter 19 explores generating graphics with PHP. It develops examples that create
buttons and graphs dynamically.

Core PHP Programming

IT-SC book 521

Chapter 15. SORTING, SEARCHING, AND
RANDOM NUMBERS

Sorting

Bubble Sort

Quicksort

Built-In Sorting Functions

Sorting with a Comparison Function

Searching

Indexing

Random Numbers

Random Identifiers

Choosing Banner Ads

Sorting and searching are two fundamental concepts of computer science. They are
closely tied to almost every application: databases, compilers, even the World Wide Web.
The more information you have online, the more important it becomes to know exactly
where that information is.

Admittedly, sorting is not as serious a topic in the context of PHP as it is for C++. PHP
offers some very powerful sorting functions, even one that allows you to define how to
compare two elements. Since this chapter deals with some classic problems of computer
science, you may be interested in learning about the concepts that become useful as you
use more generalized languages like C or Ada. But further than that, these concepts will
help you understand the internal workings of databases, Web servers, even PHP itself.
You will be more capable of dealing with the inevitable problem unsolved by any built-in
PHP function.

This chapter also discusses random numbers, which are useful for putting data out of
order. The practical application of this usually takes the form of unique identifiers, for
files or sessions.

Sorting

To sort means to put a set of like items into order. The rules of ordering can be simple,
such as strings sorted by the order of the alphabet. They could be complex, such as
sorting addresses first by country, then by state, then by city. The process of sorting can

Core PHP Programming

IT-SC book 522

take several forms but always involves comparing two elements with a set of rules for
ordering. The result of the comparison determines whether the two items are in order or
out of order, therefore needing to be swapped.

There are three classes of sorts: exchange, insert, and select. In an exchange method, two
elements are compared and possibly exchanged. This process continues until the list is in
order. In an insert method, the elements are removed and placed in another list, one by
one. Each time an element is moved, it is inserted into the correct position. When all
elements are moved, the list is in order. Last, a selection sort involves building a second
list by scanning the first and repeatedly selecting the lowest value. Insertion and selection
sorts are two sides of a coin. The former scans the new list; the latter scans the old list.

As I said earlier, a sorting algorithm is essentially comparison and possible movement of
elements in a list. On average, moving elements around takes the same amount of time,
no matter what algorithm you use. Likewise, the comparison is independent of the actual
sort. If we take these to be constants, then the most important question to ask about each
algorithm is: How many times does the algorithm perform either of these costly actions?

Of course, the sort must be kept in context with the data. Some algorithms perform very
well when the data are completely unordered but are slow when the data are already in
order or in reverse order. Some sorts perform very poorly when there are many elements;
others have such an overhead as to be inappropriate for smaller data sets. Like any
technician, the programmer matches the tool to the job.

In the first part of this chapter I will describe the bubble sort and the quicksort. I will
guide you through expressing the algorithms in PHP. I will then go on to describe the
built-in sorting functions.

Bubble Sort

Bubble sort's one virtue is simplicity. The list is scanned repeatedly, once less than there
are elements. Neighboring items are compared and swapped if out of order. Each time
through the list you scan one less item because the lightest bubbles (to stick with the
metaphor) have risen to the top.

The outermost for loop sets the limit for how far to allow bubbles to rise. The first time
through, this is one, because the first element of the array is indexed by zero. After going
through the inner loop once, we will be certain that the smallest number will be in the
first position of the array. This is because the inner loop will compare the last element to
the next to last element, swap them if they are out of order, and then move up a notch.
Eventually the smallest element will be reached and swapped upward.

If n is the number of elements in the array, the bubble sort will always make (n - 1)
comparisons, then (n - 2) and so on. In Listing 15.1, this means 7 elements require 21
comparisons (6 + 5 + 4 + 3 + 2 + 1) in the first iteration, regardless of whether the array
is in order or out of order. If the array is already in order, then no exchanges will be
made. If it is in reverse order, an exchange will be made for every comparison.

Core PHP Programming

IT-SC book 523

Listing 15.1 Bubble Sort

Core PHP Programming

IT-SC book 524

Core PHP Programming

IT-SC book 525

Core PHP Programming

IT-SC book 526

It's easy to see that the bubble sort is very inefficient, but if you ran the example in
Listing 15.1, you probably didn't get the impression it was slow. For tiny lists of fewer
than a hundred elements, the bubble sort is fine. If you have to code your own sort, the
bubble sort has the advantage of being easy to remember and simple enough to get right
the first time.

Quicksort

Invented by Professor C.A.R. Hoare in 1961, quicksort has proven to be the best general-
purpose sorting algorithm. Many computer languages offer a library version, and PHP
uses it for its built-in sorting functions. It is based on the same idea of exchanging
elements, but adds the concept of partitioning. In most implementations it relies on
recursion, a topic discussed in Chapter 4.

The quicksort algorithm chooses a pivot element and then divides all elements by
whether they are greater or lesser than the pivot. Each subsection is further divided
similarly. When the granularity becomes small enough, elements are simply compared
and possibly swapped, as in the bubble sort.

When we first call the quicksort function in Listing 15.2, we pass the first and last
elements of the array as the left and right limits. This will cause the entire array to be
sorted. The step taken inside the function is to pick a pivot. Considering performance, the
median of all the numbers would be best. This would divide the array exactly in two. To
find the median, however, takes work. Rather than add this overhead, I've chosen to
simply pick the number in the middle.

Listing 15.2 Quicksort

<?
 /*
 ** Quicksort
 ** input_array is an array of integers
 ** left is the leftmost element to be considered
 ** right is the rightmost element to be considered
 */
 function Quicksort(&$input_array, $left_limit,
$right_limit)
 {
 //start pointers
 $left = $left_limit;
 $right = $right_limit;

 //Choose the middle element for the pivot

Core PHP Programming

IT-SC book 527

 $pivot_point = intval(($left + $right)/2);
 $pivot = $input_array[$pivot_point];

 do
 {
 while(($input_array[$left] < $pivot) AND
($left <
 $right_limit))
 {
 $left++;
 }

 while(($pivot < $input_array[$right]) AND
($right >
 $left_limit))
 {
 $right—;
 }

 if($left <= $right)
 {
 //swap elements
 $temp = $input_array[$left];
 $input_array[$left] =
$input_array[$right];
 $input_array[$right] = $temp;
 $left++;
 $right—;
 }

 }
 while($left <= $right);

 if($left_limit < $right)
 {
 Quicksort(&$input_array, $left_limit,
$right);
 }

 if($left < $right_limit)
 {
 Quicksort(&$input_array, $left,
$right_limit);
 }
 }

 $data = array(6, 13, 99, 2, 33, 19, 84);

Core PHP Programming

IT-SC book 528

 //print array
 print("<H3>Unsorted</H3>\n");
 print("<PRE>");
 print_r($data);
 print("</PRE>\n");

 //sort array
 Quicksort(&$data, 0, count($data)-1);

 //print array again
 print("<H3>Sorted</H3>\n");
 print("<PRE>");
 print_r($data);
 print("</PRE>\n");
?>

The next step is to divide the list into two halves. Starting from the outside, elements are
checked for being greater than or less than the pivot. When two elements are found that
are both on the wrong side, they are swapped. When the left and right pointers meet, each
side is fed back to the quicksort function.

Built-In Sorting Functions

Usually it will not be necessary to write your own sort functions. PHP offers several
functions for sorting arrays. The most basic is sort. This function is described, along
with the other sorting functions, in Chapter 9, "Data Functions." It will be
instructive to compare sort to rsort , asort , and ksort .

The sort function puts all the elements in the array in order from lowest to highest. If
the array contains any strings, then this means ordering them by the ASCII codes of each
character. If the array contains only numbers, then they are ordered by their values. The
indices—the values used to reference the elements—are discarded and replaced with
integers starting with zero. This is an important effect, which Listing 15.3
demonstrates. Notice that, although I use some numbers and a string to index the array,
after I sort it, all the elements are numbered zero through four. Keep this in mind if you
ever need to clean up the indices of an array.

Another point worth noting in Listing 15.3 is the order of the output: Apple, Blueberry,
Watermelon, apple, pear. A dictionary might list apple just before or just after Apple, but
the ASCII code for A is 65. The ASCII code for a is 97. Appendix B lists all the ASCII
codes. Later in this chapter I'll explain how to code a case-insensitive sort.

The rsort function works exactly like sort, except that it orders elements in the
reverse order. Try modifying the code in Listing 15.3 by changing sort to rsort.

Core PHP Programming

IT-SC book 529

Two other two sort functions, asort and arsort, work in a slightly different way.
They preserve the relationship between the index and the element. This is most useful
when you have an associative array. If the array is indexed by numbers, you probably do
not want to preserve their indices. On the other hand, what if you did? Listing 15.4
illustrates a possible scenario.

Listing 15.3 Using the sort Function

Core PHP Programming

IT-SC book 530

Core PHP Programming

IT-SC book 531

Here I've used reset to put the internal array pointer at the first element. I then get each
following element with the next function. This is the order in which the elements exist
in memory, but they retain their original indices, which are the numbers starting with zero
that were used when the elements were added to the array.

If I had used arsort, the order would have been the exact opposite. Listing 15.5 is
perhaps a more typical use of these functions. It is important to keep the elements in the
array returned by getdate associated with their indices. Listing 15.5 sorts the array
in reverse order by the elements. It may not be particularly useful but illustrates the use of
this function.

Listing 15.4 Using the asort Function

Core PHP Programming

IT-SC book 532

Listing 15.5 Using the asort Function

Core PHP Programming

IT-SC book 533

Core PHP Programming

IT-SC book 534

The last sorting function I want to discuss in this section is ksort. This function sorts an
array on the values of the indices. I've modified the code in Listing 15.6 to use ksort
instead of arsort. Notice that now all the elements are in the order of their indices, or
keys.

Listing 15.6 Using the ksort Function

Core PHP Programming

IT-SC book 535

Core PHP Programming

IT-SC book 536

Core PHP Programming

IT-SC book 537

The ksort function is perhaps most useful in situations where you have an associative
array and you don't have complete control over the contents. In Listing 15.6 the script
gets an array generated by the getdate function. If you run it with the ksort line
commented out, you will see that the order is arbitrary. It's simply the order chosen when
the function was coded. I could have typed a couple lines for each element based on the
list of elements found in the description of the getdate function in Chapter 11,
"Time, Date, and Configuration Functions." A more readable solution is to sort
on the keys and to print each element in a loop. As you might have guessed, the krsort
function sorts an array by its indices in reverse.

Sorting with a Comparison Function

The built-in sorting functions are appropriate in the overwhelming majority of situations.
If your problem requires a sort that performs better than the one used in the built-in
functions, you are faced with coding your own. If your problem is that you need to
compare complex elements, such as objects or multidimensional arrays, the solution is to
write a comparison function and plug it into the usort function.

The usort function allows you to sort an array using your own comparison function.
Your comparison function must accept two values and return an integer. The two
arguments are compared, and if a negative number is returned, then the values are
considered to be in order. If zero is returned, they are considered to be equal. A positive
number signifies that the numbers are out of order.

In Listing 15.7 I've created a multidimensional array with three elements: name, title,
and wage. Sometimes I want to be able list employees by name, but other times I might
want to list them by title or how much they make per hour. To solve this problem, I've
written three comparison functions.

The byName function is a simple wrapper for strcmp. Names will be ordered by ASCII
code. The byTitle function assigns an integer value to each title and then returns the
comparison of these integers. The bySalary function compares the wage element, but
if two employees make the same amount of money per hour, their names are compared.

Listing 15.7 Using the usort Function

Core PHP Programming

IT-SC book 538

Core PHP Programming

IT-SC book 539

Core PHP Programming

IT-SC book 540

The byName function is a simpler wrapper for strcmp. Names will be ordered by
ASCIIcode. The byTitle function assigns an integer value to each title and then returns
the comparison of these integers. The bySalary function compares the wage element,
but if two employees make the same amount of money per hour, their names are
compared.

Searching

Sorting organizes information into a form that aids in finding the exact piece being
looked for. If you need to look up a phone number, it's easy to flip through the pages of a
phone book until you find the approximate area where the number might be. With a bit of
scanning you can find the number, because all the names are in order. For most of us, this
process is automatic.

If you want to duplicate this process inside a PHP script, you have to think about each of
the steps. The simplest way is to start at the beginning and look at every entry until you
find the one you want. If you get to the end and haven't found it, it must not exist. I don't
have to tell you this is probably the worst way to search, but sometimes this is all you
have. If the data are unsorted, there is no better way.

You can dramatically improve your search time by doing a binary search. The
requirement is that the data be sorted. Luckily, I've shown this to be relatively simple.
The binary search involves repeatedly dividing the list into a half that won't contain the
target value and a half that will.

To perform a binary search, start in the middle of the list. If the element in the middle
precedes the element you are searching for, you can be sure it's in the half of the list that
follows the middle element. You will now have half as many elements to search through.
If you repeat these steps, you will zero in on your targeted value very quickly. To be
precise, the worst case is that it will take log n, or the base-two logarithm of the number
of elements in the data. If you had 128 numbers, it would take at most 7 guesses. Listing
15.8 puts this idea into action.

Indexing

By sorting the data, you spend time up front, betting it will pay off when you need to
search. But even this searching costs something. A binary search may take several steps.
When you need to do hundreds of searches, you may look for further improvement in
performance. One way is to perform every possible search beforehand, creating an index.
A lot of work is done at first, which allows searches to be performed fast.

Core PHP Programming

IT-SC book 541

Let's explore how we can transform the binary search in Listing 15.8 into a single
lookup. We want an array that, given a name, returns its position in the

Listing 15.8 A Binary Search

Core PHP Programming

IT-SC book 542

Core PHP Programming

IT-SC book 543

Core PHP Programming

IT-SC book 544

original array. Our list of employees has two people with the same name, so we'll have to
build a list of matches. Refer to the code in Listing 15.9. We won't bother sorting the
list. It won't help, because we will be visiting every element of the array. As we visit each
element, we create a new array. The index of this array is the name of the employee. Each
element of the index will be an array of indices in the employee array. Once the index
is created, finding an employee is a single statement. If the name is found in the array, we
can retrieve the index values for the employee array.

This example is not very realistic because we're only making one search, and we're
building the index with each request. The index needs to be built only once, as long as the
employee array doesn't change. You could save the array to a file, perhaps using PHP
serialization functionality, and then load it when needed. I wrote similar code for the
FreeTrade project that indexes keywords that appear in pages of a Web site.

Listing 15.9 Indexing

Core PHP Programming

IT-SC book 545

Core PHP Programming

IT-SC book 546

Core PHP Programming

IT-SC book 547

Of course, databases present a larger solution to managing data. In most cases, it's best to
rely on a database to store large amounts of data, because databases have specialized
code for searching and sorting. Databases are discussed in Chapter 17, "Database
Interpretation."

Random Numbers

Closely tied to sorting and searching is the generation of random numbers. Often random
numbers are used to put lists out of order. They offer the opportunity to create surprise.
They allow you to squeeze more information onto a single page by choosing content
randomly for each request. You see this every day on the Web in the form of quotes of
the day, banner ads, and session identifiers.

There are two important qualities of truly random numbers: their distribution is uniform,
and each successive value is independent of the previous value. To have a uniform
distribution means that no value is generated more often than any other. The idea of
independence is that, given a sequence of numbers returned by the generator, you should
be unable to guess the next. Of course, we can't write an algorithm that really generates
independent values. We have to have some formula, which by its nature is predictable.
Yet, we can get pretty close using what is called a psuedorandom number generator.
These use simple mathematical expressions that return seemingly random numbers. You
provide a starting input called a seed. The first call to the function uses this seed for
input, and subsequent calls use the previous value. Keep in mind that a seed will begin
the same sequence of output values any time it's used. One way to keep things seeming
different is to use the number of seconds on the clock to seed the generators.

The standard C library offers the rand function for generating random numbers, and
PHP wraps it in a function of the same name. You pass upper and lower limits and
integers are returned. You can seed the generator with the srand function, or just let the
system seed it for you with the current time. Unfortunately, the standard generator on
some operating systems can be inadequate. Previously, I suggested implementing your
own random number generator if you needed better random numbers; however, Pedro
Melo added a new set of functions to PHP that use the Mersenne Twister algorithm.

I won't attempt to describe the algorithm behind the Mersenne Twister algorithm because
it's out of the scope of this text. You can visit the home page for more information
<http://www.math.keio.ac.jp/~matumoto/emt.html>. You can read a
careful description there to convince yourself of the validity of the algorithm if you wish.

Listing 15.10 is a very simple example that generates 100 random numbers between 1
and 100, using the mt_rand function. It then computes the average and the median. If

Core PHP Programming

IT-SC book 548

the distribution of numbers is uniform, the average and median will be very close. The
sample set is really small, though, so you will see lots of variance as you rerun the script.

Listing 15.10 Getting Random Numbers

Random Identifiers

If you ever need to track users through a site, you will need to assign unique identifiers.
In a database you can store all the information you know about the user and pass the

Core PHP Programming

IT-SC book 549

identifier from page to page either through links or with cookies. You will have to
generate these identifiers randomly, otherwise it is too easy for anyone to masquerade as
a legitimate user. Fortunately, random identifiers are easy to generate.

Listing 15.11 illustrates how this works. A pool of characters to use in the session
identifier is defined. Characters are picked randomly from the list to build a session
identifier of the specified length. That identifier is used inside a link so that it is passed to
the next page. This method works for any browser, even Lynx. Chapter 17 discusses
the integration of this technique with a database.

It's very important to have random numbers here. Suppose you simply used the seconds
on the clock. For an entire second, every session identifier would be the same. And it's
very likely many people will be accessing a Web site during a single second. In Listing
15.11, I've used the time on the microsecond clock to seed the random generator, but
even this allows the window of opportunity for getting a duplicate session identifier. One
way to avoid this situation is to use a lockable resource that holds a seed—for example, a
file. Once you lock the file, you can read the seed and write back a new one, at which
point you are assured that two concurrent processes get the same seed.

Choosing Banner Ads

Another use for random numbers is choosing from banner ads. Suppose you've signed up
three sponsors for your Web site. Each has a single banner you promise to display on an
equal proportion of hits to your site. To accomplish this, generate a random number and
match each number to a particular banner. In Listing 15.12, I've used a switch
statement on a call to mt_rand. In a situation like this, you don't need to worry too
much about using good seeds. You simply want a reasonable distribution of the three
choices. Someone guessing which banner will display at midnight poses no security risk.

Listing 15.11 Generating a Session Identifier

Core PHP Programming

IT-SC book 550

Core PHP Programming

IT-SC book 551

Listing 15.12 Random Banner Ad

<?
 //Seed the generator
 mt_srand(doubleval(microtime()) * 100000000);

 //choose banner
 switch(mt_rand(1,3))
 {
 case 1:
 $bannerURL =
 "http://www.leonatkinson.com/random/";
 $bannerImage = "leon.jpg";
 break;
 case 2:
 $bannerURL = "http://www.php.net/";
 $bannerImage = "php_lang.jpg";
 break;
 default:
 $bannerURL = "http://www.phptr.com/";
 $bannerImage = "phptr.jpg";
 }
 //display banner
 print("");
 print("<IMG SRC= \"$bannerImage\" ");
 print("WIDTH=\"400\" HEIGHT=\"148\" BORDER=\"0\"
>");
 print("");
?>

Core PHP Programming

IT-SC book 552

Chapter 16. PARSING AND STRING
EVALUATION

Tokenizing

Regular Expressions

Defining Regular Expressions

Using Regular Expressions in PHP Scripts

Parsing is the act of breaking a whole into components, usually a sentence into words.
PHP must parse the code you write as a first step in turning a script into an HTML
document. There will come a time when you are faced with extracting or verifying data
collected in a string. This could be as simple as a tab-delimited list. It could be as
complicated as the string a browser uses to identify itself to a Web server. You may
choose to tokenize the string, breaking it into pieces. Or you may choose to apply a
regular expression. This chapter examines PHP's functions for parsing and string
evaluation.

Tokenizing

PHP allows for a simple model for tokenizing a string. Certain characters, of your choice,
are considered separators. Strings of characters between separators are considered tokens.
You may change the set of separators with each token you pull from a string, which is
handy for irregular strings—that is, ones that aren't simply comma-separated lists.

Listing 16.1 accepts a sentence and breaks it into words using the strtok function,
described in Chapter 9, "Data Functions." As far as the script is concerned, a word
is surrounded by a space, punctuation, or either end of the sentence. Single and double
quotes are left as part of the word.

Listing 16.1 Tokenizing a String

Core PHP Programming

IT-SC book 553

Core PHP Programming

IT-SC book 554

Core PHP Programming

IT-SC book 555

Notice the addition of <END> to the input variable. This special token allows the
algorithm to detect the end of the input string. When strtok encounters the end of
input, it returns FALSE, so your first inclination might be to test for FALSE in the for
loop. Recall that an empty string is considered equivalent to FALSE. If two separators
follow each other, strtok will return an empty string, as you'd expect. Since we don't
want to stop tokenizing at the first repeated separator, we place a token at the end that we
know won't appear in the input. If we're worried about people purposely putting <END>
in the input string, we could strip it out first, but this isn't something that will be typed by
accident. Since there's no security risk to the tokenizing ending too soon, I prefer to let
hackers get invalid results.

The strtok function is useful only in the most simple and structured situations. An
example might be reading a tab-delimited text file. The algorithm might be to read a line
from a file, pulling each token from the line using the tab character, then continuing by
getting the next line from the file.

Regular Expressions

Fortunately, PHP offers something more powerful than the strtok function: regular
expressions. Written in a language of their own, regular expressions describe patterns that
are compared to strings. The PHP source code includes an implementation of regular
expressions that conform to the POSIX 1003.2 standard. This standard allows for
expressions of an older style but encourages a modern style that I will describe. All the
regular expression functions are described in Chapter 9.

In 1999, Andrei Zmievski added support for regular expressions that follow the style of
Perl. They offer two advantages over PHP native regular expressions. They make it easier
to copy an expression from a Perl script, and they take less time to execute.

It is beyond the scope of this text to examine regular expressions in depth. It is a subject
worthy of a book itself. I will explain the basics, as well as demonstrate the various PHP
functions that use regular expressions. An excellent resource for learning more about
regular expressions is Chapter 2 of Ellie Quigley's UNIX Shells by Example. If you are
interested in PERL-style regular expressions, first read the official documentation for
Perl, compiled and edited by Tom Christiansen <http://www.perl. com/CPAN-
local/doc/manual/html/pod/perlre.html>. You will then need to read the
documentation at the PHP site itself that lists the differences between Perl and the PHP
implementation <http://www.php. net/manual/pcre.pattern.syntax.php3>.

Defining Regular Expressions

Core PHP Programming

IT-SC book 556

At the highest level, a regular expression is one or more branches separated by the
vertical bar character (|). This character is considered to have the properties of a logical-
OR. Any of the branches could match with an evaluated string. Table 16-1 provides a
few examples.

Each branch contains one or more atoms. These atoms may be followed by characters
that modify the number of times the atom may be matched in succession. An asterisk (*)
means the atom can match any number of times. A plus sign (+) means the atom must
match at least once. A question mark (?) signifies that the atom may match once or not at
all.

Alternatively, the atom may be bound, which means it is followed by curly braces, { and
}, that contain integers. If the curly braces contain a single number, then the atom must
be matched exactly that number of times. If the curly braces contain a number followed
by a comma, the atom must be matched that number of times or more. If the curly braces
contain two numbers separated by a comma, the atom must match at least the first
number of times, but not more than the second number. See Table 16-2 for some
examples of repetition.

An atom is a series of characters, some having special meaning, others simply standing
for a character that must be matched. A period (.) matches any single character. A carat
(^) matches the beginning of the string. A dollar sign ($) matches the end of the string. If
you need to match one of the special characters (^ . [] $ () | * ? {} \), put a
backslash in front of it. In fact, any character preceded by a backslash will be treated
literally, even if it has no special meaning. Any character with no special meaning will be
considered just a character to be matched, backslash or not. You may also group atoms
with parentheses so that they are treated as an atom.

Table 16-1. Branches in a Regular Expression

Sample Description
apple Matches the word apple.
apple|ball Matches either apple or ball.
begin|end|break Matches either begin, end, or break.

Table 16-2. Allowing Repetition of Patterns in Regular Expressions

Sample Description
a(b*) Matches a, ab, abb, ... — an a plus any number of b's.
a(b+) Matches ab, abb, abbb, ... — an a plus one or more b's.
a(b?) Matches either a or ab — an a possibly followed by a b.
a(b{3}) Matches only abbb.
a(b{2,}) Matches abb, abbb, abbbb, ... — an a followed by two or more b's.
a(b{2,4}) Matches abb, abbb, abbbb — an a followed by two to four b's.

Core PHP Programming

IT-SC book 557

Square brackets ([]) are used to specify a range of possible values. This may take the
form of a list of legal characters. A range may be specified using the dash character (-).
If the list or range is preceded by a carat (^), the meaning is taken to be any character not
in the following list or range. Take note of this double meaning for the carat.

In addition to lists and ranges, square brackets may contain a character class. These class
names are further surrounded by colons, so that to match any alphabetic character you
write [:alpha:]. The classes are alnum, alpha, blank, cntrl, digit,
graph, lower, print, punct, space, upper, and xdigit. You may
wish to look at the man page for ctype to get a description of these classes.

Finally, two additional square bracket codes specify the beginning and ending of a word.
They are [:<:] and [:>:], respectively. A word in this sense is defined as any
sequence of alphanumeric characters and the underscore characters. Table 16-3 shows
examples of using square brackets.

Using Regular Expressions in PHP Scripts

The basic function for executing regular expressions is ereg. This function evaluates a
string against a regular expression, returning TRUE if the pattern described by the regular
expression appears in the string. In this minimal form, you can check that a string
conforms to a certain form. For example, you can ensure that a U.S. postal zip code is in
the proper form of five digits followed by a dash and four more digits. Listing 16.2
demonstrates this idea.

Table 16-3. Square Brackets in Regular Expressions

Sample Description

a.c Matches aac, abc, acc, ... — Any three-character string beginning with
an a and ending with a c.

^a.* Matches any string starting with an a.

[a-c]*x$ Matches x, ax, bx, abax, abcx — Any string of letters from the first
three letters of the alphabet followed by an x.

b[ao]y Matches only bay or boy.

[^Zz]{5} Matches any string, five characters long, that does not contain either
an upper- or lowercase z.

[[:digit:]] Matches any digit, equivalent to writing [0-9].
[[:<:]]a.* Matches any word that starts with a.

Listing 16.2 Checking a ZIP Code

Core PHP Programming

IT-SC book 558

The script offers a form for inputting a zip code. It must have five digits and may be
followed by a dash and four more digits. The functionality of the script hinges on the
regular expression

^([0-9]{5})(-[0-9]{4})?$

Core PHP Programming

IT-SC book 559

which is compared to user input. It will be instructive to examine this expression in
detail. It starts with a carat. This causes the expression to match only from the beginning
of the evaluated string. If this were left out, the zip code could be preceded by any
number of characters, such as abc12345-1234, and still be a valid match. Likewise,
the dollar sign at the end of the expression matches the end of the string. This stops
matching of strings like 12345-1234abc. The combination of using a carat and a
dollar sign allows us to match only exact strings.

The first subexpression is ([0-9]{5}). The square-bracketed range allows only
characters from zero to nine. The curly braces specify that there must be exactly five of
these characters.

The second subexpression is (-[0-9]{4})?. Like the first, it specifies exactly four
digits. The dash is a literal character that must precede the digits. The question mark
specifies that the entire subexpression may match once or not at all. This makes the four-
digit extension optional.

You can easily expand this idea to check phone numbers or dates. Regular expressions
provide a neat way of checking variables returned from forms. Consider the alternative of
nesting if statements and searching strings with the strpos function.

You may also choose to have subexpression matches returned in an array. This is useful
in situations where you need to break a string into components. The string a browser uses
to identify itself is a good string for this method. Encoded in this string are the browser's
name, version, and the type of computer it's running on. Pulling this information out into
separate variables will allow you to customize your site based on the capabilities of the
browser.

Listing 16.3 is a script for creating a set of variables that aid in cloaking a site for a
particular browser. For the purpose of illustration, we will customize a link based on the
browser being used. If the user visits the page with Netscape Navigator, we will provide a
link to the download page for Microsoft Internet Explorer. Otherwise, we'll put a link to
Netscape's download page. This is an example of customizing content, but the same
method can be used to decide whether to use advanced features or not.

Listing 16.3 Evaluating HTTP_USER_AGENT

Core PHP Programming

IT-SC book 560

Core PHP Programming

IT-SC book 561

In this script the main ereg function is not used in an if statement. It assumes the
browser will identify itself minimally as a name, a slash, and the version. The match
array gets set with the parts of the evaluated string that match with the parts of the regular
expression. There are three subexpressions for name, version, and any extra description.
Most browsers follow this form, including Navigator and Internet Explorer. Since
Internet Explorer always reports that it is a Mozilla (Netscape) browser, extra steps must
be taken to determine if a browser is really a Netscape browser or an imposter. This is
done with a call to eregi.

If you are wondering why element zero is ignored, that's because the zero element holds
the substring that matches the entire regular expression. In this situation it is not
interesting. Usually the zero element is useful when you are searching for a particular
string in a larger context. For example, you may be scanning the body of a Web page for
URLs. Listing 16.4 fetches the PHP home page and lists all the links on the page.

The main loop of this script gets lines of text from the file stream and looks for HREF
properties. If one is found in a line, it will be placed in the zero element of the match
array. The script prints it out and then removes it from the line using the
ereg_replace function. This function replaces text matched with a regular expression
with a string. In this case the script replaces the HREF property with an empty string. The
reason for finding the link and then removing it is that it is possible for two links to be on
one line of HTML. The ereg function will match the first substring only. The solution is
to find and remove each link until none remain.

Notice that when removing the link a replace variable is prepared. Some links might
contain a question mark, a valid character in a URL that separates a filename from form
variables. Since this character has special meaning to regular expressions, the script
places a backslash before it to let PHP know it's to be taken literally.

I frequently use ereg_replace to convert text for use in a new context. You can use
ereg_replace for replacement of end-of-line characters with break tags. Listing
16.5 demonstrates this idea. You can also use it to collapse multiple spaces with a single
space.

Listing 16.4 Scanning Text for URLs

Core PHP Programming

IT-SC book 562

Core PHP Programming

IT-SC book 563

Core PHP Programming

IT-SC book 564

Listing 16.5 Replacing Linefeeds with HTML Line Breaks

Core PHP Programming

IT-SC book 565

Core PHP Programming

IT-SC book 566

Core PHP Programming

IT-SC book 567

By now you most likely understand regular expressions, but one new idea is worth
noting. The call to ereg_replace in Listing 16.5 uses an integer to stand for a
linefeed. This is because ASCII 10 is a linefeed character. You might think of using
backslash-n here, but that would not give the results you want. Recall that the backslash
character in regular expressions causes the character to be treated literally. The
ereg_replace function allows you to specify a single character by ASCII value for its
first argument.

Core PHP Programming

IT-SC book 568

Chapter 17. DATABASE INTEGRATION

Building HTML Tables from SQL Queries

Tracking Visitors with Session Identifiers

Storing Content in a Database

Database Abstraction Layers

PHP has strong support for many databases. If native support for your favorite database
doesn't exist, there's always ODBC, which is a standard for external database drivers.
Support for new databases seems to show up regularly. The universal remark in this
regard from the PHP developers has been "give us a machine to test on and we'll add
support."

MySQL is undoubtedly the most popular database used by PHP coders. Apart from being
free, it suits Web development because of its blazing speed. In the examples for this
chapter I'll assume you have a MySQL database. If you don't, you can either go to the
MySQL Web site <http://www.mysql.com/> and investigate downloading and
installing, or you can pursue changing the examples to work with another database.

Most relational databases use the Structured Query Language, or SQL. It is a fourth-
generation language (4GL), which means it reads a bit more like English than PHP
source code. A tutorial on SQL is beyond the scope of this book. If you're completely
new to SQL, I recommend investigating the tutorials listed on the documentation page on
the MySQL home page <http://www.mysql.com/doc.html>. An alternative
would be to find a book such as Hands-On SQL by Robert Groth and David Gerber,
published by Prentice Hall.

Building HTML Tables from SQL Queries

Perhaps the simplest task you can perform with a database and PHP is to extract data
from a table and display it in an HTML table. The table could contain a catalog of items
for sale, a list of projects, or a list of Internet name servers and their ping times. For
illustration purposes, I'll use the first scenario. Imagine that a supermarket wants to list
the items they have for sale on their Web site. As a proof of concept, you must create a
page that lists some items from a database. We'll use the test database that's created
when MySQL is installed. The PHP script for viewing the catalog of products will reside
on the same machine as the database server.

The first step is to create the table. Listing 17.1 displays some SQL code for creating a
simple, three-column table. The table is named catalog. It has a column called ID that
is an integer with at most 11 digits. It cannot be null, and new rows will automatically be
assigned consecutive values. The last line of the definition specifies ID as a primary key.

Core PHP Programming

IT-SC book 569

This causes an index to be built on the column and disallows duplicate IDs. The other
two columns are Name and Price.

Name is a variable-length character string that may be up to 32 characters long. Price is
a floating-point number with six digits before the decimal point and two digits after.
That's a perfect setup for money.

Next, we will need to put some items in the table. Since we're only creating a demo, we'll
fill in some items we might expect in a supermarket along with some dummy prices. To
do this we'll use the INSERT statement. Listing 17.2 is an example of this procedure.

Each SQL statement ends with a semicolon, much as in PHP. We're telling the MySQL
server that we want to insert a row into the catalog table and we'll be supplying only the
name and price. Since we're leaving out ID, MySQL creates one. This is due to our
defining the column as AUTO_INCREMENT. The VALUES keyword lets the server know
we are about to send the values we promised earlier in the command. Notice the use of
single quotes to surround text, as is standard in SQL.

Listing 17.1 Creating Catalog Table

CREATE TABLE catalog
(
 ID INT(11) NOT NULL AUTO_INCREMENT,
 Name VARCHAR(32),
 Price FLOAT(6,2),
 PRIMARY KEY (ID)
);

Listing 17.2 Inserting Data into Catalog Table

INSERT INTO catalog (Name, Price) VALUES (`Toothbrush',
1.79);
INSERT INTO catalog (Name, Price) VALUES (`Comb', 0.95);
INSERT INTO catalog (Name, Price) VALUES (`Toothpaste',
5.39);
INSERT INTO catalog (Name, Price) VALUES (`Dental Floss',
3.50);
INSERT INTO catalog (Name, Price) VALUES (`Shampoo', 2.50);
INSERT INTO catalog (Name, Price) VALUES (`Conditioner',
3.15);
INSERT INTO catalog (Name, Price) VALUES (`Deodorant',
1.50);
INSERT INTO catalog (Name, Price) VALUES (`Hair Gel',
6.25);
INSERT INTO catalog (Name, Price) VALUES (`Razor Blades',
2.99);
INSERT INTO catalog (Name, Price) VALUES (`Brush', 1.15);

Core PHP Programming

IT-SC book 570

Just to check that everything went well, Figure 17-1 shows the output you would get if
you selected everything from the catalog table from within the MySQL client. I got
this output by typing

SELECT * FROM catalog;

in the MySQL client.

Figure 17-1. SELECT * FROM catalog

The last step is to write a PHP script that gets the contents of the table and dresses it up in
an HTML table. Listing 17.3 lists PHP code for extracting the name and price values,
displaying them in an HTML table. The first step in communicating with a database
server is to connect to it. This is done with the mysql_pconnect function. It takes a
hostname, a username, and a password. I usually create a user named httpd in my
MySQL databases with no password. I also restrict this user to connections made from
the local server. I name it after the UNIX user who will be executing the scripts—in other
words, the Web server. If you are renting space from a hosting service, you may have a
MySQL user and database assigned to you, in which case you'll need to modify the
function arguments, of course.

Listing 17.3 Creating HTML Table from a Query

Core PHP Programming

IT-SC book 571

Core PHP Programming

IT-SC book 572

Core PHP Programming

IT-SC book 573

Core PHP Programming

IT-SC book 574

If the connection is successful, a MySQL link identifier will be returned. Notice that I'm
testing for failure and performing the connection on one line. Link identifiers are always
greater than zero, and zero is returned when the connection cannot be made. So, testing
for a FALSE return value allows us to detect a failed connection. If that happens, we just
abort the entire script.

The function used to connect to the database is mysql_pconnect. If you've flipped
through the descriptions of the MySQL functions in Chapter 13, "Database
Functions," you might remember another function called mysql_connect . These
two functions operate identically inside a script, but mysql_pconnect returns
persistent connections.

Most of the database functions that PHP offers incorporate the idea of a persistent
connection—a connection that does not close when your script ends. If the same Web
process runs another script later that connects to the same database server, the connection
will be reused. This has the potential to save overhead. In practice, the savings are not
dramatic, owing to the way Apache 1.3.x and earlier use child processes instead of
threads. These processes serve a number of requests and then are replaced by new
processes. When the process ends, it takes its persistent connection with it, of course.

Only under high loads will your script benefit from persistent connections, but that's
exactly the time when it needs to benefit from them. Using mysql_pconnect costs
nothing, so I use it by default. At the time of this writing, Apache 2.0 is nearing release. It
promises a multithreaded approach that will certainly take full advantage of persistent
connections.

The next step is to select a database. Here I've selected the database named store.
Once we tell PHP which database to use, we get all rows from the catalog table. This
is done with the mysql_query function. It executes a query on the given link and
returns a result identifier. We will use this result identifier to fetch the results of the
query.

Before we begin pulling data from the results, we must begin building an HTML table.
This is done, as you might expect, by using an opening table tag. I've created a header
row with a gray background and left the rest of the table behavior as default.

Now that the header row is printed, we can fetch each row from the result set. The fastest
way to do this, executionwise, is to use mysql_fetch_object. This expresses each
column in the result as the property of an object. The names of the columns are used for
the names of the properties. You could also use mysql_fetch_row or
mysql_fetch_array, which are equally efficient. Most of the time using an object

Core PHP Programming

IT-SC book 575

seems more readable to me. You should avoid mysql_result, since this function does
a costly lookup into a two-dimensional array.

When no more rows remain, FALSE will be returned. Capitalizing on this behavior, I put
the fetch of the row inside a while loop. I create a row in the HTML table, printing object
properties inside the table cells. When no rows remain, I close the table. I don't bother to
close the connection to the database because PHP will do this automatically.

This is an extremely simply example, but it touches on all the major features of working
with a database. Since each row is created in a loop, each is uniform. If the data change,
there is no need to touch the code that turns it into HTML. You can just change the data
in the database.

A good example of this technique in action is the Random Band Name Generator
<http://www.leonatkinson.com/random >, which creates random band names
from a table of words, stored in a MySQL database to which anyone can add. Each
refresh of the page fetches another ten names.

Tracking Visitors with Session Identifiers

As Web sites evolve into Web applications, the problem of maintaining state arises. The
issue is that, from page to page, the application needs to remember who is visiting the
page. The Web is stateless. Your browser makes a connection to a server, requests one or
more files, and then closes the connection. Five minutes later when you click to a
connecting page, the routine happens all over again. While a log is kept, the server
doesn't remember you. Any information you gave it about yourself three pages back may
be saved somewhere, but it's not associated with you after that.

Imagine a wizardlike interface for ordering a pizza. The first screen asks you how many
pizzas you want. Then you go through a page for each pizza, picking toppings and type of
crust. Finally a page asks for your name and number so that your order can be emailed to
the nearest pizza parlor. One way to handle this problem is to pass all the information
gathered up to that point with each form submission. As you go from page to page, those
data grow and grow. You're telling the server a partial version of your order many times.
It works, but it's definitely wasteful of network bandwidth.

Using a database and a session identifier, you can store information as it becomes
available. A single identifier is used as a key to the information. Once your script has the
identifier, it can remember what has gone on before.

How the script gets the identifier is another issue. You have two choices. One is to pass
the identifier as a variable inside every link or form. In a form this is simple to do with a
hidden variable. In a link you have to insert a question mark and a variable definition. If
your session ID is stored in a variable called session, then you might write something
like

Core PHP Programming

IT-SC book 576

print ("<A HREF=\
"page2.php3?session=$session\">next");

to send session to the next page. This technique works with all browsers, even Lynx.

An alternative is to use cookies. Like GET and POST form variables, cookies are turned
into variables by PHP. So, you could create a cookie named session. The difference
would be that, since cookies may only be set in headers, you'll have to send them to the
browser before sending any HTML code. Check out the setcookie function in
Chapter 8, "I/O Functions," if you wish to pursue this strategy. A more complex
strategy attempts to use cookies, but falls back on GET variables if necessary.

Both methods are in wide use on the Internet. Check any e-commerce site. For the
purpose of example, I'll present a strategy that uses GET variables. The first step is to
create a table to hold session identifiers. Listing 17.4 is SQL code for creating a simple
session table in a MySQL database.

This table is keyed off an eight-character string. Each time the user moves to a new page,
we will update the LastAction column. That way we can clear out any sessions that
appear to be unused. Every visit to our page will trigger a clearing of all sessions without
action for 30 minutes. Then we will need to test each visitor for having a session
identifier. If they don't have one, we will create one. If they do have one, we will need to
check it to make sure it's valid.

Listing 17.4 Creating Session Table

CREATE TABLE session
(
 ID VARCHAR(8) NOT NULL,
 LastAction DATETIME,
 PRIMARY KEY (ID)
);

The first time you load Listing 17.5, it will create a session for you. Each click of the
"Refresh Page" link will cause the script to check the session. If the session identifier is
not in the session table, then the session identifier will be rejected, and a new one will be
created. You can try submitting a bad session identifier by erasing a character in the
location box of your browser.

Listing 17.5 Checking Session ID

Core PHP Programming

IT-SC book 577

Core PHP Programming

IT-SC book 578

Core PHP Programming

IT-SC book 579

The next logical step is to add another table for storing the information you need to know
about the person browsing your site. One of the columns should be for storing the session
identifier from the session table. I'll leave this as an exercise for you.

Storing Content in a Database

Information stored in a database is not limited to short strings, like the 32-character item
name from Listing 17.3. You can create 64K blobs, which are enough to store a good-
sized Web page. The advantage here is that pages exist in a very structured environment.
They can be identified by a number, and relationships can be drawn between them using
only these numbers. The disadvantage is that, since the information is now in a database,
you can't just load the file into your favorite editor. You have to balance the costs and
benefits; most Web sites don't need every piece of content stored in a database.

A situation where it makes a lot of sense to put the content in a database is a Bulletin
Board System, or BBS. The system stores messages, which are more than just Web
pages. Each message has its own title, creation time, and author. This structure can be
conveniently wrapped up into a database table. Furthermore, since each message can be
given a unique identifier, we can associate messages in a parent-child tree. A user can
create a new thread of discussion that spawns many other messages. Messages can be
displayed in this hierarchical structure to facilitate browsing.

As with all database-related systems, the first step is to create a table. Listing 17.6
creates a table for storing messages. Each message has a title, the name of the person who
posted the message, when the message was posted, a parent message, and the body of
text. The parent ID might be zero, in which case we understand the message to be the
beginning of a thread. The body doesn't have to be plain text. It can contain HTML. In
this way it allows users to create their own Web pages using their browsers.

The script in Listing 17.7 has two modes: listings message titles and viewing a single
message. If the messageID variable is empty, then a list of every message in the system
is shown organized by thread. This is accomplished by the showMessages function.
You might want to turn back to Chapter 4, "Functions," specifically the section on
recursion. The showMessages function uses recursion to travel to every branch of the
tree of messages. It starts by getting a list of all the messages that have no parent. These
are the root-level messages, or beginnings of threads. After showing each root-level
message, showMessages is called for the thread. This process continues until a
message is found with no children. UL tags are used to display the message titles. The
indention aids the user in understanding the hierarchy.

Listing 17.6 Create Message Table

Core PHP Programming

IT-SC book 580

CREATE TABLE Message
(
 ID INT NOT NULL AUTO_INCREMENT,
 Title VARCHAR(64),
 Poster VARCHAR(64),
 Created DATETIME,
 Parent INT,
 Body BLOB,
 PRIMARY KEY(ID)
);

Listing 17.7 A Simple BBS

Core PHP Programming

IT-SC book 581

Core PHP Programming

IT-SC book 582

Core PHP Programming

IT-SC book 583

For the efficiency-minded, this use of recursion is not optimal. Each thread will cause
another call to showMessages, which causes another query to the database. There is a
way to query the database once and traverse the tree of messages in memory, but I'll
leave that as exercise for you.

If a message title is clicked on, the page is reloaded with messageID set. This causes
the script to switch over into the mode where a message is displayed. The fields of the
message are displayed in a table. If the message contains any HTML, it will be rendered
by the browser, because no attempt is made to filter it out. This restriction is best applied
as part of the code that adds a new message.

Regardless of the two modes, a form is shown for adding a message. If a message is
added while the list of messages is shown, the message will be added to the root level. If
a message is added while the user is viewing a message, then it will be considered a
reply. The new message will be made a child of the viewed message.

This BBS is simple, but the core functionality exists. A more sophisticated solution might
involve allowing only authenticated users to add messages, or keeping messages private
until approved by a moderator. You can use this same structure to build any application
that manages user-submitted data, such as a guest book. If you are searching for a
sophisticated BBS solution, I suggest checking out Brian Moon's Phorum project
<http://www.phorum.org/>.

Database Abstraction Layers

Imagine creating a Web application that uses MySQL and later being asked to make it
work with Oracle. All the PHP functions are different, so you'd have to change every one.
In addition, as MySQL and Oracle each use slightly different SQL, you will probably
have to change most of your queries. One solution to this problem is adding an
abstraction layer. This separates your business logic—the rules of your application—
from the code that interfaces with the database. A single function calls the right function
based on the type of database you need to query.

Perhaps the most popular database abstraction layer is part of the PHP Base Library
<http://phplib.netuse.de/ >. This library also contains code for session
management. Another abstraction layer is Metabase, available at the PHP Classes
Repository <http://phpclasses.upperdesign.com/ >.

Despite abstraction layers, incompatibilities between databases continue to offer
challenges. MySQL uses a special qualifier for column definitions called
AUTO_INCREMENT. It causes a column to be populated automatically with integers in
ascending order. In Oracle this functionality can be approximated using a sequence and a
trigger. The differences are difficult to reconcile systematically. In 1999, Scott Ambler

Core PHP Programming

IT-SC book 584

proposed a solution in his white paper "The Design of a Robust Persistence Layer for
Relational Databases" <http://www.ambysoft. com/persistenceLayer.html>.
A careful analysis of the problems is explored as well as a detailed design, neither of
which I can do justice to in the context of this chapter.

An abstraction layer trades some performance in favor of robustness. Certain unique,
high-performance features of each database must be abandoned. The abstraction layer
will provide the common set of functionality. But what you gain is independence from
any particular database.

Core PHP Programming

IT-SC book 585

Chapter 18. NETWORK

HTTP Authentication

Controlling Browser Cache

Setting Document Type

Email with Attachments

Verifying an Email Address

Most anything you write in PHP will be in the context of a network. It's a language
intended primarily to produce HTML documents via the HTTP protocol. PHP allows you
to code without worrying about the underlying protocols, but it also allows you to address
the protocols directly when necessary. This chapter deals intimately with two important
protocols, HTTP and SMTP. These are the protocols for transferring Web documents and
mail. I've attempted to describe some common problems and provide solutions. This
chapter may address a particular problem you face, such as protecting a Web page with
basic HTTP authentication, but it also illustrates generally how to use HTTP headers and
communicate with remote servers.

HTTP Authentication

If you have any experience with the Web, you're familiar with basic HTTP
authentication. You request a page, and a small dialog window appears asking for
username and password. As described in Chapter 8, "I/O Functions," PHP allows
you to open URLs with the fopen function. You can even specify a username and
password in the URL in the same way you do in Navigator's location box. Authentication
is implemented using HTTP headers, and you can protect your PHP pages using the
header function.

To protect a page with basic HTTP authentication, you must send two headers. The
WWW-Authenticate header tells the browser that a username and password are
required. It also specifies a realm that groups pages. A username and password are good
for an entire realm, so users don't need to authenticate themselves with each page request.
The other header is the status, which should be HTTP/1.0 401 Unauthorized.
Compare this to the usual header, HTTP/1.0 200 OK.

Listing 18.1 is an example of protecting a single page. The HTML to make a page is
put into functions because it needs to be printed whether the authentication succeeds or
fails. The PHP_AUTH_USER and PHP_AUTH_PW variables are created automatically
by PHP if a username and password are passed by the browser. The example requires my
name, leon, for the username and secret for the password. A more complex scheme might
match username and password against a list stored in a file or a database.

Core PHP Programming

IT-SC book 586

Listing 18.1 Requiring Authentication

<?
 /*
 ** Define a couple of functions for
 ** starting and ending an HTML document
 */
 function startPage()
 {
 print("<HTML>\n");
 print("<HEAD>\n");
 print("<TITLE>Listing 18.1</TITLE>\n");
 print("</HEAD>\n");
 print("<BODY>\n");
 }

 function endPage()
 {
 print("</BODY>\n");
 print("</HTML>\n");
 }
 /*
 ** test for username/password
 */
 if(($PHP_AUTH_USER == "leon") AND ($PHP_AUTH_PW ==
"secret"))
 {
 startPage();

 print("You have logged in successfully!
\n");

 endPage();
 }
 else
 {
 //send headers to cause a browser to request
 //username and password from user
 header("WWW-Authenticate: Basic realm= \"Leon's
Protected Area\"");
 header("HTTP/1.0 401 Unauthorized");

 //show failure text
 print("This page is protected by HTTP
Authentication.
\n");
 print("Use leon for the username, and
secret ");
 print("for the password.
\n");

Core PHP Programming

IT-SC book 587

 }
?>

Now that you know how to protect a page, it may be instructive to workthe other
direction, requesting a protected page. As I said earlier, the fopen function allows you to
specify username and password as part of a URL, but you may have a more complicated
situation where you need to use fsockopen. An Authentication request header is
necessary. The value of this header is a username and password separated by a colon.
This string is base64 encoded, in compliance with the HTTP specification.

Listing 18.2 requests the script in Listing 18.1. You may need to mod- ify the URI
to make it work on your Web server. The script assumes you have installed all the
examples on your Web server in /corephp/listings. If you are wondering about
the \r\n at the end of each line, recall that all lines sent to HTTP servers must end in a
carriage return and a linefeed.

Listing 18.2 Requesting a Protected Document

<?
 //open socket
 if(!($fp = fsockopen("localhost", 80)))
 {
 print("Couldn't open socket!
\n");
 exit;
 }

 //make request for document
 fputs($fp, "HEAD /corephp/listings/18-1.php
HTTP/1.0\r\n");

 //send username and password
 fputs($fp, "Authorization: Basic " .
 base64_encode("leon:secret") .
 "\r\n");

 //end request
 fputs($fp, "\r\n");

 //dump response from server
 fpassthru($fp);
?>

Controlling Browser Cache

One hassle of writing dynamic Web pages is the behavior of caches. Browsers maintain
their own cache, and by default they will check for a newer version of the page only once
per session. Some ISPs provide their own cache as well. The intention is to avoid

Core PHP Programming

IT-SC book 588

wasteful retransmission of pages. However, if the content on your page potentially
changes with each request, it can be annoying if an old version appears. If you are
developing an e-commerce site, it can be critical that each page is processed anew.

On the other hand, your page may be dynamically building a page that contains
information that doesn't change very often. My experience has been that caches are smart
enough to store URLs that appear to be ordinary HTML files, but not URLs that contains
variables following a question mark. Your PHP may use variables in the URL, though. If
the information on these pages changes infrequently, you want to let the cache know.

RFC 2616 describes the HTTP 1.1 protocol, which offers several headers for controlling
the cache. Listing 18.3 shows the headers to send to prevent a page from being cached.
The Last-Modified header reports the last time a document was changed, and setting
it to the current time tells the browser this version of the page is fresh. The Expires
header tells the browser when this version of the document will become stale and should
be requested again. Again we use the current time, hopefully causing the browser to keep
the document out the cache. Perhaps the most important header, Cache-Control tells
the browser how to cache the page. In this situation, weare requesting the page not be
cached. The fourth header is for the benefit of older browsers that understand only HTTP
1.0. Try reloading thescript in Listing 18.3 rapidly. You should see the date update
each time.

Listing 18.3 Sending Headers to Prevent Caching

<?
 header("Last-Modified: " . gmdate("D, d M Y
H:i:s") . " GMT");
 header("Expires: " . gmdate("D, d M Y H:i:s") . "
GMT");
 header("Cache-Control: no-cache, must-
revalidate");
 header("Pragma: no-cache");
?>
<HTML>
<HEAD>
<TITLE>Listing 18.3</TITLE>
</HEAD>
<BODY>
The time is <? print(date("D, d M Y H:i:s")); ?>

</BODY>
</HTML>

Listing 18.4 causes a page to be cached for 24 hours. Like Listing 18.3, the Last-
Modified, Expires and Cache-Control headers are used to control cache
behavior. The last modification time is sent as the actual modification of the file. The
expiration time is sent as 24 hours from now. And the cache is instructed to let the
document age for 86,400 seconds, the number of seconds in a day. To prove to yourself

Core PHP Programming

IT-SC book 589

that the file is being returned by the cache, try reloading the page quickly. The dates on
the page should remain the same.

Notice that all the dates in these two examples use GMT, or Greenwich Mean Time. This
is specified by the HTTP protocol. Forgetting to convert from your local time zone to
GMT can be an annoying source of bugs.

Listing 18.4 Sending Headers to Encourage Caching

<?
 //report actual modification time of script
 $LastModified = filemtime(__FILE__) + date("Z");
 header("Last-Modified: " .
 gmdate("D, d M Y H:i:s", $LastModified) . " GMT");

 //set expiration time 24 hours (86400 seconds) from now
 $Expires = time() + 86400;
 header("Expires: " .
 gmdate("D, d M Y H:i:s", $Expires) . " GMT");

 //tell cache to let page age for 24 hours (86400 seconds)
 header("Cache-Control: max-age=86400");
?>
<HTML>
<HEAD>
<TITLE>Listing 18.4</TITLE>
</HEAD>
<BODY>
The time is <? print(gmdate("D, d M Y H:i:s")); ?> GMT

This document was last modified
<? print(gmdate("D, d M Y H:i:s", $LastModified)); ?>
GMT

It expires
<? print(gmdate("D, d M Y H:i:s", $Expires)); ?> GMT

</BODY>
</HTML>

Setting Document Type

By default, PHP sends an HTTP header specifying the document as being HTML. The
Content-Type header specifies the MIME type text/html, and the browser
interprets the code as HTML. Sometimes you will wish to create other types of
documents with PHP. You will learn in Chapter 19, "Generating Graphics,"
about creating images, which may require an image/png content type. MIME types are
administered by IANA, the Internet Assigned Numbers Authority. You can find a list of

Core PHP Programming

IT-SC book 590

official media types at <http://www.isi. edu/in-
notes/iana/assignments/media-types/ >.

At times, you may wish to take advantage of how browsers react to different types of
content. For example, text/plain displays in a fixed-width font with no interpretation
of HTML. If you use */* for the content type, the browser displays a dialog window for
saving the file. Perhaps the most interesting use is for launching a helper application.

Listing 18.5 creates a tab-delimited text file that may launch Microsoft Excel. Take
note that the computer must meet a few qualifications, however. First, it probably needs
to be running Windows, and it must have Microsoft Excel installed. Newer versions of
Excel associate the application/ vnd.ms-excel content type with .xls files.
My experience has been that these headers will cause an Excel OLE container inside
either MSIE or Netscape Navigator on a Windows machine, but your mileage may vary.
Other browsers will likely ask the user if the file should be saved.

Notice the second header in Listing 18.5, Content-Disposition. This is not part
of the HTTP 1.1 standard but is widely implemented. It allows you to suggest a file
name. If you add attachment; to the header, the browser may choose to open Excel in
a separate window.

Using Content-Type this way is almost black magic, since browsers don't follow a
standard when encountering different MIME types. This technique has proven to be most
successful for me when writing intranet applications where I had the luxury of serving a
narrow set of browsers.

Email with Attachments

Sending plain email with PHP is easy. The mail function handles all the messy protocol
details behind the scenes. But if you want to send attachments, you will need to dig into
an RFC, specifically RFC 1341. This RFC describes MIME, Multipurpose Internet Mail
Extensions. You can read it at the faqs.org site
<http://www.faqs.org/rfcs/rfc1341.html>, but I'll show you a somewhat naòve
implementation.

Listing 18.5 Sending a Tab-Delimited Excel File

Core PHP Programming

IT-SC book 591

There are several example implementations to be found on the Web. Check out David
Sklar's networking section <http://px.sklar.com/section.
html?section_id=10>. Most of these put functionality into a class and attempt to
incorporate every aspect of the standard. Listing 18.6 contains code that sends email
with multiple attachments using two simple functions. Use this example as a basis for
learning the process, and expand its functionality if necessary.

Core PHP Programming

IT-SC book 592

Listing 18.6 Sending Attachments

<?
 /*
 ** Function: makeAttachment
 ** Input: ARRAY attachment
 ** Output: STRING
 ** Description: Returns headers and data for one
 ** attachment. It expects an array with elements
 ** type, name, and content. Attachments are naively
 ** base64 encoded, even when unnecessary.
 */
 function makeAttachment($attachment)
 {
 //send content type
 $headers = "Content-Type: " . $attachment["type"];

 if($attachment["name"] != "")
 {
 $headers .= "; name=
\"{$attachment["name"]}\"";
 }

 $headers .= "\r\n";

 $headers .= "Content-Transfer-Encoding:
base64\r\n";

 $headers .= "\r\n";

 $headers .=
chunk_split(base64_encode($attachment["content"]));
 $headers .= "\r\n";

 return($headers);
 }

 /*
 ** Function: mailAttachment
 ** Input: STRING to, STRING from, STRING subject, ARRAY
attachment
 ** Output: none
 ** Description: Sends attachments via email. The
attachment
 ** array is a 2D array. Each element is an associative
array
 ** containing elements type, name and content.

Core PHP Programming

IT-SC book 593

 */
 function mailAttachment($to, $from, $subject,
$attachment)
 {
 //add from header
 $headers = "From: $from\r\n";

 //specify MIME version 1.0
 $headers .= "MIME-Version: 1.0\r\n";

 //multiple parts require special treatment
 if(count($attachment) > 1)
 {
 //multiple attachments require special
handling
 $boundary = uniqid("COREPHP");

 $headers .= "Content-Type: multipart/mixed";
 $headers .= "; boundary =
$boundary\r\n\r\n";
 $headers .= "This is a MIME encoded
message.\r\n\r\n";
 $headers .= "--$boundary";

 foreach($attachment as $a)
 {
 $headers .= "\r\n";
 $headers .= makeAttachment($a);
 $headers .= "--$boundary";
 }

 $headers .= "--\r\n";
 }
 else
 {
 $headers .= makeAttachment($attachment[0]);
 }
 //send message
 mail($to, $subject, " ", $headers);
 }

 //add text explaining message
 $attach[] = array("content"=>"This is Listing 18.6",
 "type"=>"text/plain");

 //add script to list of attachments
 $fp = fopen(__FILE__, "r");

Core PHP Programming

IT-SC book 594

 $attach[] = array("name"=>basename(__FILE__),
 "content"=>fread($fp, filesize(__FILE__)),
 "type"=>"application/octet-stream");
 fclose($fp);

 //send mail to root
 mailAttachment("root@localhost",
 "httpd@localhost",
 "Listing 18.6",
 $attach);

 print("Mail sent!
\n");
?>

The mailAttachment function assembles the parts that make up a MIME message.
These parts are sent in the fourth argument of the mail function, which is generally used
for headers. In the case of a MIME message, this area is used for both headers and
attachments. After sending the customary From headers, a MIME-Version header is
sent. Unless there's onlyone attachment, a boundary string must be created. This is used
to divide attachments from one another. We want to avoid using a boundary value that
might appear in the message itself, so we use the uniqid function.

Each attachment is surrounded by the boundaries that always start with two dashes. The
attachment itself is prepared by the makeAttachment function. Each attachment
requires Content-Type and Content-Transfer-Encoding headers. The type
of content depends on the attachment itself. If an image file is being sent, it might be
image/jpg. These are the same codes discussed above with regard to the HTTP
protocol. For the sake of simplicity, this function always encodes attachments using
base64, which can turn binary files into 7-bit ASCII. This prevents them from being
corrupted as they travel through the network. As you might imagine, text files don't
require encoding, and complete implementations encode attachments based on content
type.

It may be instructive to see the assembled message in full. Try sending yourself a
message. On a UNIX operating system, you should be able to peek at the file itself inside
/var/spool/mail before reading it, or perhaps inside ~/Mail/received
afterward.

Verifying an Email Address

It doesn't take much experience with email to discover what happens when it is
misaddressed. The email is returned to you. This is called bounced email. Consider for a
moment a Web site that allows users to fill out a form that includes an email address and
sends a thank-you message. Certainly many people will either mistakenly mistype their
addresses or purposely give a bad address. You can check the form of the address, of
course, but a well-formed address can fail to match to a real mail box. When this

Core PHP Programming

IT-SC book 595

happens, the mail bounces back to the user who sent the mail. Unfortunately, this is
probably the Web server itself.

Reading through the bounced email can be interesting. Those running an e-commerce site
may be concerned about order confirmations that go undelivered. Yet, the volume of mail
can be very large. Add to this that delivery failure is not immediate. To the process that
sends the mail, it appears to be successful. It may be worthwhile to verify an email
address before sending mail.

RFC 821 describes the SMTP protocol, which is used for exchanging email. You can
read it at the faqs.org Web site <http://www.faqs.org/ rfcs/rfc821.html>. It
lives up to its name, simple mail transfer protocol, in that it's simple enough to use
interactively from a telnet session. In order to verify an address, you can connect to the
appropriate SMTP server and begin sending a message. If you specify a valid recipient,
the server will return a 250 response code, at which point you can abort the process.

It sounds easy, but there's a catch. The domain name portion of an address, the part after
the @, is not necessarily the same machine that receives email. Domains are associated
with one or more mail exchangers—machines that accept STMP connections for delivery
of local mail. The getmxrr function returns all DNS records for a given domain.

Now consider Listing 18.7. The verifyEmail function is based on a similar
function written by Jon Stevens. As you can see, the function attempts to fetch a list of
mail exchangers. If a domain doesn't have mail exchangers, the script guesses that the
domain name itself accepts mail.

Listing 18.7 Verifying an Email Address

<?
 /*
 ** Function: verifyEmail
 ** Input: STRING address, REFERENCE error
 ** Output: BOOLEAN
 ** Description: Attempts to verify an email address by
 ** contacting a mail exchanger. Registered mail
 ** exchangers are requested from the domain controller
first,
 ** then the exact domain itself. The error argument will
 ** contain relevant text if the address could not be
 ** verified.
 */

 function verifyEmail($address, &$error)
 {
 global $SERVER_NAME;

 list($user, $domain) = split("@", $address, 2);

Core PHP Programming

IT-SC book 596

 //make sure the domain has a mail exchanger
 if(checkdnsrr($domain, "MX"))
 {
 //get mail exchanger records
 if(!getmxrr($domain, $mxhost, $mxweight))
 {
 $error =
 "Could not retrieve mail
exchangers!
\n";
 return(FALSE);
 }
 }
 else
 {
 //if no mail exchanger, maybe the host
itself
 //will accept mail
 $mxhost[] = $domain;
 $mxweight[] = 1;
 }

 //create sorted array of hosts
 for($i = 0; $i count($mxhost); $i++)
 {
 $weighted_host[($mxweight[$i])] =
$mxhost[$i];
 }
 ksort($weighted_host);

 //loop over each host
 foreach($weighted_host as $host)
 {
 //connect to host on SMTP port
 if(!($fp = fsockopen($host, 25)))
 {
 //couldn't connect to this host, but
 //the next might work
 continue;
 }

 /*
 ** skip over 220 messages
 ** give up if no response for 10 seconds
 */
 set_socket_blocking($fp, FALSE);

Core PHP Programming

IT-SC book 597

 $stopTime = time() + 10;
 $gotResponse = FALSE;

 while(TRUE)
 {
 //try to get a line from mail server
 $line = fgets($fp, 1024);

 if(substr($line, 0, 3) == "220")
 {
 //reset timer
 $stopTime = time() + 10;
 $gotResponse = TRUE;
 }
 elseif(($line == "") AND ($gotResponse))
 {
 break;
 }
 elseif(time() > $stopTime)
 {
 break;
 }
 }

 if(!$gotResponse)
 {
 //this host was unresponsive, but
 //maybe the next will be better
 continue;
 }

 set_socket_blocking ($fp, TRUE);

 //sign in
 fputs($fp, "HELO $SERVER_NAME\r\n");
 fgets($fp, 1024);

 //set from
 fputs($fp, "MAIL FROM: <info@$domain>\r\n");
 fgets($fp, 1024);

 //try address
 fputs($fp, "RCPT TO: <$address>\r\n");
 $line = fgets($fp, 1024);

 //close connection

Core PHP Programming

IT-SC book 598

 fputs($fp, "QUIT\r\n");
 fclose($fp);

 if(substr($line, 0, 3) != "250")
 {
 //mail server doesn't recognize
 //this address, so it must be bad
 $error = $line;
 return(FALSE);
 }
 else
 {
 //address recognized
 return(TRUE);
 }
 }

 $error = "Unable to reach a mail exchanger!";
 return(FALSE);
 }

 if(verifyEmail("leon@clearink.com", &$error))
 {
 print("Verified!
\n");
 }
 else
 {
 print("Could not verify!
\n");
 print("Error: $error
\n");
 }
?>

SMTP servers precede each message with a numerical code, such as the 250 code
mentioned above. When first connecting with a server, any number of 220 messages are
sent. These contain comments, such as the AOL servers' reminders not to use them for
spam. No special code marks the end of the comments; the server simply stops sending
lines. Recall that by default the fgets function returns after encountering the maximum
number of characters specified or an end-of-line marker. This will not work in the case of
an indeterminate number of lines. The script will wait forever after the last comment.
Socket blocking must be turned off to handle this situation.

When set_socket_blocking turns off blocking, fgets returns immediately with
whatever data is available in the buffer. The strategy is to loop continually, checking the
buffer each time through the loop. There will likely be some lag time between
establishing a connection and receiving the first message from the server. Then, as 220
messages appear, the script must begin watching for the data to stop flowing, which
means the server is likely waiting for a command. To avoid the situation where a server is

Core PHP Programming

IT-SC book 599

very unresponsive, a further check must be made against a clock. If ten seconds pass, the
server will be considered unavailable.

Core PHP Programming

IT-SC book 600

Chapter 19. GENERATING GRAPHICS

Dynamic Buttons

Generating Graphs on the Fly

Bar Graphs

Pie Charts

Stretching Single-Pixel Images

This chapter explores generating graphics using the GD extension functions described in
Chapter 12. "Image Functions." It is important to be aware of the issues involved with
the creation of graphics on the fly. The first is that it is relatively costly in terms of CPU
time. In most cases the flexibility of dynamic graphics is not worth what you pay in the
load imposed on the server. Another issue is that making nice-looking graphics from PHP
functions is not easy. Common techniques like drop shadows are next to impossible. As
you will see in the examples that follow, a lot of work goes into creating simple, flat
charts. Last, while there is adequate support for text, functions you'd expect in a word
processor do not exist. Text does not wrap at line ends. There is no concept of leading,
spacing, or descenders. Regardless, generating graphics makes sense in some situations.
This chapter contains some real examples that you can start using with very little
modification.

In the first edition of this text, the examples in this chapter created GIF images. Since
then, the GD library has dropped support for GIFs because a key component of the GIF
standard relies on a patented process for compressing data. Instead, the GD library now
produces PNG and JPEG images. Turn back to Chapter 12 for more information on
this issue.

Dynamic Buttons

Images wrapped in anchor tags are a common navigational device. Instead of plain text,
this method allows you to create buttons similar to those created in the operating system,
or even fanciful icons. In most cases it is best to leave these as graphics created in your
favorite graphics editor, because the time between changes is relatively long. On the
other hand, if you have a button that changes often, it may make sense to create it
dynamically with PHP. The content of the button, the label, needs to be available as a
string in PHP. It could be a statement setting the value of a variable. It could also be a
value retrieved from a file or a database.

An illustration will make this idea clear. Many corporate Web sites have a section for
press releases. Instead of just a list of text links, your client wants a graphic of a flaming
newspaper for each press release, all under the title "Hot off the Press." Each burning
newspaper has text over the top with the headline from the press release. With a small

Core PHP Programming

IT-SC book 601

company that issues only one press release a month, you are better off creating these
graphics by hand. With a company that issues a press release each week, it starts to make
sense to automate the process. You can put the press releases into a database and generate
a graphic on the fly as surfers view the list of press releases. One advantage of this
approach is that if the CEO finds out you're putting flaming newspapers on the site, you
can make a minor modification and the graphics become the company logo with the
press-release title over it.

Seriously, you must consider the tradeoffs associated with dynamically created graphics.
You don't want to save yourself 15 minutes a month if it makes every page download 30
seconds longer. If you've been working with the Web for any time at all, you know to
reuse graphics throughout the site because the browser caches them. The first page may
take longer to load, but each successive page is faster because the graphics are already
loaded in the browser. Dynamic graphics can be cached, of course, but the browser uses
the URL to cache files. The GET-method form variables are part of the URL, so
http://www.site.com/button.php3?label=home&from=1 and
http://www.site.com/button.php3?label=home&from=2 may create two identical
graphics but are different as far as the browser cache is concerned.

These are only some of the issues involved with dynamic buttons. To demonstrate the
process, I'll provide an example and describe the steps. Listing 19.1 is a script that
creates a JPEG of a button with a text label. The button is rectangular and has some
highlighting and shadowing. The label has a drop-shadow effect applied to it and is
centered both vertically and horizontally.

Listing 19.1 JPEG Button

<?
 /*
 ** JPEG button
 ** Creates a graphical button based
 ** on form variables.
 */

 //set parameters if not given
 if(!isset($ButtonWidth))
 {
 $ButtonWidth = 100;
 }

 if(!isset($ButtonHeight))
 {
 $ButtonHeight = 30;
 }

 if(!isset($ButtonLabel))
 {

Core PHP Programming

IT-SC book 602

 $ButtonLabel = "CLICK";
 }

 if(!isset($ButtonFont))
 {
 $ButtonFont = 5;
 }

 //create image and colors
 $image = imagecreate($ButtonWidth, $ButtonHeight);
 $colorBody = imagecolorallocate($image, 0x99,
0x99, 0x99);
 $colorShadow = imagecolorallocate($image, 0x33,
0x33, 0x33);
 $colorHighlight = imagecolorallocate($image, 0xCC,
0xCC, 0xCC);

 //create body of button
 imagefilledrectangle($image,
 1, 1, $ButtonWidth-2, $ButtonHeight-2,
 $colorBody);

 //draw bottom shadow
 imageline($image,
 0, $ButtonHeight-1,
 $ButtonWidth-1, $ButtonHeight-1,
 $colorShadow);

 //draw right shadow
 imageline($image,
 $ButtonWidth-1, 1,
 $ButtonWidth-1, $ButtonHeight-1,
 $colorShadow);

 //draw top highlight
 imageline($image,
 0, 0,
 $ButtonWidth-1, 0,
 $colorHighlight);

 //draw left highlight
 imageline($image,
 0, 0,
 0, $ButtonHeight-2,
 $colorHighlight);

 //determine label size

Core PHP Programming

IT-SC book 603

 $ButtonLabelHeight = imagefontheight($ButtonFont);
 $ButtonLabelWidth = imagefontwidth($ButtonFont) *
 strlen($ButtonLabel);

 //determine label upper left corner
 $ButtonLabelX = ($ButtonWidth -
$ButtonLabelWidth)/2;
 $ButtonLabelY = ($ButtonHeight -
$ButtonLabelHeight)/2;

 //draw label shadow
 imagestring($image,
 $ButtonFont,
 $ButtonLabelX+1,
 $ButtonLabelY+1,
 $ButtonLabel,
 $colorShadow);

 //draw label
 imagestring($image,
 $ButtonFont,
 $ButtonLabelX,
 $ButtonLabelY,
 $ButtonLabel,
 $colorHighlight);

 //output image
 header("Content-type: image/jpeg");
 imagejpeg($image);
?>

The first step the script takes is to make sure it has valid information for all the
parameters. These include the size of the button and the text with which to label the
button. I've chosen to use the built-in fonts, which are numbered one through five.
Chapter 12 has descriptions of functions for loading different fonts, and I encourage
you to modify my script to incorporate them.

The next step is to create an image. There are two ways to do this. You can create an
image of a specific size which is blank, or you can load an existing JPEG. I've chosen the
former because it allows the script to make buttons of any size. You can make much
more stylish buttons using the latter method. This is another good exercise.

The button will be drawn with three colors: a body color, a highlight color, and a shadow
color. I've chosen to go with three shades of gray. These colors must be allocated with the
imagecolorallocate function. Using the body color, the script makes a rectangle
that is one pixel smaller than the entire image. The border around this rectangle is created
with four lines. The lines on the bottom and right sides are drawn in the shadow color,

Core PHP Programming

IT-SC book 604

and the top and left sides are drawn with the highlight color. This creates an illusion of
the button being three-dimensional.

To finish the button, the script draws the label. First the text is drawn slightly off center
in the shadow color. Then the text is drawn in the highlight color over it and exactly
centered, making the text look as though it is floating over the button.

At this point the script has created the image and needs to send it to the browser. It is very
important that the header be sent to let the browser know that this file is a JPEG. Without
it, you get a garbled bunch of strange characters.

This wraps up the script that creates a button, but to really make use of it, we have to use
it in the context of a Web page. Listing 19.2 demonstrates the minimal steps. I've
created an array of four button labels I want to create. I then loop through the array, each
time creating an image tag. The source of the image is the previous script. I pass the
script some parameters to set the size of the button and the label. I leave the font as the
default, but I could have set that as well.

Listing 19.2 Creating Button Dynamically

Core PHP Programming

IT-SC book 605

Generating Graphs on the Fly

Perhaps a more likely use of dynamic graphics is in generating graphs. Since graphs rely
on data, they lend themselves to very formula-driven creation. If the data change often,
using PHP to generate the graphs is a good idea. In the following examples, I've written
the data into the script, but pulling data from a database is not difficult. Sending the data

Core PHP Programming

IT-SC book 606

from a form is probably not a practical idea for large amounts of data. The GET method
imposes a relatively small limit on the total size of a URL that varies between Web
servers. You could use the POST method, however. The two examples I'll show are a bar
graph and a pie chart. Each uses the same set of data, which is a fictitious survey of
favorite meat.

Bar Graphs

Bar graphs are a good way to compare values to each other. Creating them is a relatively
simple task because each data point is a rectangle. The height of the rectangle represents
the value of the data point. To make the transition, a scaling factor is used. In Listing
19.3 the graph is 200 pixels tall and the scaling factor is two. This means that a data
point with the value 75 will be 150 pixels tall.

The business of creating the graph is similar to the process described above where a
button is created. A blank image is created, several colors are allocated, and functions are
called for drawing shapes into the image. The script allows the width of the bars to adapt
to the width of the graph. The width of the graph is divided by the number of bars drawn.
A ten-pixel gutter is drawn between the bars. In the center of the bar the data point's label
is written along with its value.

Listing 19.3 Creating a Bar Graph

Core PHP Programming

IT-SC book 607

Core PHP Programming

IT-SC book 608

Core PHP Programming

IT-SC book 609

Pie Charts

Pie charts are a good way to see how a value represents a percentage of a whole. Each
data point is a slice of a pie with a unique color. A legend associates the colors with each
data point's label and value.

Since the pie chart is round, it represents a much more complex problem. PHP's image
functions allow you to draw an arc or a triangle, but not a pie slice. The solution is to
draw the arc at the end of the slice, then two lines that connect the center of the circle to
the ends of the arc. These elements are drawn in the color of the slice and the
imagefilltoborder function is used to fill the shape.

The arc itself is easy to draw, since the imagearc function will draw an arc based on
starting and stopping degrees. To find the coordinates of the ends of the arc requires some
trigonometry. I've added a function to the script for finding the coordinates of a point on a
circle of a certain degree and diameter. The return values are for a circle centered on (0,
0), so an offset must be added to them to get the coordinates in the graph.

When each of the slices is drawn, a black border is added to the circle and a small box is
drawn for each color used. The data point's label and value are drawn next to the colored
box.

As with the bar graph above, the data used in the chart come from an array hard-coded
into the script in Listing 19.4. It is possible to keep the chart up to date by editing
every time the data change, but it may be better to link it with a database.

Listing 19.4 Creating a Pie Chart

Core PHP Programming

IT-SC book 610

Core PHP Programming

IT-SC book 611

Core PHP Programming

IT-SC book 612

Stretching Single-Pixel Images

The following technique takes advantage of the behavior of most browsers with the width
and height properties of the image tag. It does not require the GD extension, because it
doesn't actually manipulate an image. It relies on the browser to stretch an image to
match the width and height specified in the IMG tag. This allows you to stretch a single-
pixel image into a large bar.

Refer to Listing 19.5. An HTML table is used to line up graph labels with bars. The
largest data element will fill 100 percent of the graph width, which is specified by the
graphWidthMax variable. Each element is pulled from the data array and used to scale
graphWidthMax. This produces a horizontally oriented bar graph, but the same
method can make a vertical graph, too.

Listing 19.5 Bar Graph Using Stretched Images

Core PHP Programming

IT-SC book 613

Core PHP Programming

IT-SC book 614

Part IV: SOFTWARE ENGINEERING

Software engineering is more than just programming. Like a civil engineer carefully
designing and building a skyscraper, a software engineer carefully designs and
implements software systems. Even small PHP scripts may benefit from software
engineering concepts. This section explores the issues involved in using PHP in a Web
site.

Chapter 20 is about integrating PHP and HTML. You can use PHP just in key places
or in generating every page of a site. This chapter helps you decide.

Chapter 21 discusses system specification and design. It develops an approach for
designing a system with PHP, including a phase of careful requirements analysis. A
survey is made of existing methods for designing with PHP.

Chapter 22 touches on issues of efficiency and debugging. It provides information to
help measure performance, and it describes remote debugging.

Core PHP Programming

IT-SC book 615

Chapter 20. INTEGRATION WITH HTML

Sprinkling PHP within an HTML Document

Using the PHP to Output All HTML

Separating HTML from PHP

Creating <SELECT> Fields

Passing Arrays in Forms

By this time, you have learned the basics of PHP. You have a reference for the functions.
And you've been introduced to some fundamental problems of programming. But all the
examples I've shown have been pieces, snippets for the sake of illustration. This chapter
will discuss how to integrate PHP into a Web site. It will help you decide whether to
build a site completely with PHP, to sprinkle PHP throughout the site, or to simply create
a few key PHP-driven pages. I'll also discuss issues involved in using PHP to generate
HTML.

Sprinkling PHP within an HTML Document

The first and most obvious approach to using PHP is to build HTML files as you have
always done, inserting PHP tags as if they were HTML tags. This could take the form of
repeating HTML that you replace with a call to a PHP function. It could take the form of
a large block of PHP code that generates database output. Or it could be a script that
processes a form submission. These are all situations where the impact of PHP on the site
is slight. This is a good first step for those new to programming. You are able to insert the
smallest amount of PHP code as a test. As your experience and confidence grow, so will
your reliance on PHP.

Let's examine creating a PHP function to replace repeating HTML. One great aspect of
cascading style sheets is that they allow you to redefine how tags behave. Unfortunately,
this technology is available only in the newest versions of Navigator and Internet
Explorer. You can provide similar functionality on the server side with PHP. Suppose we
would like all of our headers to be in uppercase letters, bold, size 7, and blue. The
solution is to write a function that takes a string and prints it in the proper format.

In Listing 20.1 I've created a function called PrintTitle. This function wraps a
given string in HTML tags. In some ways the code is more readable than if I had simply
written it as static HTML, because each time there is a title, we see the call to the
PrintTitle function. This may have more meaning than the collection of tags for
which it stands. This is one of the benefits of functions in general: they wrap up
functionality into a single name.

Core PHP Programming

IT-SC book 616

Another benefit is that I can be sure each title will be rendered in exactly the same way.
Less text to type for each title means less chance of leaving out part of the formula. This
is nice to the programmer, who undoubtedly is eager to find a shortcut to typing long
segments of identical HTML. A higher degree of quality is ensured. If a call to the
function is mistyped, PHP will display an error. If no errors are displayed, the titles are
most likely displayed identically and in the correct format. If the title turns out to need
changing, the code must be altered in only one place. This is a good antidote to the
painful phrase, "I changed my mind...."

Another similar use of PHP is to dress up what is essentially CGI output: a large block of
PHP surrounded by HTML so that the output of the code simply appears in a larger page.
This is a similar approach offered by SSI (Server-Side Includes). An SSI tag may call a
CGI and insert the output in its place.

The approach is appropriate in situations where your site is mostly static, but certain key
areas must be dynamic. The advantage is very low impact on the Web server. PHP is
used only when absolutely needed. In Listing 20.2 the code generates information that
doesn't change, but it's easy to imagine code that pulls stock quotes from a database. It
eliminates the need to edit the HTML page each time the information changes, but parts
that don't change often, like the layout of the page, are left as static HTML.

While Listing 20.2 is an example of dynamic output, you are often faced with the
opposite situation. Your site may be completely static, but you need to accept catalog
requests. PHP is a good solution for accepting form submissions. The first step is to
create an HTML page that asks for name and address. Listing 20.3 demonstrates.

Listing 20.1 Formatting Function

<?
 function PrintTitle($title)
 {
 print("<CENTER>");
 print("");
 print("");
 print(strtoupper($title));
 print("");
 print("");
 print("</CENTER>\n");
 }
?>
<HTML>
<HEAD>
<TITLE>Listing 20.1</TITLE>
</HEAD>

<BODY>
<? PrintTitle("Listing 20.1"); ?>

Core PHP Programming

IT-SC book 617

This is an example of using a function to repeat
a commonly-used piece of HTML code.

<? PrintTitle("how it works"); ?>
Any time a title needs to be created, the
<CODE>PrintTitle</CODE>
function is called with the text of the title.

<? PrintTitle("advantages"); ?>
The code is more readable

Less text to type for each title

Easy to change every title

</BODY>
</HTML>

The page in Listing 20.3 is a very simple submission form. Each of the input tags will
be turned into a PHP variable when the submit button is clicked. This calls the script
listed in Listing 20.4. A file named req.txt will be opened for appending, and each
of the form fields will be written into the file. Each field is separated by tab characters,
which allows you to import the file into a spreadsheet easily.

Listing 20.2 Dressing Up CGI Output

<HTML>
<HEAD>
<TITLE>Listing 20.2</TITLE>
</HEAD>
<BODY>
<H1>Color Chart</H1>
<P>The following chart displays the colors
safe for displaying in all browsers. These
colors should not dither on any computer
with a color palette of at least 256
colors.</P>
<P>This chart will only display on browsers
that support table cell background colors.</P>
<?
 $color = array("00", "33", "66", "99", "CC", "FF");

 for($Red = 0; $Red count <($color); $Red++)
 {
 print("<TABLE>\n");

 for($Green = 0; $Green count <($color);
$Green++)
 {
 print("<TR>\n");

Core PHP Programming

IT-SC book 618

 for($Blue = 0; $Blue count <($color);
$Blue++)
 {
 $CellColor = $color[$Red] .
 $color[$Green] .
$color[$Blue];

 print("<TD
BGCOLOR=\"#$CellColor\">");
 print("<TT>$CellColor/TT>");
 print("</TD>\n");
 }

 print("</TR>\n");
 }

 print("</TABLE>\n");
 }
?>
</BODY>
</HTML>

Listing 20.3 Catalog Request Form

<HTML>
<HEAD>
<TITLE>Listing 20.3</TITLE>
</HEAD>
<BODY>
Please enter name and address to receive a free catalog.
<FORM ACTION="20-4.php">
<TABLE>
<TR>
 <TD>Name</TD>
 <TD>INPUT TYPE="text" NAME="InputName"></TD>
</TR>
<TR>
 <TD>Address</TD>
 <TD>INPUT TYPE="text" NAME="InputAddress"></TD>
</TR>
<TR>
 <TD>City</TD>
 <TD>INPUT TYPE="text" NAME="InputCity"></TD>
</TR>
<TR>
 <TD>State</TD>

Core PHP Programming

IT-SC book 619

 <TD>INPUT TYPE="text" NAME="InputState"></TD>
</TR>
<TR>
 <TD>ZIP</TD>
 <TD>INPUT TYPE="text" NAME="InputZIP"></TD>
</TR>
<TR>
 <TD>INPUT TYPE="reset"></TD>
 <TD>INPUT TYPE="submit"></TD>
</TR>
</TABLE>
</FORM>
</BODY>
</HTML>

Listing 20.4 Form Submission

<HTML>
<HEAD>
<TITLE>Listing 20.4</TITLE>
</HEAD>
<BODY>
<?
 /*
 ** process form input, append it to file
 */
 $CatalogRequests = fopen("req.txt", "a");
 if($CatalogRequests)
 {
 fputs($CatalogRequests, "$InputName\t");
 fputs($CatalogRequests,
"$InputAddress\t");
 fputs($CatalogRequests, "$InputCity\t");
 fputs($CatalogRequests,
"$InputState\t");
 fputs($CatalogRequests, "$InputZIP\n");
 fclose($CatalogRequests);
 }
?>
Thank you for your catalog request!

Return to Site

</BODY>
</HTML>

Using PHP to Output All HTML

Core PHP Programming

IT-SC book 620

Any of the examples in the previous section is an excellent first step toward introducing
PHP into a Web site. Their impact in terms of server load is relatively low. I like to think
of sites using similar approaches as being PHP-enabled, as if they had a small injection of
PHP that makes them extraordinary. The step beyond this is what I think of as PHP-
powered: a site made completely of PHP. In this approach every byte of output comes
from PHP. The print (or echo or printf) function is used to send HTML tags.
Every page is a script inside a single pair of PHP tags.

You might have noticed that most of the examples in the book take this approach. I have
found that while this requires extra time up front, the code is much more maintainable.
Once information is put in the context of a PHP variable, it's easy to add something
dynamic to it later. It also has the advantage of ultimately being more readable as the
page becomes more complex. As a simple example, compare Listing 20.5 to Listing
20.6. The idea is to change the background color of the page depending on the time of
day.

My experience has been that having all the HTML inside the PHP script allows very
quick changes. I don't have to search for the opening and closing tags buried inside the
HTML as in Listing 20.5. It also allows me to break code up into separate lines in the
source code that appear as a single line in the output. An example is the header text. I can
enhance the readability but not sacrifice the presentation. This has become very handy
when dealing with tables. Leaving any whitespace between a TD tag and an image causes
an extra pixel to appear. In an HTML file, the solution is to run the whole thing together
on one line. Inside a PHP script I can have many print calls and send an endline only
in the last. The result is a single line in the output, but very readable source code.

The usefulness of these techniques, like that of many others, increases with the size of the
project. I've created 50-page Web applications using both approaches and can attest to the
value of putting everything inside the PHP code.

Listing 20.5 Mixing PHP and HTML

<HTML>
<HEAD>
<TITLE>Listing 20.5/TITLE>
</HEAD>
<?
 $Hour = date("H");
 $Intensity = round(($Hour/24.0)*(0xFF));
 $PageColor = dechex($Intensity) .
 dechex($Intensity) .
 dechex($Intensity);
?>
<BODY BGCOLOR="#? print($PageColor); ?>">
<H1>Listing 20.5</H1>
</BODY>
</HTML>

Core PHP Programming

IT-SC book 621

Listing 20.6 Converting Script to Be Completely PHP

<?
 print("<HTML>\n");
 print("<HEAD>\n");
 print("<TITLE>Listing 20.6</TITLE>\n");
 print("</HEAD>\n");

 $Hour = date("H");
 $Intensity = round(($Hour/24.0)*(0xFF));
 $PageColor = dechex($Intensity) .
 dechex($Intensity) .
 dechex($Intensity);

 print("<BODY BGCOLOR=\"#$PageColor\">\n");
 print("<H1>Listing 20.6</H1>\n");
 print("</BODY>\n");
 print("</HTML>\n");
?>

Separating HTML from PHP

The last approach I want to discuss involves using the include and require
functions. As you may recall from Chapter 8, "I/O Functions," these functions
include a file in the PHP code. The file is considered to be a PHP file, regardless of the
extension on the name. If PHP code appears in the included file, it is surrounded in <?
and ?> tags. You may want to turn back to the functional reference to refresh yourself on
the differences between include and require , but they aren't particularly important
to this discussion.

Certain chunks of HTML must appear on every well-formed page. Additionally you may
develop repeating elements such as a company logo. Rather than write them into every
page, you may choose to put them into a file and dynamically include them. Listing
20.7 contains HTML you might include at the top of every page on a site. In Listing
20.8 are two lines to close a page. Listing 20.10 wraps the content in Listing 20.9
with the opening and closing code to form a complete page.

Listing 20.7 Start of HTMLPage

<HTML>
<HEAD>
<TITLE>PHP</TITLE>
</HEAD>
<BODY>

Listing 20.8 End of HTML Page

Core PHP Programming

IT-SC book 622

</BODY>
</HTML>

Listing 20.9 Page Content

This is the body of the page.

It's just a bit of HTML.

Listing 20.10 Page-Building Script

<?
 /*
 ** include code to open HTML page
 */
 require("20-7.html");

 /*
 ** include content
 */
 require("20-9.html");

 /*
 ** include code to close HTML page
 */
 require("20-8.html");
?>

In this way, HTML and PHP are separated into modules. In this example I have hard-
coded the inclusion of a two-line HTML file, but I could just as easily have included the
color tables from Listing 20.2. The HTML in Listing 20.7 can be reused from page
to page, and if I need to add something to every page on the site, I need to edit only that
one file. I might want to add the PHP function from Listing 20.1. It will then be
available for use inside the code from Listing 20.9.

It may occur to you that this approach is exhibiting another pattern. Every page on the
site will simply become three calls to require. The first and last calls will always be
the same. In fact every page on the site will vary simply by the name of the file included
in the second require statement. This takes us beyond the issue of integrating HTML
and PHP and into the structural design of a site. It is possible to create a site that has
exactly one PHP script. This idea is developed in Chapter 21, "Design."

Creating <SELECT> Fields

An HTML SELECT tag allows you to list several options that appear as a pull-down
menu. I am often in the situation of creating the contents of the list on the fly. Sometimes
the contents are pulled from a database, such as for choosing from among users in a Web

Core PHP Programming

IT-SC book 623

application. Other times the contents are generated, such as choosing month, day, and
year. There are two aspects to this problem. First, there is the fairly simple problem of
creating all the values for the OPTION tags. This is best accomplished in a loop. The
second issue deals with preselecting one of the options.

Regardless of the source of the contents, database or otherwise, the technique is similar.
To illustrate, I'll develop a function for generating three SELECT fields for getting a date
from the user: month, day, and year. To generate a list of the months, it is best to draw
from an array to display their names. Days and years are numbers, so their values and
displayed names are the same. Listing 20.11 demonstrates.

The options for each selector are generated in a for loop. Months range from 1 to 12,
days from 1 to 31. For years, I've chosen to present an 11-year range around the current
year. Notice that if you submit a date, it refreshes the page and sets the form with the date
you chose. The key is the addition of the if statement. Each time through the loop the
current value is tested against the one to be selected.

Listing 20.11 Date Selector

Core PHP Programming

IT-SC book 624

Core PHP Programming

IT-SC book 625

Core PHP Programming

IT-SC book 626

Passing Arrays in Forms

Though it may not be apparent, it is possible to pass arrays from a form. To understand
how, you must recall how form fields are turned into PHP variables. Each field is read in
order by PHP and turned into an assignment statement. A URL like
http://www.somesite.com/script.php3?name=leon creates an assignment
like $name = "leon", which means that before the script begins executing, the name
variable is set.

The name of the form field is treated as the left side of an assignment statement. This
means that if other special characters appear as part of the name of the field, they will
interpreted accordingly. You can include square brackets to force the variable to be an
array. An empty pair of square brackets will add a value to an array using consecutive
integers. So, if you name multiple fields in a form with the same name that ends in a pair
of empty brackets, an array will be constructed for you when the form is submitted.
Listing 20.12 illustrates this method.

There are limitations to this technique. Only single-dimension arrays are passed correctly.
You also need to be aware of buggy browsers. You should always place double quotes
around field names anyway, but I've run into browsers that don't pass fields properly
when fields ending in square brackets aren't quoted.

Listing 20.12 Passing an Array via a Form

Core PHP Programming

IT-SC book 627

Core PHP Programming

IT-SC book 628

Core PHP Programming

IT-SC book 629

Chapter 21. DESIGN

Writing Requirements Specifications

Writing Design Documents

Using CVS

Modularization Using include

FreeEnergy

FastTemplate

Midgard

Ariadne

Preserving State and Providing Security

Cloaking

URLs Friendly to Search Engines

Running a Script Regularly

Building a Web site with PHP is not the same as building a static Web site. If you choose
simply to sprinkle PHP code occasionally throughout the site, the effect may be minimal,
of course. If you choose to use PHP to generate every page, you will find many
opportunities for transforming patterns into functions. As I wrote in Chapter 20,
"Integration with HTML," elements such as opening and closing body tags can be
put into a function or an included file. The consequence of this situation is that you no
longer have a Web site . You have a Web application .

When this happens, it becomes more important to draw upon formal development
techniques. Certainly, structured design is useful when building static Web sites. The
case is made plainly in Web Site Engineering by Thomas Powell. The addition of PHP
makes careful design critical. I can't cover every topic of software engineering as it
applies to Web applications in the context of a chapter. I recommend reading Powell's
book as an excellent starting point.

After introducing the basics of software requirements and design, I will explore some
specific design issues and solutions.

Writing Requirements Specifications

Core PHP Programming

IT-SC book 630

Before you can design a system, it is important to understand what it's supposed to do.
Too often this comes in the form of a verbal request such as, "We need a home page with
a guest book and a visitor counter," which is never further defined. This usually leads to
the building of a prototype that is 25 percent of what the client wants. Changes are made
to the prototype, and the site is now 50 percent of what the client wants now. During the
time the changes were made, the client has moved the target.

The solution to this problem is to set a target and stick with it. This should start with a
statement of the goals for the project. In my experience the most important question left
unasked is about motivation. When a client asks for a large animated scene to appear on
their index page, often the motivation is a desire to seem familiar with leading-edge
technology. Instead of blindly fulfilling the client's request, it is better to look for the best
solution for the "Why?". A slick graphical design can say more about the client's
attention to advances in technology.

Once you have asked "Why?" enough times, you should have a list of several goals for
the project. These goals should suggest a set of requirements. If one of the system's goals
is to generate more business, one requirement may be to raise visitor awareness of items
in the client's catalog. This may evolve into a requirement that products appear
throughout the site on a rotational basis. This could be implemented as banners or kickers
strategically placed within the site. Don't, however, tie yourself down with design issues.
This earliest stage of site development should concentrate solely on the goals of the
system.

From a solid base of goals, you can begin to describe the system requirements. This
usually takes the form of a requirements specification document, a formal description of
the black-box behavior expected from the site. The goals will suggest a collection of
functional requirements and constraints on the design. As I've said, having a goal of
increasing sales suggests, among other things, that the site should raise customer
awareness of catalog items. Another requirement could be that the site provide some free
service to attract visitors. An example is a loan company offering a mortgage calculator.
It is a good idea to informally explore possible solutions to requirements, but it's still
important to keep design decisions out at this time.

The requirements specification is formal and structured, but it should be understandable
by nonexperts in the implementation technology. The description of the system's
behavior serves partially as a contract between the client and developer. Clear statements
will eliminate misunderstandings that have a high cost later in development. That is not
to say that the document shouldn't be precise. When possible, state requirements in
measurable terms. Constraining page size to 30K is an objective standard and easily
tested. Requiring the site to inspire confidence in the client company is not easily
measurable, but sometimes it's all you have.

Table 21-1 lists six things toward which a requirements specification should aspire. It
should only specify external behavior. Every requirement should be expressed as the
answer to a "What?" question. It should specify constraints. These are best expressed as
quantities: How many hits per day? Maximum page size? Maximum page depth? The

Core PHP Programming

IT-SC book 631

requirements specification should allow you to change it later. While you should use
natural language, don't write a long narrative. Number sections of the document and use
diagrams where necessary. It should be a document that helps a future programmer learn
about the system. Don't be surprised if that programmer is you six months later.

The requirements should pay attention to the entire life of the system. If the system needs
to be able to recover from a catastrophic failure within an hour, write it into the
specification. And the follow-up to this idea is that you should describe how the system
deals with adversity—not just disaster, but also illegal user input. Some systems ignore
user input that is not understood. How many times have you seen a "404 Document Not
Found" error? It's nice when that page includes a link to the index page of the site.

Keeping these guidelines in mind, refer to Table 21-2, which outlines the structure of a
requirements specification. The overview should be a page or less that reviews the goals
of the site. If the goals were detailed in another document, make this document available.
It is important to preserve the thought that went into the project at each phase. The
requirements build on the goals, and in turn the design will build on the requirements.
But being able to refer to the original goals of the system will be helpful to the designer
and even the implementer.

Table 21-1. Properties of Requirements Specifications

Only specifies external system behavior

Specifies constraints on the implementation

Allows easy modification

Serves as a reference tool for system maintainers

Records forethought about the life cycle of the system

Characterizes acceptable responses to undesired events

Table 21-2. Requirements Specification Document Structure

Overview of System Goals

Operating and Development Environments

External Interfaces and Data Flow

Functional Requirements

Core PHP Programming

IT-SC book 632

Performance Requirements

Exception Handling

Implementation Priorities

Foreseeable Modifications

Design Suggestions

The operating and development environments are sometimes overlooked in requirements
specifications. This includes both the browser and the Web server. If you are developing
an intranet application, you may be fortunate enough to optimize for a particular browser
version. I've found that while a large company may impose a standard browser for the
organization for which you've developed an application, another standard may apply to
the users in another organization a thousand miles away. My wish for you is that you
never build a system for Netscape Navigator version 3.01, only to be asked to make the
system work for Microsoft Internet Explorer version 3.02.

The Web server is perhaps more under your control and certainly less finicky about
differences in source code. If you are using PHP, most likely you will be using Apache.
It's a good idea to use identical versions of both Apache and PHP for your development
and live environments.

For the most part, your list of external interfaces will include the Internet connection
between the browser and the Web server, the local file system, and possibly a database
connection. I find it helpful to create a diagram that shows the relationship between data
elements, the simplest of which might be a box labeled Browser connected to a box
labeled Server. The line would have arrows at each end to show that information travels
in both directions. This diagram is a description of the context, not a design of the data
structure. Whether you will be using a database may be obvious, but which database may
not. If the system will be storing data somehow, just show data flowing into a box that
could be database or flat file. The goal is to describe how data moves around in the
system.

The functional requirements will certainly be the largest part of the document. If you
have drawn a data flow diagram, you may have a very good idea of how the system
breaks up into modules. The more you can partition the functionality into distinct pieces,
the easier it will be to group the functional requirements. I've written many requirements
documents for Web applications that are essentially data warehouses. My approach has
been to dedicate a section to each of the major data entities. A project management
application might have a collection of project descriptions, a collection of users, and a
collection of comments. Each of these would have a section in the functional
requirements that lists first all the information they store and then the ways the
information can be manipulated.

Core PHP Programming

IT-SC book 633

The performance requirements are constraints on the functionality. You may wish to
outline a minimum browser configuration for use of the site. Maximum page weights are
a good idea. If the client is dictating that a certain technology be used, it should be noted
in this section. It's good to know in advance that while you will be allowed to use PHP,
you have to deal with Oracle and Internet Information Server on Windows NT.

The exception-handling section describes how the system deals with adversity. The two
parts of this are disaster and invalid input. Discuss what should happen if the Web server
suddenly bursts into flame. Decide whether backups will be made hourly, daily, or
weekly. Also decide how the system handles users entering garbage. For example, define
whether filling out a form with a missing city asks the user to hit the back button or
automatically redisplays the form with everything filled out and the missing field marked
with a red asterisk.

If the client has a preference for the order of implementation, outline it. My experience
has been that, faced with a dire deadline before the project begins, the client will bargain
for which functionality will appear in the first round. Other requirements may not be
critical to the system, and the client is willing to wait. If there is a preference in this area,
it is very important for the designer and implementers to know in advance.

Farther in the future are the foreseeable modifications. The client may not be ready to
create a million-dollar e-commerce site just yet, but they may expect to ask you to plug
this functionality into the site a year from now. It may not make sense to use an
expensive database to implement a 50-item catalog, but building a strong foundation for
later expansion will likely be worthwhile.

The last part of the requirements specification is a collection of design hints. This
represents the requirements writer's forethought about pitfalls for the designer. You might
summarize a similar project. You might suggest a design approach.

Writing Design Documents

Once you have created a requirements specification document, you will have to decide
whether to write a design document. Often it is not necessary, especially when a few
people are working on a small project. You may wish to choose key elements of a
complete design document and develop them to the point of usefulness.

The first part of design is concerned with the architecture of the system. The system
should be broken into sections that encompass broad groups of functionality. A Web
application for project management might break down into a module that handles project
information, a module that handles users, and a module that handles timesheet entries. An
informational Web site can be broken down by the secondary pages—that is, the pages
one click away from the home page. The "About Us" section serves to inform visitors
about the company itself, while a catalog area is a resource for learning about the items
the company sells.

Core PHP Programming

IT-SC book 634

Depending on the type of site, you should choose some sort of diagram that shows the
subsystems and how they relate to each other. These are called entity relationship
diagrams. I almost always create a page-flow diagram. Each node in the graph is a page
as experienced by the user. Lines representing links connect the page to other pages on
the site. Another useful diagram is one that shows the relationship between database
tables. Nodes represent tables, and you may wish to list the fields inside boxes that stand
for the tables. Lines connect tables and show how fields match. It's also helpful to
indicate whether the relationship between the tables is one to one or one to many.

The next phase of design is interface specification. This defines how subsystems
communicate. It can be as simple as listing the URLs for each page. If the site has forms,
all the fields should be enumerated. If you are tracking user sessions, you will want to
specify how you will be doing this, with cookies or form variables. Define acceptable
values for the session identifier. If the site will be communicating with files or a database,
this phase will define names of files or login information for databases.

The largest part of a design document is a detailed description of how each module
works. At this point it's acceptable to specify exactly the method for implementing the
module. For example, you may specify that a list of catalog items be presented using the
UL tag. On the other hand, if it doesn't matter, I suggest leaving it out. The person writing
the actual code will probably have the best idea for solving the problem.

I suggest pursuing a style guide, which may be part of the design document or may stand
alone. This document specifies the style of the code in the project. You'll find an example
in Appendix G, but don't bother flipping there now. The style guide deals with issues
like how to name variables, or where to place curly braces. Many of these issues are
arbitrary. What's important is that a decision is made and followed. A large body of code
formatted according to a standard is easier to read.

For the rest of this chapter I'd like to present some design ideas you may choose to adopt.
PHP's dynamic nature allows for structural designs that can't be achieved in plain HTML.
It is a shame to waste this functionality by using PHP as a faster alternative to CGI. I
encourage you to consider using PHP as the engine that powers a completely dynamic
Web site.

Using CVS

CVS, Concurrent Versions System, is an open-source system that allows developers to
track all changes to a project. A central repository stores the files that make up the
project. Developers check out copies, modify them, and check them back in. The system
records all changes, which allows team members to check out any previous version of
any given file. The system also is able to merge differences if two developers make
independent changes to the same file.

In the context of project management, I have come to believe CVS is essential. It allows
developers to collaborate efficiently, even when they are in separate locations. Popular

Core PHP Programming

IT-SC book 635

Net projects such as Apache, Linux, and PHP use CVS and probably wouldn't be as
successful if they didn't.

Even a brief tutorial is out of the scope of this text, so I will direct you to Karl Fogel's
book, Open Source Development with CVS <http://cvsbook.red-bean.com/>. The
chapters that deal with CVS specifically are free to download, but I recommend buying
the book if you decide to use CVS. Beyond the mechanics of CVS itself, it documents
how CVS fits into the development process.

Modularization Using include

Despite its name, the include function is not equivalent to C's preprocessor command
of the same name. In many ways it is like a function call. Given the name of a file, PHP
attempts to parse the file as if it appeared in place of the call to include. The difference
from a function is that the code will be parsed only if the include statement is
executed. You can take advantage of this by wrapping calls to include in if
statements. The require function, on the other hand, will always include the specified
file, even if it is inside an if block that is never executed. It has been discussed several
times on the PHP mailing list that require is faster than include because PHP is
able to inject the specified file into the script during an early pass across the code.
However, this applies only to files specified by a static path. If the call to require
contains a variable, it can't be executed until the runtime. It may be helpful to adopt a rule
of using require only when outside a compound statement and when specifying a static
path.

Almost anything I write in PHP uses include extensively. The first reason is that it
makes the code more readable. But the other reason is that it breaks the site into modules.
This allows multiple people to work on the site at once. It forces you to write code that is
more easily reused, within the existing site and on your next project. Most Web sites have
to rely on repeating elements. Consistent navigation aids the user, but it is also a major
problem when building and maintaining the site. Each page has to have a duplicate code
block pasted into it. Making this a module and including it allows you to debug the code
once, making changes quickly.

You can adopt a strategy that consists of placing functions into include modules. As each
script requires a particular function, you can simply add an include. If your library of
functions is small enough, you might place them all into one file. However, you likely
will have pieces of code that are needed on just a handful of pages. In this case, you'll
want this module to stand alone.

As your library of functions grows, you may discover some interdependencies. Imagine a
module for establishing a connection to a database, plus a couple of other modules that
rely on the database connection. Each of these two scripts will include the database
connection module. But what happens when both are themselves included in a script?
The database module is included twice. This may cause a second connection to be made

Core PHP Programming

IT-SC book 636

to the database, and if any functions are defined, PHP will report the error of a duplicate
function.

In C, programmers avoid this situation by defining constants inside the included files, and
you can adopt a similar strategy. You can define a constant inside your module. If this
constant is already defined when the module is executed, control is immediately returned
to the calling process. A function named printBold is defined in Listing 21.1. This
function is needed in the script shown in Listing 21.2. I've purposely placed a bug in
the form of a second include. The second time the module is included, it will return
before redeclaring the function.

Listing 21.1 Preventing a Double Include

<?
 /*
 ** Avoid double includes
 */
 $included_flag = 'INCLUDE_' . basename(__FILE__);
 if(defined($included_flag))
 {
 return(TRUE);
 }
 define($included_flag, TRUE);

 function printBold($text)
 {
 print("$text");
 }
?>

Listing 21.2 Attempting to Include a Module Twice

<?
 //load printBold function
 include("21-1.php");

 //try loading printBold function again
 include("21-1.php");

 printBold("Successfully avoided a second include");
?>

FreeEnergy

I used the technique of including modules on several Web applications, and it led me to
consider all the discrete elements of a Web page. Headers and footers are obvious, and so
are other repeating navigational elements. Sometimes you can divide pages up into the

Core PHP Programming

IT-SC book 637

content unique to the page, the stuff that comes before it, and the stuff that comes after it.
This could be hard to maintain, however. Some of the HTML is in one file, some in
another. If nothing else you'll need to flip between two editor windows.

Consider for a moment a Web page as an object—that is, in an object-oriented way. On
the surface, a Web page is a pair of HTML tags containing HEAD tags and BODY tags.
Regardless of the design or content of the page, these tags must exist, and inside them
will be placed further tags. Inside the BODY tags a table can be placed for controlling the
layout of the page. Inside the cells of the table are either links to other pages on the site or
some content unique to the page.

FreeEnergy is a system that attempts to encapsulate major pieces of each page into files
to be included on demand. Before I proceed, I want to state my motivations clearly. My
first concern when developing a Web site is that it be correct and of the highest quality.
Second is that it may be developed and maintained in minimal time. After these needs are
addressed, I consider performance. Performance is considered last because of the
relatively cheap cost of faster hardware. Moore's law suggests that eighteen months from
now, CPU speed and memory capacity will have doubled for the same price. This
doubling costs nothing but time. Also, experience has shown that a small minority of
code contributes to a majority of the time spent processing. These small sections can be
optimized later, leaving the rest of the code to be written as clearly as possible.

The FreeEnergy system uses more calls to include than you'd find where you are
simply making a few includes at the top of your pages. Hits to the file system do take
longer than function calls, of course. You could place everything you might need in one
large file and include it on every page, but you will face digging through that large file
when you need to change anything. A trade has been made between the performance of
the application and the time it takes to develop and maintain it.

I called this system FreeEnergy because it seems to draw power from the environment
that PHP provides. The include function in PHP is quite unique and central to
FreeEnergy, especially the allowance for naming a script with a variable. The content
unique to a page is called a screen. The screen name is passed to a single PHP script,
which references the screen name in a large array that matches the screen to
corresponding layout and navigation modules.

The FreeEnergy system breaks Web pages into five modules: action, layout, navigation,
screen, and utility. Action modules perform some sort of write function to a database, a
file, or possibly to the network. Only one action module executes during a request, and
they are executed before the screen module. An action module may override the screen
module named in the request. This is helpful in cases where an action module is
attempting to process a form and the submitted data are incomplete or otherwise
unsatisfactory. Action modules never send data directly to the screen. Instead, they add
messages to a stack to be popped later by the layout module. It is possible that an action
module will send header information, so it's important that no output be produced.

Core PHP Programming

IT-SC book 638

Layout modules contain just enough code to arrange the output of screen and navigation
modules. They typically contain table tags, as is the custom for controlling the layout
of a Web page. Inside the table cells, calls to include are placed. They may be
invoking navigation modules, or screen modules.

Navigation modules contain links and repeating elements. In the vernacular used by
engineers I work with, these are "top nav," "bottom nav," and "side nav." Consider the
popular site, Yahoo. Their pages generally consist of the same navigation across the top
and some at the bottom. Their top nav includes their logo and links to important areas of
their site. If the Yahoo site were coded in FreeEnergy, there would probably be a
dynamic navigation module for generating the path to the current section, such as Home
> Computers and Internet > Software > Internet > World Wide
Web > Servers > Server Side Scripting > PHP.

Screen modules contain the content unique to the particular page being displayed. They
may be plain HTML, or they may be primarily PHP code, depending on context. A press
release is static. It can be prepared by someone unfamiliar with PHP. They only need to
know that the screen module is an HTML fragment.

Any module may rely on a utility module in much the same way utility files are used in
other contexts. Some utility modules are called each page load. Others are collections of
functions or objects related to a particular database table.

All modules are collected in a modules directory that further contains a subdirectory for
each module type. To enhance security, it is placed outside of the Web server's document
root. Within the document root is a single PHP script, index.php. This script begins
the process of calling successive modules and structuring their output with the standard
HTML tags.

Because I've been using this system for some time, you have the opportunity to example
several working models. One example is FreeTrade, an open-source framework for
building e-commerce sites <http://www.working-dogs.com/freetrade/>.

FastTemplate

One interesting thing I've learned in my years in the Web development business is that no
two shops build Web applications the same way. Some have a mix of people who may be
talented in certain areas, but all can do the same type of work. Others enforce a strict
separation between those who do HTML and those who write scripts. Others draw the
line between a graphic design group and an engineering group that does HTML and
scripting. It can become inefficient for an HTML group to be requesting changes from a
scripting group.

FastTemplate addresses this problem by separating HTML from PHP. Templates are
written in HTML and may contain special codes surrounded by curly braces. A PHP
script loads the templates, defines values for the special codes and replaces them. The
codes may be replaced with other templates or with data created by PHP.

Core PHP Programming

IT-SC book 639

The implication is that people unable to work with PHP code will be comfortable
working with template files that better resemble plain HTML. Small changes to the
HTML can be made without interaction with the engineers, who might be grumpy about
making changes. In addition, the engineers won't have to worry about novices
introducing errors into their scripts.

If you face these issues, I encourage you to visit the FastTemplate home page
<http://www.thewebmasters.net/php/ >. You can download the class itself
along with documentation and examples. You may also like to read an article written by
Sascha Schumann that appeared on the PHPBuilder site
<http://www.phpbuilder.com/ >.

Midgard

Another approach to Web site design with PHP is the Midgard project
<http://www.midgard-project.org/>. The maintainers are Jukka Zitting and
Henri Bergius. Rather than code a solution in PHP alone, they have pursued integrating
PHP into their own application server. Midgard is capable of organizing more than
800,000 pages of content using a Web-based interface. For this reason it is ideal for
operating Magazine sites.

Midgard is an open source project, of course. You can download an official release, or
grab a snapshot through CVS. In order to install it, you must modify PHP slightly, but
instructions are available at the Midgard site. Because it requires compilation, running
Midgard on Windows is probably not worth the effort.

Ariadne

Still in beta at time of writing, Ariadne is a Web application framework from Muze, a
development agency in the Netherlands. It's available under the GNU Public License.
Auke van Slooten leads the project. The source code can be downloaded from the Muze
site <http://www.muze.nl/software/ariadne/ >.

Ariadne stores PHP source code as objects in a MySQL database. These objects interact
with each other using a virtual file system. A rich user interface is presented to the user
through Web pages, but advanced users may dig deeper, as well. Another major
component controls access rights for users or groups.

Preserving State and Providing Security

Chapter 15, "Sorting, Searching, and Random Numbers," outlines session
identifiers, but it may not have been immediately obvious why you would want to
implement them. You may wish to secure your Web application by requiring visitors to
identify themselves with a login and password. Requiring this page after page, though,
would be very annoying. You may even want to track users through the site without

Core PHP Programming

IT-SC book 640

actually identifying them. The process should be invisible and should not intrude on the
experience.

One solution is to generate a random session identifier. This identifier must not be easy to
guess and must be unique to each user. The session could be stored in a database or a file
and passed in every link or form. The site simply checks that the session is valid each
time a page is requested. If the session is invalid, you may display an error message, send
the user back to the login page, or just generate a new session identifier, depending on
context.

In a site that requires users to log in, the session identifier will be associated with a user
identifier, which would be the key to a table of user information. You may also keep
track of the last time the session requested a page and have all those with no activity in a
given period, perhaps 15 minutes, expire. This protects users who walk away from their
computers without explicitly logging out.

You may also choose to associate arbitrary variables with each session. This is relatively
easy to implement with a relational database. Create a table where each row is uniquely
identified by session identifier and variable name. Creating a variable is as easy as
inserting a row into the table. You can fetch each variable with each request, or fetch
them only as needed. Another approach would be serializing an array of values and
storing it in a single table column.

Chapter 7, "I/O and Disk Access," describes the session-handling system built
into PHP 4, and Chapter 8, "I/O Functions," offers a list of the functions available.
These functions present a system that handles the chores of moving data between
variables and permanent storage. Although the default handler stores variables on the
local file system, it is possible to write your own handler that stores them in a database.

Cloaking

When creating a plain HTML site, you confront two paths: create a site that works great
in only one browser, or create a mediocre site that works in all browsers. PHP allows you
to create a site that works great in any browser. The HTTP_USER_AGENT variable
contains the string most browsers send to the Web server to identify themselves. This
variable may be used to choose between versions of content. This cloaks the inner
workings of the site from the browser. A seamless experience is provided to visitors,
despite differences in browser capabilities.

Chapter 16, "Parsing and String Evaluation," contains an example of using
regular expressions to parse HTTP_USER_AGENT into understandable elements. In most
cases browser name and version are sufficient, though operating system is also helpful.
My experience is that there are subtle differences between identical versions of browsers
running on Windows or the Macintosh. One design element I have cloaked in the past is a
JavaScript rollover, a graphic button that changes when the mouse is passed over it. For
example, the label on the button may glow. This is accomplished in JavaScript by

Core PHP Programming

IT-SC book 641

replacing the image. Unfortunately, this is not possible in older browsers. The code to
accomplish this may be included only for browsers capable of executing it.

Another cloak I've used in the past involved graphic hard rules. An HTML trick is to
create a single-pixel image and stretch it by setting the height and width attributes to
values larger than one. This effect can be used to stretch the pixel into a line that becomes
a hard rule. And unlike the HR tag, the rule can be any color. For older browsers that
don't allow stretching of images, I send an HR tag instead to approximate the effect.
Alternatively, I could have pointed to a graphic of the appropriate size.

Consider combining the strategy of cloaking with FreeEnergy. You can choose different
layout modules for different browsers. The text-only Lynx browser doesn't allow you to
arrange elements using HTML tables, as is customary, and may jumble your content.
Because the content is separated from the layout code, you could create a Lynx-friendly
version of an entire site by creating a single layout module.

URLs Friendly to Search Engines

Search engines such as Google <http://www.google.com/> and Alta Vista
<http://www.altavista.com/> attempt to explore the entire Web. They have
become an essential resource for Internet users, and anyone who maintains a public site
benefits from being listed. Search engines use robots, or spiders, to explore pages in a
Web site, and they index PHP scripts the same way they index HTML files. When links
appear in a page, they are followed. Consequently, the entire site becomes searchable.

Unfortunately, robots will not follow links that appear to contain form variables. Links
containing question marks may lead a robot into an endless loop, so they are programmed
to avoid them. This presents a problem for sites that use form variables in links. Passing
form variables in anchor tags is a natural way for PHP to communicate, but it can keep
your pages out of the search engines. To overcome this problem, data must be passed in a
format that resembles URLs.

First, consider how a Web server accepts a URI and matches it to a file. The URI is a
virtual path, the part of the URL that comes after the host name. It begins with a slash and
may be followed by a directory, another slash, and so forth. One by one, the Web server
matches directories in the URI to directories in the filesystem. A script is executed when
it matches part of the URI, even when more path information follows. Ordinarily this
extra path information is thrown away, but you can capture it.

Look at Listing 21.3. This script works with Apache compiled for UNIX but may not
work with other Web servers. It relies on the PATH_INFO environment variable, which
may not be present in a different context. Each Web server creates a unique set of
environment variables, although there is overlap.

You may be accessing the code in Listing 21.3 from the URL
http://localhost/corephp/figures/21-5.php/1234.html. In this case, you are

Core PHP Programming

IT-SC book 642

connecting to a local server that contains a directory named corephp/figures in its
document root. A default installation of Apache might place this in
/usr/local/apcache/htdocs. The name of the script is 21-5.php, and
everything after the script name is then placed in the PATH_INFO variable. No file
named 1234.html exists, but to the Web browser it appears to be an ordinary HTML
document. It appears that way to a spider as well.

Listing 21.3 Using Path Info

The code in Listing 21.3 doesn't really do much. It uses a regular expression to extract
the numbers between the last slash and the .html extension. The script pretends this is

Core PHP Programming

IT-SC book 643

an identifier. It could be referencing a record in a relational database. I've added some
code to use a random number to create a link to another imaginary record. Remember the
BBS from Chapter 17, "Database Integration?" This method could be applied,
and each message would appear to be a single HTML file.

I've introduced only the essential principles of this method. There are a few pitfalls, and a
few enhancements to be pursued. Keep in mind that Web browsers do their best to fill in
relative URLs, and using path information this way may foil their attempts to request
images that appear in your scripts. Therefore, you must use absolute paths. You might
also wish to name your PHP script so that it doesn't contain an extension. This is possible
with Apache by setting the default document type, using the DefaultType
configuration directive. You can also use Apache's mod_rewrite. I encourage you to
read about these parts of Apache at its home site <http://www.apache.org/docs/>.

Running a Script Regularly

Both UNIX and Windows NT have facilities for running programs according to a
schedule. In UNIX you can edit your crontab file, and in Windows you use the
scheduling service. These are useful when you wish to perform some maintenance
function as part of your PHP-powered site. You may write a script to download the list of
files at the Slashdot site <http://www.slashdot.org/>. Another script might rebuild
the index for a local search engine. Both crontab and the scheduling service take a
command line and execute it at a given time. If you're not familiar with the details, either
read the main page for crontab, or type at /? in a Windows command shell.

You have two choices for invoking a PHP script from the command line. If you have
PHP as a stand-alone executable, you can call it and use the path to the script for the only
argument. This is probably the way to go on a Windows machine, because the installation
provides php.exe. A UNIX installation likely will be compiled as an Apache module,
and no stand-alone executable will be available. In this case, you can use another
program to make an HTTP connection. The text-only browser, Lynx
<http://lynx.browser.org/> is well suited for this purpose.

Remember, the Web server executes PHP scripts. Executing scripts from the root user's
crontab will allow them greater ability to do damage. It's probably best to execute the
script from the Web server's crontab. Using Lynx to run the script avoids this issue but
raises another. Unless you put the script in a protected directory, anyone will be able to
run it. Simply protect the script with a username and password. Lynx will allow you to
specify these on the command line.

Core PHP Programming

IT-SC book 644

Chapter 22. EFFICIENCY AND DEBUGGING

Measuring Performance

Fetching Database Query Results

When to Store Content in a Database

In-Line Debugging

Remote Debugging

Simulating HTTP Connections

In this final chapter, I will touch upon some issues of efficiency and debugging, which
are more art than science. Efficiency should not be your first concern when writing code.
You must first write code that works, and hopefully your second concern is keeping the
code maintainable. As I write this, the Zend optimizer has become available. An
optimizer can reduce memory use and execution time for you behind the scenes, but it
can't address all issues of efficiency.

You will pick up some tactical design issues as you gain more experience in
programming. These begin to gel as idioms—repeated structures applied to similar
problems. Individuals and organizations tend to develop their own idioms, and you will
notice them in code found in magazine articles and code repositories. Once you accept an
idiom as your own, you can consider it a solved problem. This consistency saves time
when writing code and when reading it later.

In most projects, a tiny minority of code is responsible for most of the execution time.
Consequently, it pays to measure first and optimize the slowest section. If performance
increases to acceptable levels, stop optimizing.

When a bug appears in your script, the time you spent writing meaningful comments and
indenting will pay off. Sometimes just reading over troublesome code will reveal its
flaws. Most of the time you will print incremental values of variables to understand the
problem.

Among the many books on the subject, I can recommend two. The first is Writing Solid
Code by Steve Maguire. It's oriented toward writing applications in C, but many of the
concepts apply to writing PHP scripts. The other is The Practice of Programming by
Brian Kernighan and Rob Pike; Chapter 7 will be of particular interest.

Measuring Performance

Three factors affect the time it takes to go from clicking on a link to seeing a completed
Web page. First is the network. Your request must travel from the browser to the server,
and the Web page must travel back to your browser. This will vary with location and the

Core PHP Programming

IT-SC book 645

speed of connection. Second is the time it takes for a browser to display a Web page,
once it has the HTML. Neither of these things is a function of PHP itself. Furthermore,
they are largely outside of our control. We can try to keep the size of the HTML
document small, and we can avoid complex HTML like nested tables, but we can't
upgrade everyone's 28.8 modem. What we can control is the time it takes to assemble an
HTML document with a PHP script.

The best way to measure how long a script runs is to print the time in important points in
your script. Because most scripts take less than a second to run, you must use the
microtime function. If you place the output in HTML comments, the display of the
page will not be disturbed. Of course, the print statement itself will take some time. You
can minimize this by simply printing the output of microtime instead of trying to
convert its output into an integer. You can do the math later by hand or in a spreadsheet.

Listing 22.1 is a contrived example of a script that performs complex math, then writes
to a file. Figure 22-1 shows the output. The first HTML comment contains the time on
the clock when the script begins. That's followed by time when the 10,000 cosine
calculations have finished. Finally we see the time when the 10,000 lines are written to a
file.

Figure 22.1. Output of microtime

The microtime function returns two numbers. The first is a fraction of a second, the
other the number of seconds since January 1, 1970. Notice that from the first comment to
the next, the number of seconds changed from 950996931 to 950996932. The fraction
changed from 0.95462500 to 0.38373500. In total 0.42911 seconds elapsed. Doing the
math for the second part shows it took 0.080332 seconds. If the performance of this script
were not satisfactory, I'd first look into improving the first half. It takes five times longer
to execute than the rest.

Listing 22.1 Measuring Script Performance

<?
print("\n<!-- " . microtime() . " -->\n");

 //fake some long calculation
 for($index = 0; $index 10000; $index++)
 {

Core PHP Programming

IT-SC book 646

 $value += (cos(time()%360));
 }

 print("\n<!-- " . microtime() . " -->\n");

 //write to file
 $fp = fopen("data.txt", "w");
 for($index = 0; $index < 10000; $index++)
 {
 fputs($fp, "Testing performance\n");
 }
 fclose($fp);

 print("\n<!-- " . microtime() . " -->\n");
?>

Fetching Database Query Results

For most of the databases supported by PHP, you can get columns in two ways. You can
specify a value by row number and column name, or you can fetch rows one at a time in
an array. For MySQL this involves mysql_result and mysql_fetch_row,
respectively.

Using mysql_result is much slower than the fetch functions. PHP has to work harder
to find the exact piece of data you need. First, the specified row must be referenced. Then
the data in that row must be searched for a column with a matching name. You can
imagine that executing mysql_result several times inside a loop can add up to a very
slow script. Each call has to start at the beginning and find the appropriate data element.

Alternatively, you may fetch an entire row into an object, as I have done in most of the
examples so far. This allows you to reference the exact element without searching
through the entire data set. The challenge is to match up the results of the query with the
array elements. If you have created a query such as

SELECT *
FROM user u, employer e
WHERE u.Employer = e.ID

you may have a hard time. You will have to examine the structure of each table to see the
order of the columns. A better approach is to specify the columns you need, leaving out
any you won't use. This would transform the query into something like

SELECT u.ID, u.Name, e.Name

Core PHP Programming

IT-SC book 647

FROM user u, employer e
WHERE u.Employer = e.ID

which specifies only three columns. You can be sure, regardless of the order of the
columns in the table, that the user ID will be column zero.

Another advantage is that, since the resulting data have been narrowed to three columns,
each fetch will be much smaller. The savings go all the way back to the database, because
it will return only three pieces of data times the number of rows. None of the unused rows
from the first version of the query will be sent through the network from the database
server to PHP. In turn, PHP doesn't need to put them into the array.

When to Store Content in a Database

When I speak of content, I mean static text, perhaps containing HTML. There is no rule
saying that content should never be placed in a database, or that it should always be put in
a database. In the case of a bulletin board, it makes sense to put each message in a
database. Messages are likely to be added continually. It is convenient to treat them as
units, manipulating them by their creation dates or authors. At the other extreme, a
copyright message that appears at the bottom of every page of a site is more suited to a
text file that is retrieved with the require function.

Somewhere between these two extremes is a break-even point. The reason is that
databases provide a tradeoff. They allow you to handle data incomplex ways. They allow
you to associate several pieces of information around a common identifier. However, you
trade away some performance, as retrieving data is slower than if you opened a file and
read the contents.

Many Web sites are nothing more than a handful of pages dressed up in a common
graphic theme. A hundred files in a directory are easy to manage. You can name each one
to describe their contents and refer to them in a URL such as
http://www.mysite.com/index.php?screen= about_us and still get the
benefit of systematically generating the layout and navigation. Your PHP script can use
the value of the screen variable as the name of a local file, perhaps in a directory
named screens. Developers can work on the page contents as they are accustomed,
because they know the code is stored in a file named about_us in a directory named
screens.

When the content grows to a thousand pages, keeping each in a separate file starts to
become unmanageable. A relational database will help you better organize the content.
With a site so large it's likely that there will be many versions of the navigation. In a
database it is easy to build a table that associates page content with navigation. You can
also automate hyperlinks by creating one-way associations between pages. This would
cause a link to automatically appear on a page.

Core PHP Programming

IT-SC book 648

The biggest problem with this approach is the lack of good tools for editing the site.
Developers are used to fetching files into an editor via FTP. Asking these same people to
start using a database shell is most likely out of the question. The cost of teaching SQL to
anyone who might work on the site may eliminate any benefit gained when the content is
put into the database. So, you are faced with creating your own tools to edit the content.
The logical path is to create Web-based tools, since coding a desktop application is a
major project in itself, especially if both Windows and Macintosh users are to be
accommodated. As you might guess, Web-based site editors are less than ideal. However,
with very large sites they become bearable, because the alternative of managing such a
large static site is a greater evil, so to speak.

In-Line Debugging

There are times when code produces unexpected results. Examining the code reveals
nothing. In this case the best thing to do is some in-line debugging. PHP scripts generate
HTML to be interpreted by a browser, and HTML has a comment tag. Therefore, it is a
simple matter to write PHP code that reports diagnostic information inside HTML
comments.

Often I create database queries dynamically, based on user input. A stray character or
invalid user input can cause the query to return an error. Sometimes I will print the query
itself. I also print the results of the error functions, such as mysql_error. The same
applies to code unrelated to databases. Printing diagnostic information, even if it is as
simple as saying "got here," can help.

Remote Debugging

You may enable remote debugging for all scripts by editing the configuration file
php.ini, or you may use the debugger_on function, described in Chapter 8,
"I/O Functions." Once enabled, PHP will attempt to connect to a remote host and port
each time a script is run.

You will need a port listening program to get the debugging information. There are
numerous free port listeners for Windows. I've found Port Listener by Hauke X to work
well. Similar programs exist for UNIX as well.

All debugging messages are sent to the listening host, regardless of the error reporting
level set in php.ini. Messages are sent in a special format

date time host(pid) type:message-data

followed by a linefeed.

Core PHP Programming

IT-SC book 649

The date is in the format YYYY-MM-DD. Time is in the format HH:MM:UUUUUU. The
last six digits of time are the seconds and microseconds. The host is the name of the
server and pid is the process identifier. The type is a special code described in Table
22-1. The rest of the line is a message terminated with a linefeed.

Using the remote debugger is as simple as executing a PHP script and watching the
debug information appear in the port listener output.

Table 22-1. Debugging Types

Type Description
end The end of an error message.
frames The number of frames in the call stack.
function The name of the function where the error occurred.
location The filename and line number that generated the error message.
message A PHP error message.

start This type signifies the beginning of a debugging message. The data-
message for this line will be the type of error.

Simulating HTTP Connections

When writing PHP scripts, it is not necessary to understand every detail of the HTTP
protocol. I would be straying to include a treatise here, but you ought to have enough
understanding so that you could simulate a connect by using telnet. You may know that
Web servers listen on port 80 by default. HTTP is a text-based protocol, so it's not hard to
telnet directly to a Web server and type a simple request. HTTP has several commands
that should be familiar; GET and POST are used most often. HEAD is a command that
returns just the headers for a request. Browsers use this command to test whether they
really want to get an entire document.

It is especially helpful to simulate an HTTP connection when your script sends custom
headers. Figure 22-2 is an example showing a request I made to the PHP home page.
The text in bold is what I typed. The remote server returned everything else.

Figure 22.2. Simulating an HTTP Connection

Core PHP Programming

IT-SC book 650

Core PHP Programming

IT-SC book 651

Appendix A. BACKSLASH CODES

The following codes may be included in strings and have special meaning when printed
to the browser or to a file. It is important to note that they do not have special meaning
when passed to other functions, such as ones communicating with a database or
evaluating a regular expression.

Code Description
\" Double Quotes
\\ Backslash Character
\n New Line
\r Carriage Return
\t Horizontal Tab
\x00 - \xFF Hex Characters

Core PHP Programming

IT-SC book 652

Appendix B. ASCII CODES

The following table lists the first 128 characters of the ASCII code. PHP allows for
ASCII codes in the range of 0 to 255, but above code 127 the representation differs
across operating systems.

Decimal Hex Character Description
0 00 Null
1 01 Start of Heading
2 02 Start of Text
3 03 End of Text
4 04 End of Transmission
5 05 Enquiry
6 06 Acknowledge
7 07 Bell
8 08 Backspace
9 09 Character Tabulation
10 0A Line Feed
11 0B Line Tabulation
12 0C Form Feed
13 0D Carriage Return
14 0E Shift Out
15 0F Shift In
16 10 Datalink Escape
17 11 Device Control One
18 12 Device Control Two
19 13 Device Control Three
20 14 Device Control Four
21 15 Negative Acknowledge
22 16 Synchronous Idle
23 17 End of Transmission Block
24 18 Cancel
25 19 End of Medium
26 1A Substitute
27 1B Escape
28 1C File Separator
29 1D Group Separator
30 1E Record Separator
31 1F Unit Separator
32 20 Space
33 21 ! Exclamation Mark

Core PHP Programming

IT-SC book 653

34 22 " Quotation Mark
35 23 # Number Sign
36 24 $ Dollar Sign
37 25 % Percent Sign
38 26 & Ampersand
39 27 ' Apostrophe
40 28 (Left Parenthesis
41 29) Right Parenthesis
42 2A * Asterisk
43 2B + Plus Sign
44 2C , Comma
45 2D - Hyphen-Minus
46 2E . Period
47 2F / Forward Slash
48 30 0 Zero
49 31 1 One
50 32 2 Two
51 33 3 Three
52 34 4 Four
53 35 5 Five
54 36 6 Six
55 37 7 Seven
56 38 8 Eight
57 39 9 Nine
58 3A : Colon
59 3B ; Semicolon
60 3C Less-Than Sign
61 3D = Equals Sign
62 3E > Greater-Than Sign
63 3F ? Question Mark
64 40 @ At Symbol
65 41 A Uppercase A
66 42 B Uppercase B
67 43 C Uppercase C
68 44 D Uppercase D
69 45 E Uppercase E
70 46 F Uppercase F
71 47 G Uppercase G
72 48 H Uppercase H
73 49 I Uppercase I
74 4A J Uppercase J
75 4B K Uppercase K

Core PHP Programming

IT-SC book 654

76 4C L Uppercase L
77 4D M Uppercase M
78 4E N Uppercase N
79 4F O Uppercase O
80 50 P Uppercase P
81 51 Q Uppercase Q
82 52 R Uppercase R
83 53 S Uppercase S
84 54 T Uppercase T
85 55 U Uppercase U
86 56 V Uppercase V
87 57 W Uppercase W
88 58 X Uppercase X
89 59 Y Uppercase Y
90 5A Z Uppercase Z
91 5B [Left Square Bracket
92 5C \ Backslash
93 5D] Right Square Bracket
94 5E ^ Carat
95 5F _ Underscore
96 60 ' Accent
97 61 a Lowercase A
98 62 b Lowercase B
99 63 c Lowercase C
100 64 d Lowercase D
101 65 e Lowercase E
102 66 f Lowercase F
103 67 g Lowercase G
104 68 h Lowercase H
105 69 i Lowercase I
106 6A j Lowercase J
107 6B k Lowercase K
108 6C l Lowercase L
109 6D m Lowercase M
110 6E n Lowercase N
111 6F o Lowercase O
112 70 p Lowercase P
113 71 q Lowercase Q
114 72 r Lowercase R
115 73 s Lowercase S
116 74 t Lowercase T
117 75 u Lowercase U

Core PHP Programming

IT-SC book 655

118 76 v Lowercase V
119 77 w Lowercase W
120 78 x Lowercase X
121 79 y Lowercase Y
122 7A z Lowercase Z
123 7B { Left Curly Bracket
124 7C | Vertical Line
125 7D } Right Curly Bracket
126 7E ~ Tilde
127 7F Delete

If you are interested in how characters are rendered in a particular browser, the following
script will print each character in a table.

<HTML>
<HEAD>
<TITLE>ASCII Characters</TITLE>
</HEAD>
<BODY>
<TABLE BORDER="1" CELLSPACING="0" CELLPADDING="5">
<?
 for($index=0; $index = 255; $index++)
 {
 print("TR>");
 print("TD>$index</TD>");
 print("TD>".chr($index)."</TD>");
 print("</TR>\n");
 }
?>
</TABLE>
</BODY>
</HTML>

Core PHP Programming

IT-SC book 656

Appendix C. OPERATORS

Operator Operation It Performs
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulo Division
++ Increment
— Decrement
< Is Less Than
> Is Greater Than
<= Is Less Than or Equal To
>= Is Greater Than or Equal To
== Is Equal To
!= Is Not Equal To
AND && And
ORl || Or
XOR Exclusive Or
! Not
& And
| Or
^ Exclusive Or
~ One's Complement or NOT >> Shift all bits to the right
« Shift all bits to the left
. Concatenate
$ Reference a Variable
& Reference Variable Storage

-> Reference a Class Method or
Property

=> Set argument default or assign
array element index

@ Suppress Function Errors
? Tertiary Conditional Expression
= Assign right side to left side
+= Add right side to left side
-= Subtract right side from left side
*= Multiply left side by right side
/= Divide left side by right side

%= Set left side to left side module
right side

Core PHP Programming

IT-SC book 657

&= Set left side to bitwise AND of left
side and right side

|= Set left side to bitwise OR of left
side and right side

^= Set left side to bitwise XOR of left
side and right side .= Set left side to concatenation of left

side and right side

Core PHP Programming

IT-SC book 658

Appendix D. PHP TAGS

There are several ways to mark an area of PHP script in a Web page, displayed below.
The results of the script, if any, will take the place in the final output. If a line break
follows the closing tag, it will be removed. This helps you write more readable code.

<?
?>

This is the classic method for marking PHP code. Many of the examples found on the
Internet use this method, probably because it's the method that's been available the
longest. PHP version 2 used this method except that the second question mark was
omitted.

This method is called "short tags" and support for it may be turned on or off. One way is
to use the short_tags function described in Chapter 11, "Time, Date, and
Configuration Functions." A directive in the php.ini file controls enabling short
tags for all scripts. You can also configure PHP to enable short tags before you compile
it.

<?php
?>

This method was added to make PHP scripts compatible with XML, which get confused
by the short tags described above.

<SCRIPT LANGUAGE="php">
</SCRIPT>

Some text editors, Microsoft's Frontpage in particular, do not understand tags that start
with <?, so support for this longer tagging method was added.

<%
%>

Core PHP Programming

IT-SC book 659

This method emulates ASP-style tags.

<%=
%>

Unlike other methods, these tags are shorthand for a call to the echo function. This is
probably best illustrated with an example.

<% $name="Leon"; %>
Hi, my name is <%= $name %>.

This method is controlled by compile-time and run-time directives and will only be
available if enabled.

Finally, you can run a script from the command line like:

#! /usr/local/bin/php -q
<? print "hello\n"; ?>

You must compile PHP as a stand-alone executable, of course. The -q tells PHP to be
quiet, to refrain from printing HTTP headers.

Core PHP Programming

IT-SC book 660

Appendix E. PHP COMPILE-TIME
CONFIGURATION

The following are commands accepted by the configure script. There's more
information about what each does if you type ./configure —help in your shell.

--disable-debug
--disable-libtool-lock
--disable-pear
--disable-posix
--disable-rpath
--disable-short-tags
--disable-url-fopen-wrapper
--enable-bcmath
--enable-discard-path
--enable-dmalloc
--enable-fast-install[=PKGS]
--enable-force-cgi-redirect
--enable-freetype-4bit-antialias-hack
--enable-inline-optimization
--enable-magic-quotes
--enable-maintainer-mode
--enable-memory-limit
--enable-roxen-zts
--enable-safe-mode
--enable-shared[=PKGS]
--enable-static[=PKGS]
--enable-sysvsem
--enable-sysvshm
--enable-track-vars
--enable-trans-sid
--enable-ucd-snmp-hack
--enable-versioning
--enable-xml
--with-adabas[=DIR]
--with-aolserver=DIR"
--with-apache[=DIR]
--with-apxs[=FILE]
--with-aspell[=DIR]
--with-cdb[=DIR]
--with-config-file-path=PATH
--with-cpdflib[=DIR]
--with-custom-odbc[=DIR]
--with-cybercash[=DIR]
--with-db2[=DIR]

Core PHP Programming

IT-SC book 661

--with-db3[=DIR]
--with-dbase
--with-dbm[=DIR]
--with-dbmaker[=DIR]
--with-dom[=DIR]
--with-empress[=DIR]
--with-esoob[=DIR]
--with-exec-dir[=DIR]
--with-fdftk[=DIR]
--with-fhttpd[=DIR]
--with-filepro
--with-ftp
--with-gd[=DIR]
--with-gdbm[=DIR]
--with-gettext[=DIR]
--with-gnu-ld
--with-hyperwave
--with-ibm-db2[=DIR]
--with-icap[=DIR]
--with-imap[=DIR]
--with-informix[=DIR]
--with-interbase[=DIR]
--with-iodbc[=DIR]
--with-java[=DIR]
--with-jpeg-dir[=DIR]
--with-ldap[=DIR]
--with-mcal[=DIR]
--with-mcrypt[=DIR]
--with-mhash[=DIR]
--with-mm[=DIR]
--with-mod-dav=DIR
--with-mod_charset
--with-msql[=DIR]
--with-mysql[=DIR]
--with-ndbm[=DIR]
--with-oci8[=DIR]
--with-openlink[=DIR]
--with-oracle[=DIR]
--with-pdflib[=DIR]
--with-pgsql[=DIR]
--with-phttpd=DIR"
--with-png-dir[=DIR]
--with-readline[=DIR]
--with-regex=TYPE
--with-roxen=DIR
--with-servlet[=DIR]
--with-snmp[=DIR]

Core PHP Programming

IT-SC book 662

--with-solid[=DIR]
--with-sybase-ct[=DIR]
--with-sybase[=DIR]
--with-thttpd=SRCDIR
--with-tiff-dir[=DIR]
--with-tsrm-pth[=pth-config]
--with-tsrm-pthreads
--with-ttf[=DIR]
--with-unixODBC[=DIR]
--with-velocis[=DIR]
--with-wddx
--with-yp
--with-zeus=DIR
--with-zlib-dir[=DIR]
--with-zlib[=DIR]
--without-gd
--without-pcre-regex

Core PHP Programming

IT-SC book 663

Appendix F. INTERNET RESOURCES

The first place to look for information about PHP on the Internet is PHP's home site
<http://www.php.net/>. Many of the sites listed in this appendix appear on pages of
that site. You can download the latest source code an executables there. You can read the
latest news. And you will find information about the various mailing lists, which can be a
great source of support. To subscribe to the general mailing list, send mail to php-
general@lists.php.net. You will get an email to confirm your subscription. Be
prepared to get hundreds of messages a day. I suggest sending the messages into their
own folder using a filter. If you'd prefer to just browse the messages, try the archives at
the AIMS group mailing list archives <http://marc.theaimsgroup.
com/?l=php3-general>.

Another great resource is Nathan Wallace's FAQTS.com site <http://
www.faqts.com/>. His site is a collection of frequently-asked questions, including a
large section about PHP.

The links below are just a sample of what's available. The PHP home site and the portals
below list many more.

Portals

<http://www.zend.com/> Zend

<http://www.phpbuilder.com/ PHP Builder

<http://www.weberdev.com/ WeberDev

<http://devshed.com/Server_Side/PHP/ DevShed's PHP Resources

<http://www.phpwizard.net/ PHP Wizard

<http://www.php-center.de/ PHP Center (in German)

<http://www.phpindex.com/ PHP Index (in French)

<http://www.phpx.com/ Chinese PHP Developer's Union (in Chinese)

Software

<http://px.sklar.com/> PX: PHP Code Exchange

<http://phplib.netuse.de/> PHP Base Library

<http://phpclasses.upperdesign.com/> PHP Classes Repository

Core PHP Programming

IT-SC book 664

<http://www.hotscripts. com/PHP/Scripts_and_Programs/> HotScripts'
PHP Section

<http://www.samoun. com/alain/ultraedit/> -UltraEdit wordfiles for PHP

<http://dcl.sourceforge.net/> Double Choco Latte, a bug tracking system

<http://www.phorum.org/> Phorum, threaded discussions

<http://horde.org/imp/> Web to mail interface

<http://www.htmlwizard. net/phpMyAdmin/> MySQL Web interface

<http://kidsister.tjw.org/> KidSister, software for tracking tasks

<http://www.midgard-project.org/ > Midgard

Jobs and Services

http://hosts.php.net/> Searchable database of hosting services that offer PHP

http://www.phpbuilder.com/jobs/> Jobs listing at PHP Builder

http://www.schaffner.net/emp/> Brian Schaffner's Jobs listing

Core PHP Programming

IT-SC book 665

Appendix G. PHP STYLE GUIDE

This is a sample style guide based on the one used by the FreeTrade project
<http://www.working-dogs.com/freetrade/>.

Comments

Every file should start with a comment block describing its purpose, version, author, and
a copyright message. The comment block should be a block comment in the style below.

/*
** File: test
** Description: This is a test program
** Version: 1.0
** Created: 1/1/2000
** Author: Leon Atkinson
** Email: leon@clearink.com
**
** Copyright (c) 2000 Your Group. All rights reserved.
*/

Every function should have a block comment specifying name, input/output, and what the
function does.

/*
** Function: doAdd
** Input: INTEGER a, INTEGER b
** Output: INTEGER
** Description: Adds two integers
*/
function doAdd($a, $b)
{
 return(a+b);
}

Ideally, every while, if, for or similar block of code should be preceded by a
comment explaining what happens in the block. Sometimes this is unnecessary.

// get input from user char by char
while(getInput($inputChar))

Core PHP Programming

IT-SC book 666

{
 storeChar($inputChar);
}

Explain sections of code that aren't obvious.

//TAB is ASII 9
define (TAB, 9);

// change tabs to spaces in userName
while ($index=0; $index < count ($userName); $index++)
{
 $userName [$index] = ereg_replace (TAB, " ",
$userName [$index]);

Function Declarations

As previously stated, functions should have a comment block explaining what they do
and their input/output. The function block should align starting at one tab from the left
margin unless the function is part of a class definition. Opening and closing braces should
also be one tab from the left margin. The body of the function should be indented two
tabs.

<php
 /*
 ** doAdd
 ** Adds two integers
 ** Input: $a, $b
 ** Output: sum of $a and $b
 */
 function doAdd($a, $b)
 {
 return(a+b);
 }
?>

Compound Statements

Flow control primitives should be compound statements, even if they only contain one
instruction. Like functions, compound statements should have opening braces that start at
column zero relative to scope.

Core PHP Programming

IT-SC book 667

Code within the braces forms a new scope and should be indented.

// tell the user if a is equal to
ten
if($a==10)
{
 printf("a is ten.\n");
}
else
{
 printf("a is not ten.\n");
}

Naming

The names of variables, constants, and functions are to begin with a lowercase letter. In
names that consist of more than one word, the words are written together and each word
starts with an uppercase letter. Use short names for variables used in a small scope, such
as just inside a for loop. Use longer names for variables used in larger scopes.

Function names should begin with a lowercase letter and use capitals for subsequent
words.

/*
** Function getAddressFromEnvironment
** Input: $Prefix - prefix used to generate address form
** Return: array suitable for addressFields
*/
function getAddressFromEnvironment ($Prefix)
{
 global $AddressInfo;

 //get list of all address fields
 //from the AddressInfo array
 reset ($AddressInfo);
 while (list ($field, $info) = each ($AddressInfo))
 {
 $ReturnValue[$field] = trim ($GLOBALS
[$Prefix .
 $info[ADDR_VAR])])
 }

 return ($ReturnValue);
}

Core PHP Programming

IT-SC book 668

Function names should suggest an action or verb. Use names like updateAddress or
makeStateSelector. Variable names should suggest a property or noun, such as
userName, or Width. Use pronounceable names, such as User, not usr. Use
descriptive names for variables used globally, use short names for variables used locally.

Be consistent and use parallelism. If you are abbreviating number as num, always use
that abbreviation. Don't switch to using no or nmbr.

Values that are treated as constants, that is, not changed by the program, should be
declared in the beginning of the scope in which they are used. In PHP this is done with
the define function. Each of these constants should be paired with a comment that
explains use. They should be named exclusively with uppercase letters, with underscores
to separate words. You should use constants in place of any arbitrary values to improve
readability.

// maximum length of a name to accept
define("MAX_NAME_LENGTH", 32);
print("Maximum name length is " . MAX_NAME_LENGTH);

Constants that belong to a specific module should use a consistent prefix.

//text with which to label the field
define("ADDR_LABEL", 0);

//name of the form field (sans prefix of course)
define("ADDR_VAR", 1);

//error message to display for missing fields
define("ADDR_ERROR", 2);

Variables are to be declared with the smallest possible scope. This means using function
parameters when it's appropriate.

Lines should not exceed 78 characters. Break long lines at common separators and align
the fragments in an indented block.

if(($size max_size) OR
 (isSizeInvalid($size)))

Core PHP Programming

IT-SC book 669

{
 print("Invalid size");
}

Expressions

Write conditional expressions so that they read naturally aloud. Sometimes eliminating a
not operator (!) will make an expression more understandable. Use parentheses liberally
to resolve ambiguity. Using parentheses can force an order of evaluation. This saves the
time a reader may spend remembering precedence of operators.

Keep each line simple. The trinary operator (x ? 1 : 2) usually indicates too much
code on one line. if..elseif..else is usually more readable. Don't sacrifice clarity
for cleverness.

