

Manufacturing Simulation with Plant Simulation
and SimTalk

Steffen Bangsow

Manufacturing Simulation
with Plant Simulation
and SimTalk
Usage and Programming with
Examples and Solutions

ABC

Steffen Bangsow
Freiligrathstraße 23
08058 Zwickau
Germany
E-mail: steffen@bangsow.de

ISBN 978-3-642-05073-2 e-ISBN 978-3-642-05074-9

DOI 10.1007/978-3-642-05074-9

Library of Congress Control Number: 2010923701

c© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Dupli-
cation of this publication or parts thereof is permitted only under the provisions of the German
Copyright Law of September 9, 1965, in its current version, and permission for use must always
be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg

Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Based on the competition of international production networks, the pressure to in-
crease the efficiency of production systems has increased significantly. In addi-
tion, the number of technical components in many products and as a consequence
also the requirements for corresponding assembly processes and logistics proc-
esses increases. International logistics networks require corresponding logistics
concepts.

These requirements can be managed only by using appropriate Digital Factory
tools in the context of a product lifecycle management environment, which allows
reusing data, supports an effective cooperation between different departments, and
provides up-to-date and relevant data to every user who needs it.

Simulating the complete material flow including all relevant production, stor-
age, and transport activities is recognized as a key component of the Digital Fac-
tory in the industry and as of today widely used and accepted. Cutting inventory
and throughput time by 20–60% and enhancing the productivity of existing pro-
duction facilities by 15–20% can be achieved in real-life projects.

The purpose of running simulations varies from strategic to tactical up to opera-
tional goals. From a strategic point of view, users answer questions like which fac-
tory in which country suits best to produce the next generation product taking into
account factors like consequences for logistics, worker efficiency, downtimes, flexi-
bility, storage costs, etc., looking at production strategies for the next years. In this
context, users also evaluate the flexibility of the production system, e.g., for signifi-
cant changes of production numbers –– a topic which becomes more and more im-
portant. On a tactical level, simulation is executed for a time frame of 1–3 months in
average to analyze required resources, optimize the sequence of orders, and lot sizes.
For simulation on an operational level, data are imported about the current status of
production equipment and the status of work in progress to execute a forward simu-
lation till the end of the current shift. In this case, the purpose is to check if the target
output for the shift will be reached and to evaluate emergency strategies in case of
disruptions or capacities being not available unexpectedly.

In any case, users run simulation to take a decision about a new production sys-
tem or evaluate an existing production system. Usually, the value of those systems
is a significant factor for the company, so the users have to be sure that they take
the right decision based on accurate numbers. There are several random processes
in real production systems like technical availabilities, arrival times of assembly
parts, process times of human activities, etc., so stochastic processes play an im-
portant role for throughput simulation. Therefore, Plant Simulation provides a
whole range of easy-to-use tools to analyze models with stochastic processes, to

VI Preface

calculate distributions for sample values, to manage simulation experiments, and
to determine optimized system parameters.

Besides that, results of a simulation model depend on the quality of the input
data and the accuracy of the model compared to the behavior of the real produc-
tion system. As soon as assembly processes are involved, several transport sys-
tems with their transport controls, workers with multiple qualification profiles or
storage logic, production processes become highly complex. Plant Simulation pro-
vides all necessary functionality to model, analyze, and maintain large and com-
plex systems in an efficient way. Key features like object orientation and inheri-
tance allow users to develop, exchange/reuse, and maintain their own objects and
libraries to increase modeling efficiency. The unique Plant Simulation optimiza-
tion capabilities support users to optimize multiple system parameters at once like
the number of transporters, monorail carriers, buffer/storage capacities, etc., taking
into account multiple evaluation criteria like reduced stock, increased utilization,
increased throughput, etc.

Based on these accurate modeling capabilities and statistic analysis capabilities,
typically an accuracy of at least 99% of the throughput values is achieved with Plant
Simulation models in real-life projects depending on the level of detail. Based on the
price of production equipment, a return on investment of the costs to introduce simu-
lation is quite often already achieved after the first simulation project.

Visualizing the complete model in the Plant Simulation 3D environment allows
an impressive 3D presentation of the system behavior. Logfiles can be used to
visualize the simulation in a Virtual Reality (VR) environment. The support of a
Siemens PLM Software unified 3D graphics engine and unified graphics format
allows a common look-and-feel and easy access to 3D graphics which were cre-
ated in other tools like digital product design or 3D factory layout design tools.

The modeling of complex logic always requires the usage of a programming
language. Plant Simulation simplifies the need to work with programming lan-
guage tremendously by supporting the user with templates, with an extensive ex-
amples collection and a professional debugging environment.

Compared to other simulation tools in the market, Plant Simulation supports a
very flexible way of working with the model, e.g., by changing system parameters
while the simulation is running.

This book provides the first comprehensive introduction to Plant Simulation. It
supports new users of the software to get started quickly, provides an excellent in-
troduction how to work with the embedded programming language SimTalk, and
even helps advanced users with examples of typical modeling tasks. The book fo-
cuses on the basic knowledge required to execute simulation projects with Plant
Simulation, which is an excellent starting point for real-life projects.

We wish you a lot of success with Tecnomatix Plant Simulation.

Dirk Molfenter † November 2009
Siemens PLM Software

Table of Contents

1 Introducing Factory Simulation ... 1
1.1 Uses... 1
1.2 Definitions... 2
1.3 Procedure of Simulation.. 2

1.3.1 Formulation of Problems .. 2
1.3.2 Test of the Simulation-Worthiness ... 3
1.3.3 Formulation of Targets ... 3
1.3.4 Data Collection ... 3
1.3.5 Modeling... 4

1.3.5.1 First Modeling Stage.. 4
1.3.5.2 Second Modeling Stage ... 5

1.3.6 Executing Simulation Runs .. 5
1.3.7 Result Analysis and Result Interpretation................................... 5
1.3.8 Documentation.. 5

2 Plant Simulation... 7
2.1 First Steps.. 7

2.1.1 Online Tutorial ... 7
2.1.2 Examples .. 7
2.1.3 Help .. 7
2.1.4 Website ... 8

2.2 Introductory Example ... 8
2.2.1 The Program ... 8

2.2.1.1 The Program Window.. 8
2.2.1.2 The Class Library... 8
2.2.1.3 The Console ... 9
2.2.1.4 The Toolbox... 9

2.2.2 First Simulation Example ... 9
2.2.2.1 Design of the Model... 9
2.2.2.2 Insert Objects into the Frame 10
2.2.2.3 Connect the Objects ... 10
2.2.2.4 Define the Settings of the Objects.............................. 10
2.2.2.5 Run the Simulation... 11

2.3 Modeling ... 12
2.3.1 Object-Related Modeling.. 12

VIII Table of Contents

2.3.2 Object-Oriented Modeling.. 12
2.3.2.1 Objects and Properties ... 12
2.3.2.2 Classes and Instances ... 13
2.3.2.3 Inheritance.. 13
2.3.2.4 Duplication and Derivation .. 13

3 Standard Classes in PLANT SIMULATION .. 17
3.1 Overview... 17
3.2 Material Flow Objects... 17

3.2.1 General Behavior of the Material Flow Objects 17
3.2.1.1 Time Consumption... 18
3.2.1.2 Capacity ... 20
3.2.1.3 Blocking... 20
3.2.1.4 Failures... 21

3.2.2 The Source.. 25
3.2.2.1 Basic Behavior ... 25
3.2.2.2 Settings... 25

3.2.3 The Drain.. 29
3.2.4 The SingleProc ... 29
3.2.5 The ParallelProc ... 29

3.2.5.1 Basic Behavior and Use ... 29
3.2.5.2 Settings... 30

3.2.6 The AssemblyStation.. 32
3.2.7 The Buffer... 34
3.2.8 The DismantleStation ... 35

3.2.8.1 Basic Behavior ... 35
3.2.8.2 Cycle .. 38

3.2.9 The Store .. 39
3.2.10 The Line.. 40

3.2.10.1 Behavior of the Line .. 40
3.2.10.2 Attributes of the Line ... 40
3.2.10.3 Curves and Corners.. 43

3.2.11 AngularConverter and Turntable .. 44
3.2.11.1 Settings of the AngularConverter............................... 45
3.2.11.2 Settings of the Turntable .. 46

3.2.12 The PickAndPlace Robot.. 46
3.2.12.1 Basic Behavior ... 46
3.2.12.2 Attributes.. 47

3.2.13 The Track.. 50
3.2.14 The Sorter ... 51

3.2.14.1 Basic Behavior ... 51
3.2.14.2 Attributes of the Sorter... 52

3.2.15 The FlowControl... 55

Table of Contents IX

3.2.15.1 Basic Behavior ... 55
3.2.15.2 Attributes.. 55

3.3 Resource Objects... 60
3.3.1 Usage and Example .. 60
3.3.2 The Worker-WorkerPool-Workplace-FootPath Concept 61
3.3.3 The Broker.. 61
3.3.4 The WorkerPool ... 62
3.3.5 The Worker... 63
3.3.6 The Footpath... 63
3.3.7 The Workplace ... 64
3.3.8 Worker Transporting Parts.. 65

3.4 General Objects... 66
3.4.1 The Frame... 66

3.4.1.1 General... 66
3.4.1.2 The Frame Window ... 67

3.4.2 The Connector .. 68
3.4.2.1 Basic Behavior ... 68
3.4.2.2 Attributes.. 69

3.4.3 The EventController ... 69
3.4.3.1 Basic Behavior ... 69

3.4.4 The Interface... 71
3.4.4.1 Basic Behavior ... 71
3.4.4.2 Attributes of the Interface .. 74

4 Icons .. 75
4.1 Basics .. 75
4.2 The Icon Editor ... 75
4.3 Drawing Icons... 76
4.4 Inserting Images.. 76

4.4.1 Insert Images from the Clipboard ... 76
4.4.2 Inserting Images from a File... 77

4.5 Changing the Background Color of the Frame 78
4.6 Animation Structures and Reference Points.. 78

4.6.1 Basics.. 78
4.6.2 Set Reference Points ... 79
4.6.3 Animation Structures .. 80

4.7 Animating Frames... 81

5 Programming with SimTalk.. 85
5.1 The Object Method ... 85

5.1.1 Introductory Example ... 85

X Table of Contents

5.2 The Method Editor .. 87
5.2.1 Line Numbers, Entering Text ... 87
5.2.2 Bookmarks.. 87
5.2.3 Code Completion.. 88
5.2.4 Information About Attributes and Methods.............................. 88
5.2.5 Templates.. 89
5.2.6 The Debugger ... 90

5.3 SimTalk... 90
5.3.1 Names ... 91
5.3.2 Anonymous Identifiers ... 91
5.3.3 Paths ... 92

5.3.3.1 Absolute Path ... 93
5.3.3.2 Relative Path .. 93
5.3.3.3 Name Scope ... 93

5.3.4 Comments... 94
5.4 Variables and Data Types ... 95

5.4.1 Variables... 95
5.4.1.1 Local Variables .. 95

5.5 Operators... 99
5.5.1 Mathematical Operators.. 99
5.5.2 Logical (Relational) Operators ... 99
5.5.3 Assignments.. 100

5.6 Branching.. 102
5.7 Case Differentiation .. 104
5.8 Loops .. 105

5.8.1 Conditional Loops .. 105
5.8.1.1 Header-Controlled Loops... 105
5.8.1.2 Footer-Controlled Loops.. 106

5.8.2 For-Loop... 107
5.9 Methods and Functions ... 108

5.9.1 Passing Arguments ... 108
5.9.2 Passing Several Arguments at the Same Time........................ 109
5.9.3 Result of a Function.. 110
5.9.4 Predefined SimTalk Functions.. 111

5.9.4.1 Functions for Manipulating Strings.......................... 111
5.9.4.2 Mathematical Functions ... 112

5.9.5 Method Call .. 113
5.9.5.1 Sensors ... 113
5.9.5.2 Other Events for Calling Methods 114
5.9.5.3 Method Call After a Certain Timeout 115

Table of Contents XI

6 Simtalk and Material Flow Objects.. 117
6.1 Attributes of the Material Flow Objects.. 117
6.2 State of Material Flow Objects ... 119

6.2.1 Operational, Failed, Pause .. 119
6.2.2 Ready.. 121
6.2.3 Empty ... 122
6.2.4 Occupied... 123
6.2.5 Full.. 123
6.2.6 Capacity .. 124

6.3 Suspending Methods ... 126
6.4 Observer.. 127
6.5 Content of the Objects... 129
6.6 Sensors .. 132
6.7 User-Defined Attributes .. 134

7 Mobile Units.. 139
7.1 Standard Methods of Mobile Units ... 139

7.1.1 Create.. 139
7.1.2 MU-Related Attributes and Methods...................................... 140

7.2 Length, Width, and Booking Point.. 141
7.3 The Entity.. 142
7.4 The Container.. 143

7.4.1 Attributes of the Container ... 143
7.4.2 Loading Containers... 143
7.4.3 Unloading Containers ... 145

7.5 The Transporter... 158
7.5.1 Basic Behavior.. 158
7.5.2 Attributes of the Transporter... 158
7.5.3 Routing ... 160

7.5.3.1 Automatic Routing... 160
7.5.3.2 Driving Control .. 164

7.5.4 Methods and Attributes of the Transporter 167
7.5.4.1 Creating a Transporter.. 167
7.5.4.2 Unloading a Transporter .. 167
7.5.4.3 Driving Forward and Backward............................... 167
7.5.4.4 Stopping and Continuing.. 168
7.5.4.5 Drive after a Certain Time 169
7.5.4.6 Start Delay Duration .. 171
7.5.4.7 Important Methods and Attributes of the

Transporter ... 176

XII Table of Contents

8 Information Flow Objects ... 183
8.1 The List Editor .. 183
8.2 The CardFile ... 184
8.3 StackFile and QueueFile ... 195
8.4 The TableFile .. 200

8.4.1 Basic Behavior.. 200
8.4.2 Methods and Attributes of the TableFile 202
8.4.3 Calculating within Tables ... 204

8.5 The TimeSequence.. 208
8.5.1 Basic Behavior.. 208
8.5.2 Settings ... 208

8.6 The Trigger ... 212
8.6.1 Basic Behavior.. 212

8.7 The ShiftCalendar ... 215
8.8 The Generator ... 217
8.9 The AttributeExplorer ... 218
8.10 The EventController.. 221

9 Statistics .. 223
9.1 Basics .. 223

9.1.1 Statistics Collection Period... 223
9.1.2 Activating Statistics Collection .. 224

9.2 Statistics – Methods and Attributes... 224
9.3 User Interface Objects... 230

9.3.1 Chart ... 230
9.3.1.1 Plotter... 230
9.3.1.2 Chart Types.. 233
9.3.1.3 Statistics Wizard .. 236
9.3.1.4 Histograms ... 237

9.3.2 The Sankey Diagram .. 238
9.3.3 The Bottleneck Analyzer .. 241
9.3.4 The Display... 242

9.3.4.1 Behavior... 242
9.3.4.2 Attributes of the Display .. 243

9.3.5 The Comment ... 245
9.3.6 The Report .. 246

9.3.6.1 Automatic Resource Report (Statistics Report) 246
9.3.6.2 Report Header .. 246
9.3.6.3 Report Data .. 247

Table of Contents XIII

9.3.6.4 Texts in Reports ... 249
9.3.6.5 Show Objects in Reports.. 250
9.3.6.6 Show Images in Reports... 252

10 User Interface Objects ... 253
10.1 General.. 253
10.2 Elements of the Dialog.. 253

10.2.1 The Dialog Object .. 254
10.2.2 Insert Elements ... 254
10.2.3 Callback Function... 256
10.2.4 The Static Text Box.. 257
10.2.5 The Edit Text Box .. 257
10.2.6 Images in Dialogs ... 258
10.2.7 Buttons.. 260
10.2.8 Radio Buttons ... 261
10.2.9 Checkbox.. 263
10.2.10 Drop-Down List Box and List Box... 263
10.2.11 List View .. 265
10.2.12 Tab Control... 267
10.2.13 Group Box .. 267
10.2.14 Menu and Menu Item.. 267

10.3 Accessing Dialogs... 268
10.4 Protection of Methods and Objects ... 269
10.5 Validation User Input.. 270

10.5.1 Type Validation and Plausibility Check 270
10.5.2 Message Box... 271

10.6 HTML-Help .. 272

11 Data Exchange.. 273
11.1 DDE with Plant Simulation... 273

11.1.1 Read Plant Simulation Data in Microsoft Excel 273
11.1.2 Excel Data Import in Plant Simulation 274
11.1.3 Plant Simulation Remote Control ... 276
11.1.4 DDE Hotlinks ... 277

11.2 The File Interface .. 278
11.3 The ODBC Interface ... 279

11.3.1 Setup an ODBC Data Source.. 280
11.3.2 Read Data from a Database .. 282
11.3.3 Write Data in a Database .. 283
11.3.4 Delete Data in a Database Table... 284

XIV Table of Contents

11.3.5 SQL Commands ... 285
11.3.5.1 SELECT... 285
11.3.5.2 INSERT (Insert New Records) 286
11.3.5.3 UPDATE (Change Data).. 286
11.3.5.4 DELETE .. 287

12 Plant Simulation 3D ... 289
12.1 Sample Project .. 289
12.2 Views and Move in Plant Simulation 3D.. 290
12.3 Control the Simulation in Plant Simulation 3D................................... 290

Index .. 293

Table of Examples

Example 1: Properties of the SingleProc .. 11
Example 2: Inheritance 1 .. 13
Example 3: Inheritance 2 .. 14
Example 4: Inheritance 3 .. 14
Example 5: Material Flow – Time Consumption.. 18
Example 6: Blocking .. 20
Example 7: Failure 1... 21
Example 8: Failure 2... 22
Example 9: Multiple Failures.. 24
Example 10: Source Delivery Table ... 26
Example 11: Randomly Produce MUs.. 28
Example 12: ParallelProc.. 29
Example 13: ParallelProc; Different Processing Times .. 31
Example 14: Assembly ... 32
Example 15: DismantleStation ... 35
Example 16: Dismantle Station, Exit Sequence.. 37
Example 17: Cycle.. 39
Example 18: Line 1... 41
Example 19: Line 2... 42
Example 20: Turntable and AngularConverter ... 45
Example 21: PickAndPlace 1.. 47
Example 22: PickAndPlace 2.. 48
Example 23: Track.. 50
Example 24: Sorter ... 52
Example 25: FlowControl 1.. 55
Example 26: FlowControl 2.. 57
Example 27: Just in Sequence... 59
Example 28: Resources for Repairs .. 60
Example 29: Resources Exit Strategy Carry Part Away 65
Example 30: Frame and Interface ... 71
Example 31: Icon Editor ... 75
Example 32: Reference Points and Animation Structures 79
Example 33: Animation Structures ... 80
Example 34: Machine with a Ringloader, Animation on a Frame........................ 81
Example 35: Stock Removal... 85
Example 36: root... 91
Example 37: Anonymous Identifier self ... 92

XVI Table of Examples

Example 38: Declarating Variables .. 95
Example 39: Global Variables .. 97
Example 40: Global Variable 2... 98
Example 41: Logical Operators .. 100
Example 42: Variable – Value Assignment .. 100
Example 43: Type Conversion 1... 101
Example 44: Branch 1... 103
Example 45: Branch 2... 103
Example 46: Case Differentiation... 104
Example 47: while-Loop... 105
Example 48: repeat-Loop.. 106
Example 49: from-Loop.. 107
Example 50: for-Loop... 107
Example 51: for-Loop with downto.. 108
Example 52: Passing Arguments 1 ... 109
Example 53: Passing Arguments 2 ... 110
Example 54: Results of a Function ... 110
Example 51: Functions for Manipulating Strings ... 112
Example 56: Methodcalls by Sensors ... 113
Example 57: Fail Control.. 114
Example 58: Ref-Call ... 116
Example 59: Basic Settings .. 117
Example 60: Status Display of Material Flow Objects 119
Example 61: Replacement Machine ... 120
Example 62: Object State Empty.. 122
Example 63: Method full .. 123
Example 64: Machine with Parallel Processing Stations 124
Example 65: Observer .. 127
Example 66: deleteMovables.. 129
Example 67: Method cont... 129
Example 68: Surface Treatment.. 130
Example 69: Method MU ... 131
Example 70: Sensors, Color Sorting ... 132
Example 71: Production Costs and Working Assets... 135
Example 72: Create MUs.. 139
Example 73: Change MU Length ... 141
Example 74: Loading Containers.. 143
Example 75: Batch Production ... 145
Example 76: Saw .. 151
Example 77: Kanban Control.. 153
Example 78: Automatic Routing .. 159
Example 79: Automatic Routing .. 160
Example 80: Driving Control.. 164
Example 81: Unloading a Transporter .. 167

Table of Examples XVII

Example 82: Stopping Transporters.. 168
Example 83: Start Delay Duration, Crossroads .. 172
Example 84: Portal Loader Parallel Processing .. 176
Example 85: Materials List ... 184
Example 86: Handling by a Robot.. 186
Example 87: Queuing ... 195
Example 88: Determining Sensor Positions.. 198
Example 89: Lot Change .. 200
Example 90: Calculating Machine-Hour Rates... 204
Example 91: TimeSequence ... 209
Example 92: Trigger ... 212
Example 93: ShiftCalendar ... 215
Example 94: Generator, Outward Stock Movement ... 217
Example 95: AttributeExplorer... 218
Example 96: Statistics... 225
Example 97: Plotter .. 230
Example 98: Chart from a TableFile... 234
Example 99: Histogram .. 237
Example 100: Sankey Diagram .. 238
Example 101: Display... 243
Example 102: Report .. 246
Example 103: Dialog .. 253
Example 104: Error Dialog... 260
Example 105: Statistics Dialog... 263
Example 106: Dialog Product Mix with Listview .. 265
Example 107: Dialog Menu .. 268
Example 108: Protection of Frames.. 269
Example 109: Type Validation ... 270
Example 110: Data Exchange DDE Excel.. 273
Example 111: Data Exchange, Importing a Working Plan from Excel 274
Example 112: DDE Remote Control .. 276
Example 113: DDE Hotlinks .. 277
Example 114: File Interface.. 278
Example 115: ODBC.. 280
Example 116: ODBC – Write Simulation Results into a Database 283
Example 117: ODBC – Delete Data ... 284
Example 118: Plant Simulation 3D... 289

S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 1 – 6, 2010.
© Springer Berlin Heidelberg 2010

1 Introducing Factory Simulation

Simulation technology is an important tool for planning, implementing, and oper-
ating complex technical systems.

Several trends in the economy such as

• increasing product complexity and variety
• increasing quality demands in connection with high cost pressure
• increasing demands regarding flexibility
• shorter product life cycles
• shrinking lot sizes
• increasing competitive pressure

lead to shorter planning cycles. Simulation has found its place where simpler me-
thods no longer provide useful results.

1.1 Uses

You can use simulation during planning, implementation, and operation of equip-
ment. Possible questions can be:

• Planning phase
Identification of bottlenecks in derivation of potential improvement
Uncover hidden, unused potentials
Minimum and maximum of utilization
Juxtaposition of different planning alternatives
Test of arguments regarding capacity, effectiveness of control,
performance limits, bottlenecks, throughput speed, and volume of stocks
Visualization of planning alternatives for decision making

• Implementation phase
Performance tests
Problem analysis, performance test on future requirements
Simulation of exceptional system conditions and accidents
Training new employees (e.g., incident management)
Simulation of ramp up and cool-down behaviors

• Operational phase
Testing of control alternatives
Review of emergency strategies and accident programs
Proof of quality assurance and fault management
Dispatching of orders and determination of the probable delivery dates

2 1 Introducing Factory Simulation

1.2 Definitions

Simulation (source: VDI 3633)
Simulation is the reproduction of a real system with its dynamic processes in a
model. The aim is to reach transferable findings for the reality. In a wider sense,
simulation means preparing, implementing, and evaluating specific experiments
with a simulation model.

System: (VDI 3633)
A system is defined as a separate set of components which are related to each other.

Model: A model is a simplified replica of a planned or real system with its proc-
esses in another system. It differs in important properties only within specified
tolerance from the original.

Simulation run: (source: VDI 3633)
A simulation run is the image of the behavior of the system in the simulation
model within a specified period.

Experiment: (source: VDI 3633)
An experiment is a targeted empirical study of the behavior of a model by re-
peated simulation runs with systematic variation of arguments.

1.3 Procedure of Simulation

According to VDI guideline 3633, the following approach is recommended:

1. Formulation of problems
2. Test of the simulation-worthiness
3. Formulation of targets
4. Data collection and data analysis
5. Modeling
6. Execute simulation runs
7. Result analysis and result interpretation
8. Documentation

1.3.1 Formulation of Problems
Together with the customer of the simulation, the simulation expert must formu-
late the requirements for the simulation. The result of the formulated problem
should be a written agreement (e.g., a technical specification), which contains con-
crete problems which will be studied using simulation.

1.3 Procedure of Simulation 3

1.3.2 Test of the Simulation-Worthiness
To assess the simulation-worthiness you can, for example, examine:

• The lack of analytical mathematical models (for instance, many variables)
• High complexity, many factors to be considered
• Inaccurate data
• Gradual exploration of system limits
• Repeated use of the simulation model

1.3.3 Formulation of Targets
Each company aims at a system of targets. It usually consists of a top target (such
as profitability), that splits into a variety of subtargets, which interact with each
other. The definition of the target system is an important preparatory step. Fre-
quent targets for simulations are for example:

• Minimize processing time
• Maximize utilization
• Minimize inventory
• Increase in-time delivery

All defined targets must be collected and analyzed statistically at the end of the
simulation runs, which implies a certain required level of detail for the simulation
model. As a result, they determinate the range of the simulation study.

1.3.4 Data Collection

The data required for the simulation study can be structured as follows:

• System load data
• Organizational data
• Technical data

The following overview is a small selection of data to be collected:

Technical data
Factory structural data Layout
 Means of production
 Transport functions
 Transport routes
 Areas
 Restrictions
Manufacturing data Use time
 Performance data
 Capacity

4 1 Introducing Factory Simulation

Material flow data Topology
 Conveyors
 Capacities
Accident data Functional accidents
 Availability
Organizational data
Working time organization Break scheme
 Shift scheme
Resource allocation Worker
 Machines
 Conveyors
Organization Strategy
 Restrictions
 Incident management
System load data
Product data Working plans
 BOMs
Job data Production orders
 Transportation orders
 Volumes
 Dates

1.3.5 Modeling

The modeling phase includes building and testing the simulation model.
Modeling usually consists of two stages:

1 Derive an iconic model from the conceptual model.
2 Transfer the model into a software model.

1.3.5.1 First Modeling Stage
First, you have to develop a general understanding of the simulated system. Based
on the objectives to be tested, you have to make decisions about the accuracy of
the simulation. Based on the accuracy of the simulation, necessary decisions are
taken about which aspects you want to simplify. The first modeling stage covers
two activities:

• Analysis (breakdown)
• Abstraction (generalization)

Using the system analysis, the complexity of the system in accordance with the
original investigation targets will be dissolved by meaningful dissection of the
system into its elements. By abstraction, the amount of the specific system attrib-
utes will be decreased as far as it is practical to form an essential limited image of

1.3 Procedure of Simulation 5

the original system. Typical methods of abstraction are reduction (elimination of
not relevant details) and generalization (simplification of the essential details).

1.3.5.2 Second Modeling Stage
A simulation model will be built and tested. The result of modeling has to be in-
cluded in the model documentation to make further changes of the simulation model
possible. In practice, this step is often neglected, so that models due to the lack of
documentation of functionality cannot be used. Therefore, there is a needing for
commenting the models and the source code during programming. In this way the
explanation of the functionality is still available after programming is finished.

1.3.6 Executing Simulation Runs
Depending on the objectives of the simulation study, the experiments based on a
test plan will be realized. In the test plan, the individual experiments output data,
arguments of the model, objectives, and expected results are determinated. It is
also important to define a time span for the simulation experiments, based on the
findings of the test runs. Computer runs spanning several hours or frequent repeti-
tive experiments for the statistical coverage are not uncommon. In these cases it is
helpful to check if it is possible to control the experiments by a separate pro-
grammed object (batch runs). The realization times for the experiments can be re-
located partly in the night hours, so the available computing capacity can be util-
ized optimally. Input and output data and the underlying parameters of the
simulation model must be documented for each experiment.

1.3.7 Result Analysis and Result Interpretation
The values, which will change in the modeled system, are derived from the simu-
lation results. The correct interpretation of the simulation results significantly in-
fluences the success of a simulation study. If the results contradict the assumptions
made, it is necessary to analyze what influences are responsible for the unexpected
results. It is also important to realize that complex systems often have a ramp up
phase. This phase may run differently in reality and in the simulation. Therefore,
the results obtained during the ramp up phase are often not transferable to the
modeled system and may have no influence for the evaluation (Exception: the
ramp up phase of the original system has to be fully modeled).

1.3.8 Documentation

For the documentation of a simulation study, the form of a project report is rec-
ommended. The documentation should provide an overview of the timing of the
study and document the work carried out. Of interest in this context is the docu-
mentation of failed system variants and constellations. The core of the project re-
port should be a presentation of the simulation results based on the customer re-

6 1 Introducing Factory Simulation

quirement specification. Resulting from the simulation study it makes sense to in-
clude proposals for actions in the documentation. Finally, we recommend describ-
ing the simulation model in its structure and its functionality.

S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 7 – 15, 2010.
© Springer Berlin Heidelberg 2010

2 Plant Simulation

2.1 First Steps
2.1.1 Online Tutorial
The online tutorial offers a quick start and guides you systematically in creating a
simple simulation model. To start the tutorial, start Plant Simulation and left-click
the tab INFO PAGES, then EXAMPLES, and TUTORIAL in the Explorer window.

2.1.2 Examples
The sample model includes a variety of examples of small models that are the-
matically ordered and show how and with which settings you can use the compo-
nents and functions. To open the models after starting Plant Simulation, click on
the tab INFO PAGES, then EXAMPLES and EXAMPLES.

2.1.3 Help
The step by step help provides descriptions of steps, which are necessary to model
several tasks. The step by step help is part of the online help, chapter “Step-by-
step help”.

The full functionality of version 9 is part of the online documentation. The
manuals are available as Adobe Acrobat ® *. pdf files on the Plant Simulation in-
stallation CD and can be printed if required. The context-sensitive help in the dia-
logs of objects provides additional explanations of the dialog elements. To show
context-sensitive help, click on the question mark on the top right corner of the di-
alog, and then click on the dialog element. The window of the context-sensitive
help shows a reference to the corresponding SimTalk attribute at its end.

8 2 Plant Simulation

2.1.4 Website
Current information about Tecnomatix and Plant Simulation is available on the
website http://www.plm.automation.siemens.com, or you use the direct link to the
description of Plant Simulation:

http://www.plm.automation.siemens.com/en_us/products/tecnomatix/plant_design/
plant_simulation.shtml.

2.2 Introductory Example
2.2.1 The Program
Start Plant Simulation by clicking on the icon in the program group or the desktop
icon.

2.2.1.1 The Program Window
To define the layout, you can use the menu item: VIEW – TOOLBOX. Here you set
what you see on the screen. A standard Plant Simulation window can, for example,
contain the following elements:

2.2.1.2 The Class Library
In the class library, you find all objects required for the simulation. You can create
your own folders, derive and duplicate classes, create frames, or load objects from
other simulation models.

2.2 Introductory Example 9

To show the class library, you can use the command:

VIEW – VIEWERS – EXPLORER or the icon .

You can hide the class library by clicking the X in the title bar.

2.2.1.3 The Console
The Console provides information during the simulation (e.g., error messages).
You can use the command Print to output messages to the console. If you do not
need the console, you can hide it by clicking the X in the title bar.

Show the console with the icon: in the toolbar or in the menu with VIEW –
VIEWERS – CONSOLE:

2.2.1.4 The Toolbox
The Toolbox provides quick access to the classes in the class library. You can eas-
ily create your own tabs in the toolbox and fill it with your own objects. The best

way to show the toolbox is a click on the button .

2.2.2 First Simulation Example

2.2.2.1 Design of the Model
As a first example, a simple production line is to be build with a source (material
producer), two workstations, and a drain (material consumer). Start Plant Simula-
tion, and select the menu command:
FILE – NEW MODEL

It opens the Plant Simulation class library with the basic objects and a Frame
(window). Simulation models are created in the object Frame.

10 2 Plant Simulation

2.2.2.2 Insert Objects into the Frame
To insert objects into the Frame, you have two options:

• Click on the object icon in the toolbox, and then click in the Frame. The
object will be inserted into the Frame at the position, at which you clicked.

• Another way: Drag the object from the class library to the Frame and drop
it there (drag and drop).

Insert the following objects in the Frame:

2.2.2.3 Connect the Objects
You have to connect the objects along the material flow, so that the different parts
can be transported from one object to the next. This is what the object Connector
does. The Connector has the following icon in the toolbar:

Click the Connector in the toolbar, then the object in the Frame, which you want to
connect (the cursor changed its icon on Connector) – click the next object … If you
want to insert several Connectors successively, hold down the CTRL key. Result:

2.2.2.4 Define the Settings of the Objects
You have to define some settings in the objects such as processing times, capacity,
information for setup, failures, breaks, etc. Properties can be easily set in the dia-
logs of the objects. You can open its dialog by double-clicking an object.

2.2 Introductory Example 11

Example 1: Properties of the SingleProc
Set the following values: SingleProc stations: processing time: 2 minutes, Drain:
Processing time: zero seconds, Source: 2-minute interval

The APPLY button saves the values, but the dialog remains open. OK saves the
values and closes the dialog. Finally, you need to insert an event controller. It co-
ordinates the processes that run during a simulation.

Click on the event controller in the toolbox, then in the Frame.

2.2.2.5 Run the Simulation
Open the control panel by double-clicking on the icon of the event controller.

12 2 Plant Simulation

Click the START button to start the simulation, and STOP to stop the simulation. In
the Frame, the material movements are graphically displayed. You can now
change the model to see what happens…

2.3 Modeling

2.3.1 Object-Related Modeling
In general, only a limited selection of objects is available for representing the real
installation. They talk, e.g., of model objects, which show the real system with all
the properties to be investigated. Hierarchically structured system models are best
designed top-down. In this way, the real system will be decomposed into separate
functional units (subsystems). If you are not able to model sufficiently precise
with the available model objects, you should continue to decompose, etc.

Each object must be described precisely:

The individual objects and the operations within the objects are linked to an over-
all process. This creates a Frame. With the objects and the Frame various logisti-
cal systems can be modeled.

2.3.2 Object-Oriented Modeling

2.3.2.1 Objects and Properties
The hierarchical structure of an object allows to be exactly addressed (analogous
to a file path). A robot Rob1 may be addressed in the hierarchy (the levels are
separated by a period) as follows:

production1.press_hall.section1.cell1.Rob1

2.3 Modeling 13

Rob1 itself is described by a number of properties such as: type of handling,
speed, capacity, lead times, etc. All properties, which describe Rob1, are called
“object”. An object is identified by its name (Rob1) and its path:

(production1.press_hall.section1.cell1.Rob1)

The properties are called attributes. They consist of a property description (attrib-
ute type), for example Engine type and a property value (attribute value) for in-
stance: HANUK-ZsR1234578.

2.3.2.2 Classes and Instances
In object-oriented programming, a class is defined as follows:

A class is a user-defined data type. It designs a new data type to create a definition
of a concept that has no direct counterpart in the fundamental data types.

Example: You want to create a new type of transport unit that cannot be defined
by standard types. All definitions (properties, methods, behavior), required for
creating a new type, are called a “class”.

The individual manifestation of the class is called an instance of the class (e.g.,
Transport – Forklift (general); Instance: Forklift 12/345 (concrete)). The instance
has the same basic properties as the class and some special characteristics (such as
a specific name).

2.3.2.3 Inheritance
In Plant Simulation, you can create a new class based on an existing class (derive
of class, create a subclass). The original class is called base class. The derived
class is called subclass. You can expand a data type through the derivation of a
class without having to redefine it. You can use the basic objects of the class by
employing inheritance.

Example: You have several machines of the same type; most of the properties are
the same. Instead of defining each machine individually, you can define a basic
machine. All other machines are derived from this basic machine. The subclasses
inherited the properties of the base class they apply to these classes as if they were
defined there.

2.3.2.4 Duplication and Derivation

Example 2: Inheritance 1
Select the SingleProc in the class library. Click the right mouse button to open the
context menu. Select DUPLICATE from the context menu.

14 2 Plant Simulation

Plant Simulation names the duplicate SingleProc1. Change the processing time in
the class SingleProc to 2 minutes. Open the dialog of the SingleProc1. The proc-
essing time has not changed.

The duplicate contains all the attributes of the original, but there is no connection
between the original and the duplicate (there is no inheritance). You can also cre-
ate duplicates using the mouse: Press the Control key and drag the object to its
destination, then drop it.

Example 3: Inheritance 2
Now do the same with DERIVE. Select the SingleProc again, click the right mouse
button and select DERIVE from the context menu.

Plant Simulation names the new class SingleProc2. With DERIVE you created an
instance of the class. This instance can either be a new class (in the library) or an
object (e.g., in a Frame object). Initially, the instance inherits all the characteris-
tics of the original class. Now, change the processing time of the SingleProc-class
to 10 minutes (10:00). Save the changes in the SingleProc, and open the dialog of
SingleProc2. SingleProc2 has applied the change of the processing time of the
SingleProc-class.

You can also derive in the class-library with CTRL + SHIFT and dragging the
mouse. You can navigate to the original class from an object or from a derived
class. Double-click the class/the object then select:

NAVIGATE – OPEN ORIGIN

It will open the dialog of the original class. If you drag a class from the class li-
brary into a Frame object, the new object is derived.

Example 4: Inheritance 3
Open a Frame object. Add a SingleProc to the Frame object (via drag and drop
from the library). Change the processing time of the SingleProc in the library and
check the processing time in the Frame. The values are inherited from the object in
the library.

2.3 Modeling 15

Duplicating Objects in the Frame
To duplicate an object in the Frame, hold down the Ctrl key and drag the object to
a free spot on the Frame (the mouse pointer shows a “+”). With the object you can
also activate inheritance to the initial class.

Test: Change the processing time of the SingleProc in the library: The processing
time of both SingleProcs in the Frame also changes. If you change the processing
time of one SingleProc in the Frame, the processing time of the other SingleProc
in the Frame will not be changed (the duplicate has no inheritance relationship
with its original, but with the original class of the original). In the object dialogs
you can easily identify which values are inherited and which have been entered in
the instance. Each attribute shows a green toggle button to the right. This is green,
if the value is inherited, and yellow with a minus sign inside if the values are not
the same as in the original class.

 Value inherited Value changed (inserted)

To restore inheritance of a value, click the button after the value and then click
APPLY.

S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 17 – 74, 2010.
© Springer Berlin Heidelberg 2010

3 Standard Classes in PLANT SIMULATION

3.1 Overview

The standard classes can be classified into six categories:

1. Material flow objects
2. Resources
3. General objects
4. Mobile objects
5. Lists and tables
6. Display objects

3.2 Material Flow Objects

Mobile and static material flow objects are the basic objects of a model. The mo-
bile units (transporters, containers, parts) represent the physical or logical objects,
which move through a model. These units are transported through the simulation
model by the active or passive material flow objects (e.g., a part is located on a
conveyor; the passive part will be transported through the model by the active ma-
terial flow object “conveyor”). Active objects are SingleProc, ParallelProc, As-
semblyStation, DismantleStation, Line, TurnTable, AngularConverter, Sorter, and
Buffer. They actively transport the mobile material flow objects along the connec-
tors. Source and drain are used to create and destruct mobile objects (MUs). Thus,
they represent the model borders. Passive material flow objects are Store, Track,
and TwolaneTrack. These objects do not pass on the MUs automatically. The
FlowControl object (which itself cannot store MUs) represents junction or distri-
bution strategies.

3.2.1 General Behavior of the Material Flow Objects
Active material flow objects can receive mobile objects, store them for a certain
amount of time, and then automatically pass them on to the next object. Passive
material flow objects cannot automatically pass on MUs (Example: a MU will re-
main in storage until it is removed by a method from the object). The passive ob-
ject “track” can be only used in a meaningful way together with the object trans-
porter, which means that this MU moves on the track with a certain speed.

18 3 Standard Classes in PLANT SIMULATION

3.2.1.1 Time Consumption
Example 5: Material Flow – Time Consumption
To demonstrate a small example, model the following Frame:

An object receives MUs when it has free capacity and is neither failed nor paused.
If one of the conditions is not met or the gate is closed because of the recovery, or
cycle times, the object rejects the MUs. The moving object will be entered at the
end of a blocking list. Once the object can receive MUs again, the first MU in the
blocking list will be moved and processed (First in First Out).

Example: Open the source by double-clicks on the object. The source generates
MUs (entities by default). The interval between the individual MUs can be set
here. The default is 0 minutes. Change the interval to 1 minute:

Set the processing time of the next object (SingleProc1) to 2 seconds. Double-click
on the SingleProc1 in the Frame. In the dialog select the tab TIMES.

Enter the time into the field Processing time (enter a 2, and confirm with Apply). If
the following station has a processing time of more than a minute, the MUs should
accumulate. Set the processing time of SingleProc2 to 2 minutes (2:00). Let the
simulation run for a while. Stop the simulation (Stop in the Eventcontroller) and
then open the SingleProc1 (double-click). Select the tab STATISTICS.

3.2 Material Flow Objects 19

The station is blocked most of the time by the successor, it could pass on the MUs,
and the following station (which is still processing) cannot yet store the MUs. The
time passed is called blocked time.

Entrance Gates
At the entrance of an object, there are two “gates”:

1. The object is empty, not failed or paused.
2. An entire multiple of a cycle time.

The cycle time is used for synchronization. Although the previous station is ready
earlier, the part waits until the cycle is over. Only then, the part will be transferred to
the next object. The processing duration of a part on a station consists of three parts:

SETUP TIME: The Setup Time is the time which is required to set up a basic object
for processing another type. The type is determined by the name of a MU (MUs
with the same name have the same type). You can also use a setup time after a cer-
tain number of parts have been set up, for example, for regular tool changes.

RECOVERY TIME: At the entrance of a basic object, there is a gate, which closes
for a specified time after an MU entered. This way you model robots, which re-
quire a certain time to insert parts into the machine.

PROCESSING TIME: The processing time determines how long an MU stays on
the object after the setup time, before Plant Simulation tries to move the MU to a
succeeding object.

CYCLE TIME: Cycle times can be used for synchronizing productions. They
specify in which interval or in which integral multiple of an interval entering the
workstation is possible (e.g., every 32.4 seconds). The gate opens every 32.4 sec-
onds. A new MU can only enter after the end of the previous processing and the
next opening of the gate.

20 3 Standard Classes in PLANT SIMULATION

3.2.1.2 Capacity
The capacity determines how many MUs can be located on the object at the same
time. If the limit of the capacity is reached, MUs will no longer be transferred. The
dimension of MUs is usually not taken into account. Only the objects: Track,
Line, AngularConverter, and Turntable take the length of the MUs into account
(attribute length).

3.2.1.3 Blocking
MUs, who want to enter into a full object, will be rejected (and entered into a
blocking list). If the object has several successors, the transfer request is made
consecutively to the following objects. The MU will then be transferred to the next
free object.

Example 6: Blocking
Create the following Frame. Processing times: Mach1 and Mach4 every 2:30 min,
Mach2 und Mach3: 5 min, the source produces one part every 2:30 min.

Block Mach2 (check the box Failed, then click Apply) and look, what happens!

You can change the behavior of the distribution of Mach1 on the tab EXIT
STRATEGY. It provides a number of strategies:

Blocking here means: If you select BLOCKING, and a transfer request could not be
met, the transfer request will be entered in the blocking list of the object. It will

3.2 Material Flow Objects 21

wait, until the next object can receive MUs again. When blocking is not selected,
the MU will be transferred to another free successor.

The objects provide the following types of blocking:

Failed: The object cannot receive MUs. Already finished MUs are moved on. As
long as the object is failed, the setup or processing time is paused until the end of
the failure. (This way you can simulate, what happens when a machine fails.)
Failed objects are marked with a red LED.

Paused: An object can be paused (blue LED). The processing or setup time is in-
terrupted. Already finished MUs will be moved on. The device cannot receive
MUs. The same effect has Unplanned (look shift-calendar). By unplanned, you
can simulate times outside the working time. The reset button in the Eventcontrol-
ler resets any blockages. Pauses must be manually reset (clear the option Pause).

Entrance locked: It is not possible to move MUs; the MUs will be entered in the
blocking list. After the end of the failure, the MUs will be processed.

3.2.1.4 Failures
To achieve a most realistic simulation, you have to include some events which dis-
rupt the normal flow of materials. You can position these events accurately or ran-
domly. You can take into account times for retooling and maintenance times, ac-
cidents, machine failures, and others.

There are two possiblities to model failures:

• Using statistical distributions
• Using the Mean Time To Repair (MTTR) and the availability

Define Failures
The dialogs of the material flow objects provide the tab FAILURES: Clear the op-
tion AVAILABILITY.

Example 7: Failure 1
A machine needs maintenance every 1,000 operating-hours with duration of 3
hours. It requires these settings:

22 3 Standard Classes in PLANT SIMULATION

Active: The check box turns all kinds of failure events on or off.

Start: With “Start”, you can define the beginning of the failure. You can also se-
lect a statistical distribution.

Stop: End of failure

Interval: Enter an interval between the end of the last failure and the beginning of
the next failure (trouble-free time). If the value of the selected interval is zero and
the value of the selected duration is greater than zero, then one single failure occurs.

Duration: Duration of the failure (duration = 0 means no failure)

Failure mode relates to simulation time: For this setting, Plant Simulation con-
sumes the time you have entered as interval, independent of the state of the object
(paused or operational).

Failure mode relates to processing time: For this setting, Plant Simulation con-
sumes the time you have entered as interval while the object is working (not
paused, waiting, or unplanned).

Failure mode relates to operating time: For this setting, Plant Simulation consumes
the time you have entered as interval, if the object is not paused (working or waits).

Example 8: Failure 2
A machine (3-shift-mode) needs maintenance lasting 1.5 hours every 22.5 hours of
processing time. The succeeding machine requires 30 minutes maintenance every

3.2 Material Flow Objects 23

3.5 hours of processing time. Both machines have a processing time of 2 minutes.
To ensure a smooth material flow, a buffer is located between the machine1 and
machine2. How many places must the Buffer have?

Create the following Frame:

Let the simulation run for 2 days to observe the buffer. The line should not jam;
the buffer should not be oversized either. You can make an evaluation of the nec-
essary buffer size using the tab statistics of the object buffer.

Availability (MTTR, MTBF)
You can specify the availability and an average repair time for the processing sta-
tions. The system then calculates a mean time between failures (Mean Time be-
tween Failures, MTBF). The duration of outages and failure-free times will be
randomly distributed. You have to specify a random number stream (a random
number stream is a series of random numbers). The availability will be calculated
using the following formula:

Availability = MTBF/(MTBF+MTTR).

Enter a number between 0 and 100% for the AVAILABILITY. The availability is the
probability that a machine is ready to use at any time. The availability is based on a
combination of MTBF1 and MTTR2. The duration of the failure as well as the dis-

1 MTBF––Mean time between failures.

24 3 Standard Classes in PLANT SIMULATION

tance between the failures are randomly distributed. Plant Simulation selects the Er-
lang distribution for the duration and the Negexp distribution for the interval.

Starting with Plant Simulation version 9, you can create a series of failures for
an object. This way, you can more realistically model the failure behavior of ma-
chines and plants. You can, for example, set maintenance intervals and tool
changes of a machine in one dialog and without programming failures.

Example 9: Multiple Failures
We will use a machine with the following failure behavior: For each 5 hours of
processing time, a tool change takes place which takes 30 minutes. Every 1000
hours of operating time, regular maintenance taking 2 hours takes place, 5% loss
(random) relative to the operating time, 2 hours MTTR. To consider these values
in the simulation, you need to proceed as follows in Plant Simulation version 9.
Click the tab FAILURES, click the button NEW:

Enter the failure data into the dialog, e.g., tool change:

2 MTTR––Mean time to repair.

3.2 Material Flow Objects 25

All failures are displayed in a list. Double-clicking an item in the list allows you to
edit the individual failures.

3.2.2 The Source

3.2.2.1 Basic Behavior
The source creates mobile objects (MUs) according to your definition. The source
can produce different types of parts in a row or in mixed order. For defining
batches and determining the points in time, the program provides different meth-
ods. The source as an active object tries to transfer the produced MU to the con-
nected successor.

3.2.2.2 Settings
Mode: Mode determines how to proceed with MUs, which cannot be transferred.

Blocking means that the generated MUs will be saved (it will produce no new
MUs). If you select “Non-blocking”, the Source creates another MU exclusively at
the time of creation you entered.

Time of creation:

Interval Adjustable: The production dates are determined by three figures: start,
stop, and interval. The first part is produced at the time “Start”. Other parts are
produced at an interval. The production of the parts ends with stop. You can enter
statistical distributions for all three values.

26 3 Standard Classes in PLANT SIMULATION

Number Adjustable: Number and interval (a certain number at specified interval)
determine the production dates.

The settings above will produce 10 parts after 10 minutes simulation time only once.

Delivery Table: The production times and type of parts to be produced are taken
from a table (delivery table). Each line in the delivery table contains a production
order. For this purpose, you have to add a table to your Frame.

Example 10: Source Delivery Table
Create the following Frame. You can change the length of the line by draging the
corner points at the right-hand side.

Duplicate the object Entity three times in the class library. Rename these dupli-
cates to part1, part2, and part3. The source should produce five parts of type
part1 after 2 minutes, two parts of type part2 after 10 minutes, and four parts of
type part3 after 15 minutes. Select TIME OF CREATION – DELIVERY TABLE in
the dialog of the source. Next, click in the lower part of the window on the button
with the three points. Select the table in the following dialog.

3.2 Material Flow Objects 27

Finally, click OK. The name of the table will be entered into the dialog of the source.
Now open the table in the Frame by double-clicks, and enter the following:

The source now produces parts as specified in the table. After the last part has
passed the drain, the simulation will be finished.

MU-Selection: The following settings are available:

Constant: Only one MU-type will be produced. Select the path to the respective
MU in the dialog (Object Explorer).

Sequence Cyclical: Parts are produced according to the sequence you entered in a
table (see delivery table). Enter the path to the table into the text box. If the check
box “GENERATE AS BATCH” is checked, the quantity will be produced at one time.
When the sequence is completely produced, the production sequence will repeat.

Sequence: See Sequene cyclical; after the end of processing the entries no repeti-
tion will take place.

Random: The production is based on a random table.

28 3 Standard Classes in PLANT SIMULATION

Example 11: Randomly Produce MUs
Part1, Part2, and Part3 are to be produced. The ratio is 30% for Part1, 60% for
Part2, and 10% for Part3. First, create the parts in the class library. Try to
change the color of the parts (right mouse button – EDIT ICONS …).

Create the following Frame:

Now select the following settings in the source:

Confirm your changes with Apply or Ok.

Open the table by double-clicking it. Enter the following data:

Now start the simulation. The parts will be produced in a “mixed” order.

3.2 Material Flow Objects 29

3.2.3 The Drain
The Drain is an active material flow object. The Drain has a single place and de-
stroys MUs after processing them. Set the processing time to 0 second in the Drain
or to the time a following process would require. The Drain collects a number of
important statistical data such as throughput, number of destroyed parts, etc. Click
on the tab TYPE STATISTICS.

3.2.4 The SingleProc
The SingleProc accepts exactly one MU from its predecessor. After the setup, re-
covery, and processing time, the MU will be transferred to one of its successors.
While an MU is located on the object, all other newly arriving MUs will be
blocked. Only after a successor is free and not occupied, the MU will be trans-
ferred (it is possible to define different transfer procedures). You can use it to
simulate all machines and jobs, which handle one part after another. One part at a
time can be located on the workplace or the machine.

3.2.5 The ParallelProc

3.2.5.1 Basic Behavior and Use
The basic behavior of the ParallelProc is the same as that of a SingleProc with
multiple places. Without a control, a newly arriving MU will always be placed on
the place, which was empty for the longest time. When an MU with a different
name arrives, the entire object will be set up.

Example 12: ParallelProc
After deburring, parts will be treating in a coloring. Because deburring has a long
processing time, there are several places for deburring. Source1 delivers one part
every 2 seconds. The deburring station has five places with a processing time of
10 seconds per place and part. Coloring takes 2 seconds. The Frame with Sin-
gleProcs could look as follows:

30 3 Standard Classes in PLANT SIMULATION

To simplify the simulation, you can use a station with five processing stations
(ParallelProc).

3.2.5.2 Settings
The processing stations of a parallel station are arranged in a matrix (tab ATTRI-
BUTES).

Every “row” takes on x places (x-dimension) in y “columns” (y-dimension). The
number of places results from the multiplication of x-Dimension and y-Dimension.
If you want to reduce the dimension of the ParallelProc, then it may not find MUs
on the places (otherwise, you get an error).

3.2 Material Flow Objects 31

Normally, each place of a ParallelProc has the same processing time. Neverthe-
less, it is possible to define different times for each place.

Proceed therefore like this:

1. Define the number of places (x-dimension, y-dimension)
2. Insert a table in the Frame (folder InformationFlow).

Select in the tab “TIME” in the list “PROCESSING TIME”: List (place)

3. Enter the name of the table into the field.
4. Enter the processing times for the individual stations into the table (analo-

gous to the position of the places in x- and y-dimension).

Note:
Until Plant Simulation 8.2 you need to format the table. You have to allocate ac-
cording to the x-dimension of the ParallelProc a number of columns the data type
time. From version 9, Plant Simulation formats the table according to the dimen-
sion of your ParallelProc (x columns and y rows) if the data type of the table col-
umns does not match. Because of that, you have to set the x-dimension and y-
dimension values for the ParallelProc before assigning the table.

Example 13: ParallelProc; Different Processing Times
A production line has four deburring stations with different technical equipment.
For this reason, the individual stations have different processing times: station 1
and station 4 has one minute each, station 2 two minutes and station 3 four minutes.

Create the following Frame:

Settings: Source: interval 20 seconds, Line: length 12 meters, speed 0.08 m/s;
Drain: 0 seconds processing time. To define the processing times, follow these steps:

Set the dimension of the ParallelProc.

32 3 Standard Classes in PLANT SIMULATION

Select “LIST (PLACE)” from the list PROCESSING TIME. Enter the name of the ta-
ble “times” into the text box (or drag the table from the Frame in the field).

Confirm your changes by clicking OK.
Open the table and enter the times.

3.2.6 The AssemblyStation
The AssemblyStation adds mounting parts to a main part or simulates assembly
processes by destroying the single parts and generating the assembled part. The
AssemblyStation facilitates the simulation of assembly operations.

Example 14: Assembly
Before coloring a part it will be mounted onto a support frame. The coloring is
not possible without using the support frame. The assembly lasts 2 minutes, color-
ing also takes 2 minutes. Main part: support_Frame (Container), mounting-part:
part (Entity). Create the following Frame:

Make sure that you first connect the source_support_frame, then source_part with
the assembly. You have to convince the support_source_frame to generate support_
Frames (default is Entity). Double-click on the source and select MU Container.

3.2 Material Flow Objects 33

The object AssemblyStation has the following attributes:

Assembly table with: Select the parts, which you want to assemble, according to
different points of view:

• MU types
• Predecessor Number

If you do not select an assembly list, one of each part will be assembled.
Select Predecessors and open the predecessor-table (button open): Enter the

number of the predecessor and the amount of assembled parts into the list. If you se-
lect the assembly mode “Attach MUs”, you should not enter the main part into the
list. In the example above, one part of predecessor 2 is to be mounted: Select As-
sembly table with – Predecessor, and then click Open. Enter the following to the list:

If you select MU-types, enter the name of the MU-class and the respective number
of parts into a table.

Note:
You can show the numbers of the predecessors. Select VIEW – OPTIONS – SHOW
PREDECESSORS in the Frame window.

34 3 Standard Classes in PLANT SIMULATION

The number of the predecessor will be displayed on the connector.

Main MU from predecessor: Here, you define which workstation provides the
main part. The number is derived from the sequence in which you established the
connections. Please note that the main MU itself must be able to accept parts (e.g.,
container), if you select the option ATTACH MUS.
Assembly mode: You can “load” parts on a main part (the main part must have
sufficient capacity for example as container) or destroy all parts and create a new
part (assembly part).
Exiting MU: The main part (with the loaded components) or a new part can be
moved from the assembly. If you create a new part, you have to select it.

3.2.7 The Buffer
Plant Simulation distinguishes between two types of buffers:

(a) PlaceBuffer
The MUs pass the PlaceBuffer one after another in the “processing time.” MUs
cannot pass each other within the buffer. Only when the MU has reached the place
with the highest number, it can be passed on. When the last MU has been passed
on, all other MUs can move forward one place. The processing time can be speci-
fied only in relation to the entire buffer (e.g., dwell time in the buffer 20 min), not
in relation to a single place (ten places, 2 minutes). The attribute ACCUMULATING
determines whether the exit of the buffer is blocked (e.g., the successor is occu-
pied) and any following MUs move up (Accumulating= TRUE) or have to wait.

(b) Buffer
The buffer does not have a place-oriented structure. After the processing time is
over, you can remove the MU again. You can determine a mode for unloading:

• Buffer type Queue: First in First out
• Buffer type Stack: Last in First out

3.2 Material Flow Objects 35

Settings:
Capacity: number of places in the Buffer; enter -1 for an infinite capacity

Times: Processing time (dwell time of a part in the buffer), recovery time, cycle time

3.2.8 The DismantleStation

3.2.8.1 Basic Behavior
The DismantleStation dismantles added parts from the main part or creates new
parts. It facilitates modeling dismantling operations.

Example 15: DismantleStation
A machine is loaded with a palette (12 parts). The machine unloads the parts at
a fixed position with an internal loader from the palette and loads the parts into
the machine. After completion, the parts are stored on a different palette at a
second position. The palettes are transported to the machine on a three-meter-
long conveyor. Behind the machine another three meter conveyor for palettes
with finished parts is available. Unloading of the parts can be easily realized
with a DismantleStation (the parts are unloaded onto the machine; the empty
palettes are transferred to the place where the finished parts will be loaded).
Loading the parts on the palette can be realized with the AssemblyStation. Cre-
ate a part (entity) and a palette (container) in the class library. Enter a capacity
of 12 (x-Dimension: 3, y-Dimension: 4, length and width each 0.5 meters) into
the dialog of the container.

36 3 Standard Classes in PLANT SIMULATION

Settings: Source_part: it will generate entities (part), interval: 1:05, Source_pallet:
it will generate containers (pallet), interval: 12:00, AssemblyStation: processing
time: 0, main part: pallet; assembly mode: attach MUs; twelve parts from prede-
cessor 2 (connect first Source_pallet, then Source_part with the assembly station),
line1: 3 meters, speed 1m/s, line2: 3 meters, speed 1 m/s, machine: 1 min process-
ing time, loading: main part from unloading (connect at first), 4 seconds process-
ing time, assembly mode attach MUs, twelve parts from machine. To start the
simulation, an empty palette must be ready at the loading station. The easiest way
is to create an empty palette on line1. The DismantleStation reaches for the empty
palette next to the loading station. So that the assembly station receives the palette
on the right connector, we need a method object (folder InformationFlow). Re-
name the method object to INIT (this method is called when you click INIT in the
Eventcontroller). Double-clicking the object opens an editor. If the font in the edi-
tor is grayed out and you cannot enter your source code, you have to first deacti-
vate inheritance by clicking the button:

Drag your palette class from the class library to the editor (between do and end).
The absolute path of the class will be entered into the editor. Complete the source
code like this:

is
do
 .MUs.pallet.create(line1);
end;

Then close the window and save your changes.

Dismantle Sequence
Select how the DismantleStation distributes MUs to its successors from the drop-
down list sequence.

MUs to all Successors: If you have chosen the option Create MUs in the drop-down
list Dismantle mode, the DismantleStation creates a new MU for each successor and
transfers it to the successor. If you have chosen MUs detach from the drop-down list
Dismantle mode, then the DismantleStation distributes the MUs round to its succes-
sors. Please note that the DismantleStation transfers the main part to the successor
with the number you have entered into the field “Main successor to MU”.

For the following three menu commands, Plant Simulation requires entries into
the dismantle list.

3.2 Material Flow Objects 37

MUs exiting independent of other MUs: Each MU is trying to move as soon as
possible to the given successor.

Main MU after other MUs: The mounted parts exit the DismantleStation first
followed by the main part.

This setting is important if you simulate unloading parts. The empty palette ex-
its empty at the end the dismantle station and not before, for example if the indi-
vidual parts cannot be delivered to the successor fast enough. To illustrate this,
take a look at the following small example.

Example 16: Dismantle Station, Exit Sequence
Palettes have to be loaded and unloaded. The parts are weighed after unloading and
then destroyed by a drain. Weighing takes 5 seconds. Create the following Frame:

Settings: The source creates one part every 4 seconds (Entity). First Connect L2
then the Source with the station load. Set the capacity of the container in the class
library to 10. Set the assembly station so that 10 parts will be loaded onto the
main part (from L2). Assembly and dismantling take no time (processing time 0
seconds). L1 and L2 each have a speed of 1 m/s. First connect the station unload
with L2 and then unload with weighing. The init-method should create two con-
tainers on the line L2. Complete the init method as follows.

is
do
 .MUs.Container.create(L2,2);
 .MUs.Container.create(L2,4)
end;

Select the following settings in the DismantleStation (unload):

38 3 Standard Classes in PLANT SIMULATION

The palette exits the dismantle station before the last parts. In most cases, such
behavior does not fit reality. The container must exit the dismantling station after
the single parts. To do this, change the settings of the dismantling station:

In the dismantle table you have to define how many of which parts are to be trans-
ferred to any successor.

Now all parts will be unloaded first, before the main part will be transferred.

Dismantle Mode
Select how Plant Simulation deals with mounted parts.

It provides two modes:

Detach MUs: Plant Simulation unloads the mounted parts from the main part and
transfers them to the successors, which are contained in the dismantle table.

Create MUs: The DismantleStation creates new parts.

Main MU to Successor
This successor number may not be contained in the dismantle table (error message).

Exiting MU
Here, you determine how Plant Simulation handles the main parts.

3.2.8.2 Cycle
With the cycle object, you can synchronize a set of objects. The MUs will be
passed on only if all stations in the balanced line are finished, neither failed nor
paused, and the next station is ready to receive MUs. Connectors must link the sta-

3.2 Material Flow Objects 39

tions of the balanced line. Enter the first and last object of the balanced line into
the cycle object. The following example demonstrates how the cycle object works.

Example 17: Cycle
Three machines will be synchronized. Create the following Frame:

Settings: Source: interval 2 minutes; M1: processing time 2 minutes; M2: process-
ing time 2 minutes; M3: processing time 1 minute; Line: length 8 meters, 8 min-
utes time. Let the simulation run. The station M3 is finished earlier than the other
stations and then empty for a while. Now double-click the cycle object. Enable the
cycle object with ACTIVE and enter the first and the last station:

The part on the object M3 remains on the station until all other stations are finished
too.

3.2.9 The Store
The store has an unlimited number of storage places, which are organized in a ma-
trix. As long as one place is free, the store can receive MUs. Without a control
method, the store places the MU on any free place in the matrix. As opposed to the
active material flow objects, the store has no setup time or processing time and no
exit controls. The MUs remain in the store until they will be removed by using a
control.

40 3 Standard Classes in PLANT SIMULATION

When you want to reduce the dimension of a store, you can only eliminate empty
places. If MUs are still located on the places you want to delete, then you have to
first delete the MUs or transfer them to other places within the smaller dimension.
If the store is failed, it cannot receive MUs, but it can move MUs out of it.

3.2.10 The Line

3.2.10.1 Behavior of the Line
The Line is an active material flow object. It transports MUs along a route with a
constant speed (accumulating conveyor like gravity-roller conveyor, chain con-
veyor). MUs cannot pass each other on the line. Unless you have entered an output
control or you have chosen a different behavior, the Line distributes MUs to its suc-
cessors. When an MU cannot exit (e.g., occupation of the Successors), the setting
“Accumulating” determines whether the MUs maintain their distance or move up.

3.2.10.2 Attributes of the Line

Length: Length of the line (the maximum number of MUs on the line is calculated
by dividing the length of the line by the length of the MUs).

Speed: The line has the same speed along the entire length. You can set the speed
to zero to stop the line.

Time: Enter the time, a MU needed for transportation from the beginning until the
end of the line (the speed is calculated thereof).

Capacity: The capacity determines the maximum number of MUs, which can be
positioned entirely or in part on the Line (-1 for an unlimited capacity).

Accumulating: See the following example.

3.2 Material Flow Objects 41

Example 18: Line 1
Create the following Frame: Source: each 6 seconds one part, Line: length 18 m,
1 m/s speed, Drain: processing time 0 seconds

The default setting of the Line is ACCUMULATING (a checkmark in the box).

Now fail the drain (checkbox FAILED) and save your changes. Start the simula-
tion. The MUs move up. This way, the Line works like a buffer. The simulation
only stops when the entire line is occupied with MUs:

Remove the MUs from the simulation model (), then clear the checkbox
ACCUMULATING in the dialog of the Line and confirm your changes by clicking
OK. Now restart the simulation. The parts on the line keep their distance. With
this setting, the line cannot be used as a buffer.

42 3 Standard Classes in PLANT SIMULATION

What kind of behavior the line must have depends on the technical realization of
the Line. Conveyor belts or roller conveyors are normally accumulating; a chain
conveyor is generally non-accumulating.

Backwards: The line can move forward or backward. If it should move forward,
the checkbox BACKWARDS is cleared.

Example 19: Line 2
Work stations are arranged around a conveyor belt.

One part arrives every 5 seconds, the processing time of the APs is 10 seconds,
and the last job requires 5 seconds. The speed of the conveyor is 1 m/s.

Create the following Frame:

A Side Note to Inheritance
If you want to increase the speed of the entire conveyor belt, you have to alter the
speed of each line segment. The same applies, e.g., for the work places. For this
problem, there is a simple solution. Define an appropriate object in the class li-
brary and change its properties there. Create derivatives by dragging the object
from the class library into the Frame. Derivation creates Children (Child objects).
The main object is called base object/base class (Parent/parent class). The child
objects inherit all properties and methods from its base class. There is also a link
between basic class and child objects (inheritance). If you change the properties of
the base object in the class library, you are also changing the properties in the
child objects (if inheritance is switched on).

3.2 Material Flow Objects 43

3.2.10.3 Curves and Corners
Lines may have a very complex course. Plant Simulation allows you design the
course as complex as it is in the real layout. If you have inserted a line in a Frame,
you can extend it by dragging. You can change the shape of the Line with the con-
text menu command APPEND POINTS. Plant Simulation draws the length of the
line by a setting ratio of meters to pixels. In the basic setting, the grid spacing of a
Frame is 20 x 20 pixels. You can define a different grid space in Plant Simulation
window under TOOLS – PREFERENCES – MODELING.

You can adjust the ratio of grid and dimensions for each Frame individually. Se-
lect TOOLS – SCALING FACTOR … in the Frame window.

Enter the required size ratio into the following dialog:

Define the visual appearance of the curved object on the tab CURVE

44 3 Standard Classes in PLANT SIMULATION

Clear the checkbox ACTIVE if you want to use a separate icon for the line (e.g.,
from an icon library). If you append points (right mouse button – APPEND
POINTS) and hold Ctrl + Shift, you can draw arc segments:

3.2.11 AngularConverter and Turntable
AngularConverter and Turntable assist you in modeling curves or junctions on
Lines. Oftentimes independent technical solutions are required, which themselves
require a certain amount of time for implementing them. Plant Simulation offers
three options:

1. Append a corner point to the line, and extend the line in a 90-degree angle.
Without SimTalk you cannot implement a special (higher) time for the
transfer.

2. You can use the object AngularConverter. You can simulate processes in
which the part is transported to a certain point, stops, and then accelerates
again at an angle of 90 degrees. Retarding and acceleration times will be
considered as time (e.g., 4 seconds). The entity will not be rotated during
this process.

3.2 Material Flow Objects 45

3. If the part is to be rotated while transferring (via a robot or a turntable, for
example), you can use the object TurnTable.

Example 20: Turntable and AngularConverter
For comparing the various solutions, here is a small example: Duplicate an entity,
and rename it to partarrow. Change the icon so that it matches the following picture:

Create the following Frame:

Enter the following settings: The source generates the MU partarrow at intervals
of 1 minute. Leave the basic settings for all other objects. Start the simulation and
track the movements of the part.

3.2.11.1 Settings of the AngularConverter
You can select different lengths and the associated speeds:

46 3 Standard Classes in PLANT SIMULATION

The MOVING TIME (Tab Times) is the time which the converter needs to switch
from one direction to the other.

3.2.11.2 Settings of the Turntable
The Turntable accepts a part and rotates it by 90 degrees and from there moves it
on in the direction of the connector. If you select “GO TO DEFAULT POSITION”
(and possibly enter an angle), the turntable returns to this position after moving the
part on. If the option is not selected, the turntable only rotates when the next part
is ready to be moved.

3.2.12 The PickAndPlace Robot

3.2.12.1 Basic Behavior
From version 9 on Plant Simulation provides the object PickAndPlace. You can
easily model robots with it, which pick up parts at one position and rotate and
place the parts at another position. Plant Simulation determines the necessary
angles of rotation according to the position of the successors or you can enter
the angles into a table.

3.2 Material Flow Objects 47

Example 21: PickAndPlace 1
Create the following Frame:

The source produces one part every minute. All other components use their basic
settings. When you start the simulation, the pick and place robot transports parts
from the source to the drain.

3.2.12.2 Attributes
If you connect the pick and place robot with other objects with Connectors, Plant
Simulation generates a table of positions and associated objects. You can find the
table in the tab ATTRIBUTES. Click the button ANGLES TABLE:

The position of 0° corresponds to the so-called 3 o'clock position. The angles are
specified clockwise.

The TIMES table controls the time consumption between the different rotation po-
sitions. Here you define the duration of the movement from one position to an-
other. Default is one second. To change the times, click the button TIMES TABLE
on the tab ATTRIBUTES:

The default angle designates a waiting position, which the PickAndPlace robot
takes when you select the respecitve option on the tab ATTRIBUTES.

48 3 Standard Classes in PLANT SIMULATION

Enter the duration of the rotations like this:

GO TO DEFAULT POSITION
In its basic setting, the PickAndPlace robot waits at the unloading position, until a
new part is available at the loading position. Then it turns to the loading position
and loads the part. If you select “GO TO STANDARD POSITION” the robot then
moves to this position after placing the part.

Example 22: PickAndPlace 2
A Pick-and-place robot is to sort parts. Red, green, and blue parts arrive in a mixed
order. The robot is to distribute those according to the value of the attribute “col”
of the parts. Create 3 parts (part1, part2, part3) in the class library. Assign a user-
defined attribute (“col”, data type: string) to all 3 parts. Set the values to “red”,
“green”, and “blue”. Color the parts accordingly. Create the following Frame:

3.2 Material Flow Objects 49

Settings: The source randomly creates part1, part2, and part3 33% each in an in-
terval of 2 seconds. Connect the PickAndPlace object with Line_red first, then
with Line_green, and lastly with Line_blue. You can define the distribution of
parts by color by the exit strategy of the PickAndPlace robot. Select the option
MU ATTRIBUTE on the Tab EXIT STRATEGY. Then click Apply. The dialog shows
additional dialog items:

Select the ATTRIBUTE TYPE: String (the data type of the user-defined attribute
col). Click OPEN LIST. Enter the attributes, the values and the successors which
should be transferred here.

Finally, the robot should place the parts assorted by color to the lines.

50 3 Standard Classes in PLANT SIMULATION

3.2.13 The Track

The track is a passive object for modeling transport routes. The transporter is the
only moving object, which can use the track. The dwell time on the track is calcu-
lated using the length of the track and the speed of the transporter. MUs cannot
pass each other on the track (retain their entrance order––FIFO). If several trans-
porters with different speeds are driving on the track (a faster one catches up with
a slower one), a collision occurs. The faster transporter automatically adjusts its
speed to the slower one. With a capacity of -1 the maximum capacity of the track
is determined by the length of the track and the length of the transporters (length
of 10 m and 1 m per transporter result in a maximum of 10 transporters); other-
wise, the capacity is limited by what you enter.

Attributes:

Plant Simulation determines the length of the track if you activated the check-
boxes ACTIVE and TRANSFER LENGTH on the tab curve.

Backward/Forward destination list: A track can connect several workstations.
You can specify which stations have to be covered on the route (forward and back-
ward).

Example 23: Track
Create the following Frame:

You have to “convince” the source to produce transporters. Open the source by
double-clicking it. Enter a time of 1 min as the interval for the production. Se-
lect.MUs.Transporter as the MU.

3.2 Material Flow Objects 51

When you start the simulation, the source produces a new transporter every min-
ute and moves it onto the track. The transporter moves with the speed you entered
on the track and will be moved to the drain at the end of the track. The drain de-
stroys the transporter.

Rotate MUs
Clear the option ROTATE MUS on the tab Curve, and test what happens:

The option ROTATE MUS animates the transporter, so that it always points for-
ward (the front always points in the direction of movement). Therefore, the icon of
the transporter rotates. Try it once with a curve (like the Line: Context menu, then
attach corner points, and insert the curve with CTRL + SHIFT).

3.2.14 The Sorter
3.2.14.1 Basic Behavior
The sorter can receive a certain number of MUs and move them on in a different
order. The removal order of MUs, which the sorter contains, depends on definable
priorities. The MU with the highest priority will be transferred first, no matter
when it entered.

The following selection criteria are offered:

• Duration of stay
• MU-attribute
• control

The content of the sorter is sorted, if either

• a MU enters the sorter or
• the content of the sorter is accessed.

When several MUs have the same value within a sort criterion, then the order of
these MUs remains undefined. You can use the sorter for simulating queue logics.

52 3 Standard Classes in PLANT SIMULATION

3.2.14.2 Attributes of the Sorter
A number of rules (e.g., shop floor management) exist for controlling queues. An
important criterion is, for example, the throughput time of an order (from entry in-
to the production to delivery to the customer). Special orders from major custom-
ers are often preferred to be able to deliver quicker. The throughput time of the
remaining orders thus increases. Another rule is, for example, that the order which
causes the least retooling cost will be fulfilled first. The simplest queue manage-
ment follows the first come, first serve principle (or first in, first out)…

Capacity: Enter the number of stations in your sorter. “-1” stands for an unlimited
capacity. You can access individual stations by their index ([…]).

Order: The sort order determines whether the MUs are sorted in ascending or in
descending order. (Priority 1 very high; capital commitment, …).

Time of sort: When should be sorted? If ON ENTRY is selected, newly entering
MUs will be sorted into the existing order of the other MUs. The sequence is not
updated, even if the values of the sort criteria change. When you selected the op-
tion ON ACCESS, the MUs will be sorted dynamically. At each entrance of a new
MU or before moving it, the MUs will be reordered (taking into account the cur-
rent values of the sort criterion).

Sort criterion: Sort criteria can be:

• Occupation Time: The MUs will be sorted according to their occupation time
in the sorter (descending: first in-first out or ascending: first in-last out)

• MU-Property: You can enter order attributes and statistical values (statisti-
cal values only if statistics for the MUs is active).

Example 24: Sorter
A process with an availability of 50% will be simulated. A sufficiently large buffer is
located in front of the process. The parts will be processed after blockages with dif-
ferent priorities. We want to achieve parts with higher priorities that have a much
lower throughput time than the parts with lower priority. Create a folder color_sor-
ting below models. Create a Frame within the folder color_sorting (Right-click the
folder icon – NEW – FRAME). Duplicate all the required objects in this folder.

3.2 Material Flow Objects 53

Frame:

Settings:

1. Insert three entities, and name them red, green, and blue. Assign them different
colors (recommended: 5x5 pixels, colors according to the names) to better distin-
guish them. Open the source, and set the following values: Interval: constant 2
seconds, MU-Selection: random, table: allocation, enter the following values into
the table allocation (Note: You can insert the addresses using drag and drop;
Drag the relevant parts from the class library to the table, and drop them there):

SingleProc: Processing time: 1 second, Availability: 50%, 30 minutes MTTR
(based on the simulation time), Line: length 8 meters, 1 m/s speed, accumulating,
Drain: 0 seconds processing time

2. User-defined Attributes
Create a user-defined attribute for each part (Double-click the part in the class li-
brary, tab CUSTOM ATTRIBUTES):

54 3 Standard Classes in PLANT SIMULATION

Set the following values for the attribute “importance”: red: 1, blue: 2, green: 3.
The parts in the sorter should be sorted according to the attribute “importance”.

3. Sorter attributes
In the sorter, you have to select the criteria by which it sorts (default on entrance
of a new part into the sorter).

Ascending order: The part with the smallest importance “scrambles forward”; it
will be sorted in ascending order, Sort criterion: Cust. Attribute – importance.
Click Start Sorting to start the sorting process.

4. Control results
Run the simulation for a while. If a failure takes place, you will see a series of red
parts exiting the SingleProc (the parts enter the sorter in a mixed order). Look at
the type-specific statistics of the drain. Click the button DETAILED STATISTICS
TABLE on the tab TYPE SPECIFIC STATISTICS:

The value LT_Mean shows the average throughput time of the parts. The part red
has a much lower throughput time than the part green:

3.2 Material Flow Objects 55

3.2.15 The FlowControl

3.2.15.1 Basic Behavior
The FlowControl itself does not process MUs. The Flow Control is always posi-
tioned between two or more other objects and defines the flow behavior between
these objects. If needed, you can also combine several FlowControl objects.

3.2.15.2 Attributes
Example 25: FlowControl 1
You are to take a scrap rate at a workplace into account. Scrap represents a
branch in the flow of materials (e.g., the quality control sorts a defective part, the
defective part is moved to the drain). To simplify the presentation of scrap, the
parts have the property “io” with a value true or false in the simulation. You can
branch the flow according to these values.

Create the following Frame:

quality (quality assurance): 1 minute processing time, Lines: 3 meters, speed 1
m/s. The order in which you insert the connectors determines the number of the
successors. First, connect the FlowControl with the line_io, then the the Flow-
Control with line_nio. Duplicate an entity, and name it “part”. Create a user-
defined attribute for the part: Name: io, Data type: boolean. 10% of the parts
should have the value “false” for the attribute “io”. The remaining parts will re-
ceive the value “true”. The allocation will be done randomly. For the assignment,
you can use the source. In the dialog of the source, select the option MU-
SELECTION – RANDOM. Select the TableFile for the allocation.

Open the TableFile by double-clicking it. Enter the following values into the table:

56 3 Standard Classes in PLANT SIMULATION

Enter the same part twice. Enter a name in the column ATTRIBUTES (in the
above case “attribute” is used as an internal name); Plant Simulation then cre-
ates a table. Press the F2 key in the field ATTRIBUTES. It opens another window.
Enter the name of the attribute (io) and the value (true/false) into the field with the
correct data type (boolean):

Proceed as described with the second row for the part (boolean false). You can
now evaluate the attribute io in the flow control. Select Method on the tab Exit
Strategy and select the method:

Within the specified method, you can access the respective part with @; for the
successor to be moved, an integer has to be returned (1 or 2 in this example).
Enter the following source code into the method:

(r : integer) : integer
is
do
 if @.io=true then
 return 1;
 else
 return 2;
 end;
end;

Run the simulation and check the results using the type-specific statistics of the
drain.

3.2 Material Flow Objects 57

Attributes of the FlowControl
Tab EXIT STRATEGY: Here you set the exit behavior of the FlowControl.
BLOCKING means, that if the successor cannot receive parts, the FlowControl
waits until it can receive parts again.

Here is a short selection of the strategies:

• START AT SUCCESSOR 1: The flow control attempts to always pass the MU
on the successor number 1. If the successor 1 is always receptive, each MU
will move to it. The MU will be passed onto the next successor only if
moving is not possible (faulty, occupied).

• CYCLIC: The FlowControl tries to move the MU based on the recent pass-
ing on the next object (in the list of successors).

• SELECTION: The FlowControl tries to move the MUs onto the successor
that meets a certain property.

You can also use a method for distributing the MUs: Specify a method, which re-
turns the number of the successor. You can access the MU, which is to be trans-
ferred with @. If the part cannot be moved to the designated successor, the me-
thod will be called again.

Example 26: FlowControl 2
MUs should be separated by their name. Three parts (part1, part2, and part3) will
be stored together on the same place (buffer1). After this, the different parts will
be processed on separate machines.

58 3 Standard Classes in PLANT SIMULATION

Create the following Frame:

Data: Buffer: capacity 100 parts, Mach1: 2 minutes processing time, Source1
(part1): interval 6 minutes, Source2 (part2): interval 6 minutes, Source3 (part3):
interval 6 minutes, Mach1, Mach2, Mach3: each 6 minutes processing time. Fail-
ures will not be considered. Select Method as exit strategy in the dialog of the flow
control and select the method in your Frame. You can use “@” for accessing the
current MU and you have to indicate the number of the successor. The source
code in the example above might look as follows:

(r : integer) : integer
is
do
 if @.name="part1" then
 return 1;
 elseif @.name="part2" then
 return 2;
 elseif @.name="part3" then
 return 3;
 end;
end;

Percentage: You can select a percentage distribution. The basis of this is a distri-
bution table. In this table you enter the percentage for each successor.

3.2 Material Flow Objects 59

Random: You can define a distribution function for the transfer. The distribution
function is used to determine the successor.

Cyclic sequence: If you select Cyclic sequence, then the MUs will be passed in a
defined sequence to the successors. The order is entered in the corresponding table.

To all Successors: This distribution creates duplicates of MUs. Any successor will
receive a duplicate (always blocking).

Assignment: There is only one successor. You can set a property of the MU using a
method …

MU Attribute: Here is the successor chosen by the value of an attribute of the MUs.

Tab Entrance Strategy

Under this tab you set the reunification strategy of the FlowControl (several pre-
decessors).

Example 27: Just in Sequence
With the FlowControl, you can model just in sequence processes. In such processes,
parts from different sources are used for production and assembly processes in a
specific order (sequence) and the parts will be transported in this order to the work-
stations. In the following example, three different sources deliver parts. These parts
must be placed in a sequence (two parts of Source_r, one part of Source_g, two
parts of Source_b). They will be transported in this order to an assembly station,
which places five parts each on a palette. Create the following Frame:

Settings: Create 3 entities (red, blue, green; each 5x5 pixels, color the parts).
Source_r produces one part “red” every 4 seconds, Source_g one part “green”
every 8 seconds, and Source_b produces one part “blue” every 4 seconds. The
parts need 10 seconds from the entrance to the exit of Line1, Line2, and Line3.
The travel time on the Line4 is 20 seconds. Source_pal produces a container (ca-
pacity 5 parts) every 8 seconds. Set the assembly station so that 5 parts of Line4
are loaded onto the container. The assembly time is 8 seconds. Failures and
breaks are not taken into account. Click the tab ENTRANCE STRATEGY in the dia-
log of the flow control. Select the strategy CYCLIC SEQUENCE.

60 3 Standard Classes in PLANT SIMULATION

Clear the inheritance button next to the button OPEN LIST (click the green button).
Click the button OPEN LIST. Enter the order of the “predecessors” into the list.
For the example above, the sequence is 1-1-2-3-3:

So that the sequence will remain intact even if a part is temporarily not available,
select BLOCKING.

3.3 Resource Objects

3.3.1 Usage and Example
Resource objects can be used for the simulating employees. The simulation of
employees is especially interesting for these constellations:

• Repairs
• Machine operation (the machine cannot work without operators)
• Employee as transporter of parts (carries parts)

Example 28: Resources for Repairs
The same employee maintains two machines. Both machines have a processing
time of 2 minutes, an availability of 80%, and a MTTR of 45 minutes. The staf-
froom of the service employee is 50 meters away from the machines. Create the
following Frame:

3.3 Resource Objects 61

3.3.2 The Worker-WorkerPool-Workplace-FootPath Concept

Workers are generated in the worker pool and stay there. The workers offer vari-
ous services (e.g., repair, operate, and tool change). A broker mediates the workers
to the individual workstations when they request the services. The broker sends
the workers from the worker pool to the machines. If there is a footpath, then the
worker walks from the worker pool to the machines on the footpath. The worker
stays on his workplace while doing his job.

To simulate the workers, you need the following objects:

1. Broker
2. WorkerPool
3. Worker
4. FoothPath
5. Workplace

Complete the following example. It is best to begin with the broker. Then drag the
worker pool into the Frame so that it is placed close to the broker. Next, drag the
workplaces into the Frame. Drop it close to the machine. Then insert the footpaths
into the Frame. You can insert the footpaths with corner points, just like tracks
and lines. Connect the WorkerPool with the footpath and the footpath with the
work places:

3.3.3 The Broker

The broker mediates between suppliers and demanders of services.

62 3 Standard Classes in PLANT SIMULATION

You do not have to select settings in the broker. You have to propagate the ma-
chines as well as the resource pool to the broker.

3.3.4 The WorkerPool
The worker pool produces a number of workers according to a creation table and
makes them available for the registered services after a request. If the workers do
not work, Plant Simulation shows them on the worker pool.

If you insert a worker pool close to a broker, the broker will be entered into the
field BROKER you have to enter the workers, which are managed in the pool, into
the creation table. Click on CREATION TABLE:

Drag the workers to the creation table, and enter the amount. In the column
ADDITIONAL SERVICES, you can enter designations for services. The services are
marked by a string. So you can enter any of your needed services. If you want to
register more than one service, then you can do it in the columns to the right next
to ADDITIONAL SERVICES (maximum 30).

Example: Enter for the Example the service “repair”.

You can also enter services directly in the dialog of the worker.

Get job orders in the pool only: If this option is selected, the worker must return
to the worker pool between the individual orders (walk). If this option is cleared,
then the worker can also receive an order en route to a job.

Workers can beam to the workplace: If this option is selected, the worker can walk
directly to the workstation, even if there is no suitable footpath. If this option is
cleared and if there is no footpath to the workplace, Plant Simulation outputs an error.

3.3 Resource Objects 63

Workers can work remotely: If this option is selected, the worker can do his job,
even if the respective workplace is already occupied (e.g., by another worker).
Otherwise, you will get an error.

Broker: Select the broker who will broker between the work places and the work-
er pool (you can drag the broker to the respective field of the worker pool).

3.3.5 The Worker
You have to set Worker-related settings in the class library because the instantia-
tion of the worker is realized by the worker pool.

The worker has a number of properties, which are important for the simulation:

Priority (between 0 and 10): The higher is the priority, the sooner a job will be
performed.

Efficiency (in percent): 50% means that the worker needed twice the time for the job.

Speed: Speed of the worker on the footpath.

Capacity: Number of parts, which the worker can carry at once.

Shift: Name of the shift, during which the worker works. If no shift is entered, the
worker can work in all shifts.

Broker: The broker will be assigned by the worker pool.

Click the button SERVICES to assign a range of services to the worker:

3.3.6 The Footpath
On the footpath, the workers move between work places and the worker pool.
For that, they consume a time, resulting from the speed of the worker and the
length of the footpath.

64 3 Standard Classes in PLANT SIMULATION

3.3.7 The Workplace
The worker stays on the workplace when he performs a job. Only one worker can
stay on a workplace at any one time.

With the workplace, you connect an event of the machine (e.g., SingleProc)
with a request for a service (e.g., failure: request of the service “repair”). The
workplace needs to be assigned to another object, which happens automatically
when you place the workplace close to another object. You can also select the re-
spective object in the dialog:

Enter “repair” into the list Service:

The machine itself must request the service. You need to designate the broker and
determine the service which will be required. Do this in the dialogs of the objects.
The service will be requested if the machine fails. The failure importer is respon-
sible for the request of the relevant services (tab Failure Importer):

Activate the Failure Importer. Turn off inheritance for the services list (Click on
the green box next to the button Services for Repairing). Click the button “Ser-
vices for Repairing”. Enter the service name (repair) and the number of workers.

Select the broker.

3.3 Resource Objects 65

Confirm your changes and run the simulation for a while. If a failure occurs, the
worker moves from the workerpool to the machine and remains there until the
failure is removed. Then he moves back into the workerpool.

3.3.8 Worker Transporting Parts

You can also use the worker for transporting parts. That is important, for example,
if you need to simulate a multi-machine operation, in which workers have to
transport the parts from one machine to the next. The active material flow objects
SingleProc, ParallelProc, Buffer, PlaceBuffer, Sorter, and Source have the exit
strategy: Carry Part Away.

Example 29: Resources Exit Strategy Carry Part Away
We want to simulate a multi-machine operation. A worker carries parts from a
buffer and carries them to a Machine1. If the Machine1 has finished, the worker
carries the parts from Machine1 to Machine2 and then to another buffer.

Create the following Frame:

Settings: Source: Interval: 1:30 minutes, Machine1, Machine2: 0:50 minutes
processing time, Buffer: capacity four parts each, 0:30 processing time, worker:
one worker, service: “carry part away”, broker and workerpool, assign the work

66 3 Standard Classes in PLANT SIMULATION

places to the associated machines. The worker transports the part from one job to
the next. Therefore, the next workplace must be assigned to each machine and
each buffer. Open the dialog of Buffer_in. Click the tab exit strategy, and select
Carry Part Away from the drop-down list. Then click Apply:

Select the broker. Specify the workplace, which next handles the part. Enter a
maximum dwell time which determines how long the worker waits for a part from
a machine (or the time, which is necessary for unloading/loading of the part). If
you enter a longer dwell-time than the processing time, the worker stays at the
machine during processing and carries the finished part to the next station.

Do the same for Machine1 and Machine2. The worker now carries the parts
from one machine to another. The worker does not check whether the succeeding
machine can receive the part. Therefore, the worker might carry a part to an al-
ready occupied machine.

3.4 General Objects

3.4.1 The Frame

3.4.1.1 General
The Frame is the base of all models. You can use Frames to create your own ob-
jects with an arbitrary behavior.

You can combine various basic objects to an object with higher functionality. The
new object (Frame) can be used like any other object. The interface between differ-
ent user-defined objects (Frames) is the object interface. Thus, it is possible to build
a model in several hierarchies. The object Frame does not have its own basic behav-
ior. You can create new Frames on the context menu of the folders of the class li-
brary. Click the right mouse button on a folder icon and select New – Frame.

3.4 General Objects 67

3.4.1.2 The Frame Window

Opens the Frame window in which the object is lo-
cated.

Opens the Frame from which the current Frame was de-
rived.

Selects all the objects that have unconnected en-
trances or exits. Already selected objects remain se-
lected.

Opens the icon editor.

Deletes one or more objects after confirmation.

Deletes all mobile objects on all objects.

Shows or hides object names.

 Shows or hides connectors.

Shows or hides comments.

Shows or hides the grid Frame.

Activates or deactivates the menu command CHANGING
STRUCTURE.

 Starts the simulation

 Resets the simulation

 Starts the simulation without MU-animation

 Opens the toolbox for creating graphics in the Frame.

Shows the Eventcontroller. If no Eventcontroller is
inserted in the Frame, it will be inserted in the
Frame.

The menu Icons is important for working with the Frame:

68 3 Standard Classes in PLANT SIMULATION

Here, you can rotate, shrink, and mirror the icons of the objects.

3.4.2 The Connector

3.4.2.1 Basic Behavior
The Connector connects objects and Frames. Clicking the Connector in the class
library or the toolbox activates connection mode (Mouse pointer changes to the
icon Connector). To connect object A with object B, first click on object A and
then on object B (the connection will only appear if the menu command View-
Options Connections is enabled). An arrow shows the direction of the connection:

You can also insert corner points. You can create a rectangular corner point by
holding down Shift + clicking the left mouse button:

3.4 General Objects 69

Follow these steps (Connection mode): Click the left mouse button and hold down
the Shift key on the location of the corner point, then click the position of the sec-
ond corner point, and then click the icon of the other object.

3.4.2.2 Attributes
You can view the properties of the connector by double-clicking the connector in
the Frame (for this special connector) or in the class library for all connectors by
double-clicking the icon of the connector. You can enter the width of the connec-
tor in pixels (allowed: 1–100) and you can select a color.

The visibility of the connectors is generally controlled in the Frame window:

3.4.3 The EventController

3.4.3.1 Basic Behavior
The EventController coordinates the events during the simulation.

When an MU moves onto a SingleProc, the EventController calculates when it
will be passed through the SingleProc and will exit. This time 10 seconds, for ex-
ample, is entered in a table of the EventController. The EventController then in-
forms the SingleProc that it has to process an exit event. The MU will be moved to
the succeeding object.

70 3 Standard Classes in PLANT SIMULATION

Time: There are two modes for the time: absolute time and date. When you start
the simulation, the simulation time is set to zero and then starts. For the date for-
mat, click the button Time:

The simulation will start at a specified date. You can set the date to the required
value in the tab settings:

Clicking the button TIME toggles between the modes.

Tab Controls:

Start: Clicking the Start button starts the simulation. If you previously clicked Re-
set or it is the first simulation run, the INIT control in the model will be called.
You can also start the simulation by pressing the Shift key and double-clicking the
EventController in the Frame.

Stop: Clicking Stop stops the simulation after processing the current event. You
can also double-click the Eventcontroller while holding down the Shift key.

Step: With Step you can run your simulation step by step. It processes only one
event.

Reset: Reset calls all Reset controls of the model. All unprocessed events will be
deleted and the simulation time will be set to zero. Statistics will also be reset.
Any failure will be removed (Pauses are not changed).

3.4 General Objects 71

List: Clicking List opens the window of the event debugger. Here, all events are
listed in ascending order.

Init: Init calls all Init methods of the Frame. When you first start the simulation,
Init will be called automatically.

Real Time x: The simulation usually jumps from event to event, without waiting
for the intermediate times. Real time forces the Eventcontroller to run the simula-
tion during this time as well, including graphic animation, even if no event occurs
(you can determine how fast the simulation runs).

Tab settings

Date: Start date of the simulation.

End: Here, you can enter a relative time for the length of the simulation run. This
time will be compared with the current simulation time. If both values are equal,
the simulation is aborted.

Statistics: The date entered here will reset statistics. This setting, you can use to
hide the filling with parts of your model (ramp up) from the statistics.

Backwards: The absolute time is running backwards.

Delete MUs on reset: All MUs in your Frame will be erased before the next simu-
lation run. These also include containers and transporters.

Step over animation events: With this option, events will be processed, after
pressing step, as long as a new animation event occurs (graphic moves).

3.4.4 The Interface

3.4.4.1 Basic Behavior
The Interface object allows connecting different Frames.

Example 30: Frame and Interface
Preliminary remark: A basic concern of many object-oriented techniques is reus-
ability. For this purpose, we use a versatile range of classes (data types). With

72 3 Standard Classes in PLANT SIMULATION

these small building blocks (the same for all projects), we can build the appropri-
ate solutions. For scheduling, a multitude of such “kits” exists, for example
“methods time measurement”. Using this methodology, human work is broken
down into elementary movement objects. These movements will be assigned a time
depending on various factors (time studies). A simplified description of the Meth-
ods Time Measurement procedure follows. It breaks down human labor into 15
basic tasks (here objects).

Deburring: A worker takes a part off the line, he clamps it, he deburrs it, and
he then puts it back on the line. At work, he stands with his back to the line.

The job of the worker can, according to MTM, be broken down into the follow-
ing task (work begins after loading the finished part onto the line):

Basic objects (abridged) Duration (sec)
Reach (workpiece) 0.25
Grip (workpiece) 0.1
Bring 0.3
(Body) rotation (to the place) 0.5
Walk 1
Reach 0.2
Handling (clamping) 3
Reach (tool) 0.5
Grip (tool) 0.1
Bring (tool) 0.2
Handling (deburring) 3
Reach (tool) 0.5
Reach (part) 0.3
Grip 0.1
Handling (unfix the part) 2
(Body) rotation (to the line) 0.5
Walk 1
Reach 0.3
Total: 13.85 sec.

Note: To simplify matters, the element “drop” is missing.
You need to create the movement objects as single classes in the class library (file
mtm_en.spp):

3.4 General Objects 73

Note: In this example, you have to prevent that more than one part stays in the
Frame “deburring”. After an MU has entered the object “reach”, the entrance of
the object “reach” must be locked and may only be opened again if the part
“reach5” exits. To do this, you need a method object in the Frame deburring
(folder information flow). Add a method object to the Frame. Open the object by

double-clicking it. Turn off inheritance (button) if you cannot enter your
source code into the method editor.
Enter the following source code:

is
do
 if ?=reach then
 reach.entranceLocked:=true;
 else
 reach.entranceLocked:=false;
 end;
end;

Enter the name of the method into the object reach (tab control entrance). Enter
the method as exit control into the object reach5, clear the checkmark to the left of
front, and select the check box rear.

You can select a new image for the Frame (right mouse button – Edit icons
icon number 1). You can now use the object “deburring” the same way as the

74 3 Standard Classes in PLANT SIMULATION

other objects in any Frame. Create a new Frame, and drag the Frame deburring
from the class library to it:

Set the interval of the source to 30 seconds. By double-clicking the object de-
burring you can open the sub-frame.

3.4.4.2 Attributes of the Interface

Type: An interface can be either an entrance or an exit.

Max. number of external connections: Determines how many predecessors or
how many successors the device may have.

Position in %: Indicates the position of the connectors (e.g., 0% bottom, 100%
top …).

Side: Where the interface on the Frame icon located.

S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 75 – 83, 2010.
© Springer Berlin Heidelberg 2010

4 Icons

4.1 Basics

It is helpful to use a realistic layout for the simulation model. The layout is divided
into several levels:

1. The background of the Frame.
2. The icons of the static objects.
3. The icons of the mobile objects and their movement through the Frame.

All objects of a class share a set of icons. You, therefore, have to duplicate enough
classes in the class library for representing a more complex model. For a large
quantity of objects, we recommend to organize them in folders.

4.2 The Icon Editor

Every Frame and almost every basic object has a set of icons.

Example 31: Icon Editor
Duplicate a SingleProc in the class library. Open the context menu by clicking the
object with the right mouse button and select EDIT ICONS.

This opens the icon editor:

76 4 Icons

Most objects have two icons:

• No. 0 is the icon that Plant Simulation displays in the toolbar.
• No.1 is the icon that Plant Simulation displays when you insert the object

in a Frame.

You can always extend the pool of icons. Select ICON – NEW in the icon editor.

You can replace the existing icon by

1. Drawing a new icon (…). So that the icon is displayed without limitation in
the icon library (No. 0); it may have a maximum size of 40 x 40 pixels. All
other icons are limited to a size of 4000 x 4000 pixels.

2. Importing existing graphics (file or clipboard).

4.3 Drawing Icons

You can create and edit simple icons in the Plant Simulation icon editor. The fol-
lowing tools are available:

Freehand line Filled rectangle

 Line Fill range

 Polyline Copy range

 Ellipse Delete all

 Rectangle

You can select colors for the drawing functions by clicking in the color palette or

you can select a color from the image with the eye dropper tool.

4.4 Inserting Images

4.4.1 Insert Images from the Clipboard

You can insert pictures with copy and paste. Keep in mind that you cannot control
the size of the picture after inserting it into Plant Simulation. Copy the image to
the clipboard. In Plant Simulation select:

4.4 Inserting Images 77

If necessary, the image can be modified in the icon editor. You can insert pictures
from some applications in the icon editor with drag and drop. To do so, drag the
image from the source application to the icon editor (on the representation of the
image).

4.4.2 Inserting Images from a File

You can also create the object icons from existing files.

SELECT FILE – OPEN in the icon editor: …

Plant simulation supports importing the following file types:

Note that you can even convert CAD drawings into pixel images. When you insert
an image from the clipboard or from a file, the transparency information in GIF
and PNG files is lost. Plant Simulation provides a transparent color (dark green). It
is located at the bottom of the color palette:

Fill all pixels, which should be transparent in the model with this color. Activate
the transparency of these pixels with the command ICON – TRANSPARENT.

78 4 Icons

.

4.5 Changing the Background Color of the Frame

For Frames you can define an image with the name “background”. This image is
displayed in the background of the Frame. Proceed as follows:
Select EDIT – NEW in the icon editor of the Frame:

This creates an empty icon. Rename the icon to “background”.

Now you can insert a graphic with copy and paste …

Another way is to import an existing file. Select FILE – OPEN in the icon editor:
The selected file is displayed as the background. If you show everything true to
scale, you can generate a realistic model.

Note:
Here, you can also drag a graphic (e.g., an AutoCAD drawing) into a Frame ob-
ject. A new icon (background) will be created, and the drawing remains visible in
the background of the Frame.

4.6 Animation Structures and Reference Points

4.6.1 Basics
When you create your own icons, you have to determine where the MU is dis-
played on the icon and how the MU (e.g., on a track) will move on the icon. You
can set these settings:

• With a reference point on the MU.
• With an animation structure on the material flow objects.

4.6 Animation Structures and Reference Points 79

4.6.2 Set Reference Points
The reference point determines where Plant Simulation displays the icon of the
part when you insert the object into the Frame or during the animation on another
object. If it is an MU, it will be positioned so that its reference point lies on an
animation point or an animation line. If the object is a basic object or a Frame,
then it will be aligned to the grid in a Frame window. The reference point is posi-
tioned on a grid point. The reference point is displayed as a red pixel in the icon
editor. You can move the reference point by clicking the Set Reference Point but-
ton and by clicking a new pixel.

Example 32: Reference Points and Animation Structures
Duplicate the entity in the class library (right mouse button – Duplicate). Name
the new class “Part”. This part will have a size of 7 x 7 pixels and will be green.
Open the icon editor (right mouse button – Edit icons …). First, change the icon
size. Select the menu item: Icon – Size.

Enter a height and a width of 7 and click OK:

Next, remove everything that is left from the previous icon. Use the “Delete

All”: button. Click on a green color (not the color of transparency in the
color palette). First, click the fill icon () on the toolbar, then click the icon. You
have to reset the reference point (in the middle of the icon at the position on 4 x 4

pixels). Click Set Reference Point on the toolbar. Then select the pixel at the
position 4 x 4.

80 4 Icons

Note:
If you change the size of an MU, you have to do this for the entire set of icons.
The entity has two icons that you have to change:

 – operational (number 0)
 – waiting (number 1)

The fastest way is to copy the current icon (Edit – Copy Image) switch to the next
icon and then paste it again (Edit – Paste Image). You have to set the reference
point in the second icon (before Plant Simulation version 8).

4.6.3 Animation Structures
In animation mode you can set animation points or animation lines in the icon editor.

Example 33: Animation Structures
Duplicate a SingleProc in the class library. Rename the object to “press”. Open
the icon editor. Plant Simulation shows a number of simple icons. Select Tools –
Clipart Library…

Select the folder machine, and drag the file Press2.gif to the icon editor. Change

to animation mode. Click on the icon: . In animation mode, the icon will be
shown with a grayed out. The built-in SingleProc already has an animation point.
If you change the size of the icon, then you have to manually move the animation

point. Click the button . Now you can change the position of the animation
point by dragging it. The MU will then be animated on this position on the press.

4.7 Animating Frames 81

You can also delete animation points and insert new animation points. Place-Buffer,
Line, Track, and Sorter use animation lines and animation polylines. If you also
want to watch animation, you have to specify how often the MU will be displayed
on this line.

Example: Select the PlaceBuffer and open the icon editor. Switch to animation
mode. You see a line on the icon. If, for example, more than one animated part is
located on the block, you have to specify a number of animation events greater
than one. Click on: ICON – NUMBER OF ANIMATION EVENTS …

Enter a number less than or equal to 250 in the dialog that opens. The default is 1,
which means that the MU is animated only at the beginning and end of the object,
not in between.

4.7 Animating Frames
Often, it is necessary to split simulations that are quite complex. The simulation
takes place in various parts or segments, which are connected with each other
through connectors. At the top level is an overview of all the objects (Frames) of
the simulation. For a better presentation of the sequences, you can animate the
flow of mobile units on the Frame.

Example 34: Machine with a Ringloader, Animation on a Frame
We want to simulate a machine. The machine is equipped with a ring loader,
which offers 15 places each for unfinished and finished parts. The ring loader is
“accumulating”. Insert a Frame (e.g., Machine_ringloader). To simulate this ma-
chine, we need (for example) three objects:

EntranceBuffer
SingleProc (processing time: 1 minute)
ExitBuffer

Next connectors are necessary for the connections with other objects. The Frame
for the machine might look like this:

82 4 Icons

Change the Frame icon (so that indicates the ring loader):

Change to animation mode: Draw three structures on the icon. One each for the:

• EntranceBuffer
• SingleProc (processing time: 1 minute)
• ExitBuffer

You can do this with polylines: . Click on the icon Polyline. Then click on
separate points; Plant Simulation connects these points with a polyline. To finish
the line, click the right mouse button. Plant Simulation numbers your animation
structures. It should look like this:

Now the animation structures on the icon of the Frame must be connected with the
animation structures of the objects within the Frame. First, click on the icon

CONNECT ANIMATION POINT… . Then, click on the structure for the input
buffer (number 1). It opens a window in which you have to select the respective
object and possibly the animation structure of the object. The names of the objects
will be listed on the animation structure.

4.7 Animating Frames 83

For testing, we build the following Frame:

The MUs are now animated on the object (Frame).

S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 85 – 116, 2010.
© Springer Berlin Heidelberg 2010

5 Programming with SimTalk

The basic behavior of the Plant Simulation objects often in practice is not suffi-
cient to generate realistic system models. For extending of the standard features of
the objects, Plant Simulation provides the programming language SimTalk. With
it you modify the basic behavior of individual objects. SimTalk can be divided
into two parts:

1. Control structures and language constructs (conditions, loops…).
2. Standard methods of the material and information flow objects. They are

built-in and they form the basic functionality, which you can use.

You develop SimTalk programs in an instance of the information flow object Me-
thod.

5.1 The Object Method

5.1.1 Introductory Example
Example 35: Stock Removal
We want to simulate a small production with a store. The capacity of the store is
100 parts. The workplace produces one part every minute (the source delivers …).
Name the Frame “storage”.

You can create controls with Method objects, which are then called and started
from the basic objects using their names.

You find the Method in the class library in the folder InformationFlow. Drag a
method object to the Frame. A double-click on the icon opens the method.

86 5 Programming with SimTalk

The methods (functions) have always a body:

is
do
 -- Statements
end;

Declare variables between “is and do”, enter your source code between “do and

end”. First, you have to turn off inheritance. Click on the icon in the editor,
you have to formulate the instructions in SimTalk (call your method “stockRe-
moval”!).

Confirm your changes with . You now have to assign the method to an object.
For this purpose, each object has one or more sensors. When an MU pass through
a sensor, the relevant method is triggered. Double-click on STORE – CONTROLS –
ENTRANCE; select the correct method, ready we are!

5.2 The Method Editor 87

Now start the simulation. If you were successful, then there is no jam. The Store will
verify the quantity for each entry. If it is 99, the store will be emptied (a simple solu-
tion).

5.2 The Method Editor

Double-clicking a method object opens an editor. You will find a number of
functions in the editor, which facilitates your work while programming. If you
cannot enter your source code into the method editor, inheritance is still turned
on (see above).

5.2.1 Line Numbers, Entering Text
You can display line numbers with the command: VIEW – DISPLAY LINE
NUMBERS. The following rules apply for entering text:

• Double-clicking selects a word.
• Clicking three times selects a row.
• Ctrl + A selects everything.
• Copy does not work with the right mouse button (until version 9). Use Ctrl

+ C to copy and Ctrl + V to insert text or use the menu commands Edit -
Copy, etc.

• Use Ctrl + Z to undo the last change (or Edit Undo)…
• Move also works by dragging with the mouse.

5.2.2 Bookmarks
For faster navigation, you can set bookmarks in your code. The bookmarks are

displayed in red. To insert a bookmark, select any text and click:

Bookmark functions:

Icon Description

 Deletes all bookmarks in the method.

 The cursor moves to the previous bookmark.

 The cursor moves to the next bookmark…

88 5 Programming with SimTalk

5.2.3 Code Completion
The editor supports automatic code completion. If there is only one possibility of
completion, Plant Simulation shows the attribute, the method, or variable as a light
blue label. You can accept the suggestion with Ctrl + space bar.

Starting from an object you can display all possible completions. Simply press
CTRL + SPACE. In the list you can scroll with the direction buttons, an entry will
be accepted with Enter.

5.2.4 Information About Attributes and Methods
You can always get information about the built-in attributes and methods of an ob-
ject by Show Attributes and Methods in the context menu of an object.

In the table, all methods and attributes are shown (even those you have defined).

The column signature allows you to deduce whether it is a method or an attribute
and which data you need to pass or what type is returned. If the column only
shows the data type, the entry then is an attribute.

5.2 The Method Editor 89

Example: Show the attributes and methods of the store.

Recovery time is an attribute; the data is not in parentheses. To set the recovery
time, you have to type:

Store.recoveryTime:=120;

Set the value of an attribute with „:=”.

PE is a method. The method PE expects two arguments of data-type integer and
returns an object. PE allows you to access a particular place of the store. You will
call the method with parentheses:

Store.PE(1,1);

The row mirrorX does not contain a value in the column signature. MirrorX flips
the icon on the x-axis. It is a method which has no arguments and returns no value.
You will call this method without parentheses.

Store. mirrorX;

The parentheses in the column signature indicate that startPause is a method. The
data-type is given within square brackets. This means that the argument is op-
tional. This results in two possibilities of the call:

Store.startPause; -- no time limit
Store.startPause(120); -- pause for 120 seconds

Note:
Some attributes are read-only. You can assign no value to these attributes. Online
help describes whether an attribute is read-only.

5.2.5 Templates
For a number of cases, Plant Simulation includes templates, which you can in-
sert into your source code, or which you can use as a starting point for develop-
ing controls.

You reach Templates via the menu TEMPLATE:

90 5 Programming with SimTalk

In the method editor click into the row in which the snippet should be inserted.
Then click, e.g., TEMPLATE – IF … THEN … Under SELECT TEMPLATE you find
more templates. Watch out! Most templates in this selection completely replace
your source code. You can use the Tab key for moving through the template (be-
tween the areas in angle brackets).

5.2.6 The Debugger
The debugger helps you to correct your methods. Using the F11 key, you can
quickly change between editor and debugger (or RUN – DEBUG).

Example: Open the method from the example above, place the cursor in the text,
and then press F11.

Using F11 you can, for example, move through your method stepwise and see
what happens. If the method is completed, the method will open again in the edi-
tor. If an error occurs during the simulation, the debugger automatically opens and
displays error messages.

Note:
If you have to make changes in the source code in the debugger, then you can
save the changes by pressing the F7 key.

5.3 SimTalk

SimTalk does not differentiate between upper- and lowercasing in names and
commands. At the end of a statement, you need to type a semicolon. Blocks are
bounded by an “end” (no curly brackets as in Java or C++). If you forget the
“end”, Plant Simulation always looks for it at the end of the method.

5.3 SimTalk 91

5.3.1 Names
Plant Simulation identifies all objects and local variables using their name or their
path. You can freely select new names with the exception of a few key words. The
following rules apply:

• The name must start with a letter. Letters, numbers, or the underscore “_”
may follow.

• Special characters are not allowed.
• There is no distinction between capital and lowercase letters.
• Names of key words and names of the built-in functions are not allowed.

For methods some names are reserved:

• Reset: Will be executed when clicking Reset in the Eventcontroller.
• Init: Will be executed when clicking Init in the Eventcontroller.
• EndSim: End of simulation (reaching the end time for simulation).

Generally, key words from SimTalk are prohibited names (all terms in SimTalk,
which are highlighted in blue).

5.3.2 Anonymous Identifiers
SimTalk uses anonymous identifiers as wild cards. When running the method,
these anonymous identifiers will be replaced by real object references.

root
The anonymous identifier “root” always addresses the top of the Frame hierarchy.
Starting from this Frame, you can access underlying elements.

Example 36: root
First, open the console in Plant Simulation:
VIEW – TOOLBARS AND DOCKING WINDOWS – CONSOLE

92 5 Programming with SimTalk

Create a new method. Use the method from the introduction example.
Complete the method as follows:

is
do
 -- writes the root name in the console
 print root.name;
end;

The console will show the name of the Frame in which the method was placed.

self
Self returns a reference to the current object (itself).

Example 37: Anonymous Identifier self
is
do
 -- The name of the current method will be
 -- written to the console
 print self.name;
end;

current
Current is a reference to the current Frame.

?
? denotes the object that has called the method (e.g., the object in which the me-
thod is entered as an exit control). The question mark allows a method to be used
without modification by several objects.

@
@ refers to the MU which has triggered the method (so you can access, e.g., on all
outgoing MUs).

basis
Basis denotes the class library. You can only use it in comparisons.

5.3.3 Paths
When objects are not located in the same frame or folder (name space), a path has
to be put in front of the name. Only the path allows clearly identifying an object,

5.3 SimTalk 93

so that it can be reached. A path is composed of names and periods (which serve
as a separator). Paths are divided into two kinds of paths:

• Absolute paths
• Relative paths

5.3.3.1 Absolute Path
The starting point of the absolute path is the root of the class li-
brary. From here on objects are addressed to the “bottom”. An
absolute path always starts with a period.

Example:

Modelle.Frame.workplace_1

5.3.3.2 Relative Path
A relative path starts within the frame, within which the method is located (with-
out the first period).

Example:

workingplace_1

Workingplace_1 is located in the same Frame as the method.

controls.Method1

This address refers to an object with the name “Method1” in a subframe “con-
trols”.

5.3.3.3 Name Scope
All objects, which are located in the same frame or folder, form a name scope.
Within a name scope identical names are not allowed. In other words, names in a
name scope may occur only once, all objects must have different names. In differ-
ent Frames identical names may occur. Their path distinguishes the objects. If you
try to assign a name twice, Plant Simulation shows an error message:

94 5 Programming with SimTalk

5.3.4 Comments
Comments explain your source code. Plant Simulation distinguishes between two
types of comments:

-- Comment until the end of line
/* Beginning of a comment, which
 extends over several lines
*/

Plant Simulation displays comments in green. We recommend to comment your
source code. In this comment, you should enter pertinent information about your
method. Plant Simulation provides a template for this purpose: TEMPLATE –
SELECT TEMPLATE …

You can find the header comment in CODE SNIPPETS.

The header comment (started with “--” in front of the keyword is) is shown as a
Tooltip in the Frame, when you place the mouse on the method.

5.4 Variables and Data Types 95

5.4 Variables and Data Types

5.4.1 Variables

A variable is a named location in memory (a place where the program stores in-
formation). Variables should have meaningful symbolic names. You first have to
declare a variable (introduce its name) before you can use it. Plant Simulation dis-
tinguishes between local and global variables. A local variable can only be ac-
cessed within the respective method. This variable is unreachable for other meth-
ods. Global variables are visible for all methods (in every Frame). You can set
values and get values from all methods. This way, you can organize data exchange
between the components.

5.4.1.1 Local Variables
Local variables are declared between “is” and “do”. A declaration consists of the
name of the local variable, a colon, and a data type. The keyword “do” follows af-
ter the last declaration.

Example:

is
 Name : Type;
do
-- statements
end;

For instance:

is
 stock_in_store : integer;
do
… -- statements
end;

The declaration reserves an address in the memory and you define access on it by
a name. For this reason, the operating system must know what you want to save.
A true/false value requires less memory (1 bit) as a floating-point number with
double precision (min. 32 bit). The information about the memory size takes place
through the so-called data types. The data type determines the maximum value
range of variables and regulates the permissible operations.

A value is assigned to a variable with :=.

Example 38: Declarating Variables
The circumference of a circle is to be calculated from a radius and Pi. Pi is de-
fined in Plant Simulation and can be retrieved via Pi. The result is written on the
console with the command print.

96 5 Programming with SimTalk

is
 radius :integer; --integer number
 circum :real; --floating point number
do
 radius:=200;
 circum:= radius*PI;
 print circum;
end;

SimTalk provides the following data types: acceleration, any, boolean, date, date-
time, integer, length, list, money, object, queue, real, speed, stack, string, table,
time, timeSequence, and weight.

Name Range of values

acceleration real, m/s²

any the data type will be determined only after
the assignment of the value (like VB: variant)

boolean TRUE or FALSE

integer –2.147.483.648 bis 2.147.483.647

real floating-point numbers

string character (each letter, numbers)

object Reference to an object (except comment)

table local variable with the behavior of a table

list see above

stack see above

queue see above

money …

Length as real, the value is interpreted as meters

weight see above, kg

speed real m/s

time real sec.; output: <hh>:<mm>:<ss.sss>

date, datetime date from 1.1.1970 to 31.12.2038

Data types can be converted to a limited extent. Plant Simulation initializes all lo-
cal variables automatically. The value depends on the data type:

5.4 Variables and Data Types 97

Type Initialization

boolean FALSE

integer 0

real 0

string "" (empty string)

object Void

table Void

list Void

stack Void

queue Void

money 0

length 0.0

weight 0.0

speed 0.0

time 0:00:00

date 1.1.1970 0:00:00

If you want to define another start value in the simulation, you can, for example,
use the init method.

Example 39: Global Variables
You need two methods in a Frame (Method1 and Method2):

In Method2, define a variable of type integer with the name “number”. Assign the
value 11 to the variable.

Method 2:

is
 number:integer;
do
 number:=11;
end;

In Method1, you now try to read the variable “number” and to write the value of
“number” to the console.

Method1:

is
do

98 5 Programming with SimTalk

 print number;
end;

If you run Method1 (F5 or Run – Run), you get an error. It opens the debugger
and the faulty call is highlighted. The error description is displayed in the status
bar of the debugger:

Method1 cannot access a variable “number” of Method2.

If you need the data in several methods, you have to define a global variable (vari-
able object from the folder information flow) to exchange data. All
methods can set and get the value of these variables. The global variable is defined
as an object in the class library and is addressed just like the other objects by name
and path. You have to determine the data type of the variable and can specify a
start value.

Example 40: Global Variable 2
Insert a global variable into the Frame above. Rename the variable “number”,
data type integer (start value remains 0).

Change Method2 like this: Delete the variable declaration of “count”, leave the
rest unchanged:

is
do
 count:=11;
end;

Now start Method2 (the value of the global variable would have to change), and
then Method1. The value of the global variable is displayed in the console.

Global variables are reset to the start value when you press the RESET button, if
you select the option INITIAL VALUE and specify a start value. In the previous ex-
ample, the value will be set to 0 when you enter the following setting:

5.5 Operators 99

5.5 Operators
By a combination of constants and variables, you can define complex expressions
(e.g., calculations). Operators are used for concatenating expressions. Plant Simu-
lation differentiates between:

• Mathematical operators
• Logical (relational) operators
• Assignment operators

Logical Operators are, for example, needed for comparisons.

5.5.1 Mathematical Operators
SimTalk recognizes the following mathematical operators:

– Algebraic sign, subtraction
* Multiplication
/ Division
// Integer division
\\ Modulo (remainder of integer division)
+ Addition/concatenation of strings

The integer division, which is defined for the data-type Integer, always delivers a
whole number. Any decimal places are suppressed. When calculating data for the
data type real, the result is output up to seven valid digits (eighth digit rounded,
working with decimal power).

5.5.2 Logical (Relational) Operators

Operator Function Result

AND logical AND TRUE, if all expressions are TRUE

OR logical OR TRUE,if at least one expression is
TRUE

NOT Not Invert the boolean-value

< Less than

<= Less than or
equal

100 5 Programming with SimTalk

> Greater than

>= Greater than
or equal

= equal

/= unequal

A logical expression is always interpreted from left to right. The evaluation is
completed once the value of an expression is established.

Example 41: Logical Operators
Simple method (+ start the console)

is
 local
 num1:integer;
 num 2:integer;
 num 3:integer;
 val1:boolean;
 val2:boolean;
 val3:boolean;
do
 num1:=10;
 num2:=23;
 num3:=num1*num2;
 val1:=num1<num2;
 val2:=num1<num2;
 val3:=val1 AND val2;
 print val3;
end;

Try out the operators. Let the console show different variables (Save + F5).

5.5.3 Assignments
The operator “: =” assigns a new value to a variable. First, the expression to the
right of the operator is calculated. If the value and the variable have the same data
type, then the value is assigned to the variable.

Example 42: Variable – Value Assignment
is
 num:integer;
do
 num:=1;

5.5 Operators 101

 num:=num+1;
-- first num+1, then assignment to num
 print num; -- print the new value of num
end;

If the data types are different, the values have to be converted. Plant Simulation
automatically converts real into integer and vice versa. For other types of data,
you need to use type conversion functions.

Example 43: Type Conversion 1
is
 num:integer;
 text:string;
 res:integer;
do
 num:=10;
 text:="20";
 res:=num*text;
 print res;
end;

Run time error:

The most important type conversion functions are:

Syntax Return value data type

bool_to_num(<boolean>) real

num_to_bool(<integer>) boolean

str_to_bool(<string>) boolean

str_to_date(<string>) time

str_to_datetime(<string>) datetime

str_to_length(<string>) length

str_to_num(<string>) real

str_to_obj(<string>) object

102 5 Programming with SimTalk

str_to_speed(<string>) speed

str_to_time(<string>) time

str_to_weight(<string>) weight

To_str(<any>, …) string

In the example above, a conversion from string to integer is required. You can re-
alize a type conversion of text with the help of the function str_to_num (…). The
method has the following syntax:

str_to_num (text)

Expand the example:

is
 num:integer;
 text:string;
 res:integer;
do
 nun:=10;
 text:="20";
 res:=num*str_to_num(text);
 print res;
end;

5.6 Branching

After testing a condition, the branch
decides which of the following instruc-
tions should be executed. If the con-
dition is met, the if-branch (TRUE) will
be executed. If the condition is not met,
the else branch (False) will be executed.

The general syntax is as follows:

if condition then
 instruction1;
else
 instruction2;
end;

5.6 Branching 103

Example 44: Branch 1
You only need one method for the example. We want to query if value1 is less than
10. If yes, then a message “If branch is executing” should be displayed in the con-
sole, otherwise “Else branch is executing”

is
 local
 value1:integer;
do
 value1:=12;
 if value1< 10 then
 print " If branch is executing";
 else
 print " Else branch is executing";
 end;
 print " Here we continue normally";
end;

Try different queries!

After passing through the branch, the execution of the code continues. If more than
one condition is to be checked, the conditions can be nested. The nesting depth is
not limited. In this case, a new condition begins after the if-branch with “elseif”.

Example 45: Branch 2
Extension above:

is
 local
 value1:integer;
do
 value1:=7;
 if value1= 10 then
 print " value1 is 10.";
 elseif value1=9 then
 print " value1 is 9";
 elseif value1=8 then
 print " value1 is 8";
 elseif value1=7 then
 print " value1 is 7";
 -- and so on …
 end;
 print "Here we continue normally. ";
end;

104 5 Programming with SimTalk

If you have to check many conditions, this construction gets complicated quickly.
You can then use so-called case differentiations.

5.7 Case Differentiation

Case differentiation in SimTalk has the following syntax:

inspect <expression>
 WHEN <constant_1> THEN <instruction 1>
 WHEN <constant 2> THEN <instruction 2>
-- …
end;

Example 46: Case Differentiation
is
 local
 num:integer;
do
 num:=2;
 inspect num
 when 1 then print "Num is 1.";
 when 2 then print "Num is 2.";
 when 3 then print "Num is 3.";

5.8 Loops 105

 -- and so on
 else
 print "Not 1, not 2, not 3 !";
 end;
end;

5.8 Loops

5.8.1 Conditional Loops

5.8.1.1 Header-Controlled Loops

Before passing through the loop instruc-
tions, Plant Simulation checks whether a
condition is met or not. The loop is re-
peated if the validation of the condition
returns true. If the condition before the
first loop is not met, the loop instruc-
tions will not be executed.

Make sure that the loop condition is
false some of the time (e.g., increase in
the value of a variable, until their value
exceeds a certain limit).

Endless loops are terminated with
the key combination CTR + ALT +
SHIFT.

Syntax:

while <condition> loop
<instructions>
end;

Example 47: while-Loop
Loop 1, Loop 2 to Loop 10 should be written to the console.

is
 i:integer;
do
 i:=1;
 while i<10 loop
 print "Loop run number:" + to_str(i);

106 5 Programming with SimTalk

 i:=i+1;
 end;
end;

5.8.1.2 Footer-Controlled Loops

The condition is checked after the exe-
cution of the loop statement. If the
condition for a termination of the loop
is not met, the loop statement will be
executed one more time. The loop
statement is executed at least once.

Syntax:

repeat
 -- instructions
until <break condition is met>;

Example 48: repeat-Loop
is
 i:integer;
do
 i:=1;
 repeat
 print "Loop number:" + to_str(i);
 i:=i+1;
 until i>5;
end;

5.8 Loops 107

5.8.2 For-Loop
If you know exactly how often the loop is to be iterated, you can use the for-loop
or the from-loop. It needs a running variable to control the number of runs of the
loop. The variable is increased or decreased during each run starting from an ini-
tial value by a certain value. When a predetermined end value is reached, the loop
will be terminated.

Syntax1:

from < Initialization > until <condition> loop
 <instructions>
end;

Syntax 2:

for < Initialization > to
<end value> loop
 -- loop instructions
next;

Example 49: from-Loop
Outputs will be shown in the console (loop 1, loop 2, and so on)

is
 local
 i:integer;
do
 from i:=1; until i=10 loop
 print "loop " + to_str(i);
 i:=i+1;
 end;
end;

Example 50: for-Loop
A loop should be executed 5 times:

is
 i:integer;
do
 for i:=1 to 5 loop
 print "loop " + to_str(i);
 next;
end;

108 5 Programming with SimTalk

You can count in the loop backwards with “downto” instead of “to”.

Example 51: for-Loop with downto
Similar to the previous example:

is
 i:integer;
do
 for i:=5 downto 1 loop
 print "loop " + to_str(i);
 next;
end;

5.9 Methods and Functions

A function is the definition of a sequence of statements, which are processed when
the function is called. There are functions in different variants:

Arguments are passed to some functions, but not to others. (Arguments are val-
ues, which must be passed to the function, so the function can meet its purpose.)
Some functions give back a value, others do not.

5.9.1 Passing Arguments

Arguments serve the purpose for passing data on during the function call (not just
a stock removal function call, for example, but at the same time the number of the
average stock removal per day is handed over by function call). The data type for
the given value must match the data type of the argument declared in the function.
The arguments have to be declared in the function. The declaration will be made
at the beginning of the method before “is” in parenthesis in the following format:

(name : type)

For example:

(Stock_removal : integer)

Within the method, the arguments can be used like local variables, with the caller
determining the initial values.

5.9 Methods and Functions 109

Example 52: Passing Arguments 1
The user is to enter the radius of a circle, and the size of the circumference is to be
displayed in the console. To enter the argument, you need a text box. This is called
by the function “prompt”. Using the method “prompt”, you can ask the user for
input. If you pass a string to the method “prompt”, then this string will be shown
as a command prompt:

Names: Frame: Programming, Method: Test, the type of the data to be read is
string, a type conversion is therefore necessary (str_to_num (identifier)).

Method Test:

is
 radius :string;
 circumference : real;
 val:real;
do
 -- prompt
 radius:=prompt("Radius");
 -- type conversion to real
 val:=str_to_num(radius);
 -- calculate circumference and display in
 --the console
 circumference:=val*2*PI;
 print circumference;
end;

Open the console to see the result.

5.9.2 Passing Several Arguments at the Same Time

Within the definition, a semicolon separates several arguments. When you call the
function, you have to pass the same number of arguments that you have defined in
the function.

110 5 Programming with SimTalk

Example 53: Passing Arguments 2
For two given numbers, the larger number is to be returned after the call of the
function. Name the function getMax (number1, number2).

(number1:integer;number2:integer)
–- passing arguments
:integer –-type of the return value
is
do
 if number1 >= number2 then
 result:=number1; -- return value
 else
 result:=number2;
 end;
end;

Call the function (from another method):

is
do
 print getMax(85,23);
end;

5.9.3 Result of a Function
Methods can return back results (usually a method that returns a value is called a
function). For this purpose, you have to enter a colon and the type of the return
value before “is”. The result of the function has to be assigned within the function
to the automatically declared local variable “result”. Another possibility is to use
“return”. Return passes program control back to the caller. You can also pass a
value on this occasion. After processing, the function will return the content of the
variable “return” to the caller (the return value will replace the function call).

Example 54: Results of a Function
A function “circumference” is to be written. The radius will be passed to the func-
tion and the function returns the circumference.
Function circumference:

(radius:real) -- argument radius (2)
:real –- data type of the return value
is
do
result:=radius*2*PI; -- (3)
end;

Method Test (in the same Frame):

5.9 Methods and Functions 111

is
 res:real;
do
 res:= circumference (125); -- (1)
 print res;
end;

Explanation:

(1) A value is given when calling the function.
(2) The function declares the arguments.
(3) The function inserted the value passed at the designated position.

If you want to return more than one result from one function, result will not work.
One solution is to define arguments as a reference. Usually the program makes
copies of the data, and the function continues to work with the copies (except if
you are passing objects; objects will always be passed as reference to the object).
The original values of simple data types remain unchanged in the calling method.
If arguments are defined as reference, you can change the values in the calling me-
thod by the called function.

The definition is accomplished with

(byref name:data_type)

5.9.4 Predefined SimTalk Functions

SimTalk has a range of ready functions.

5.9.4.1 Functions for Manipulating Strings

Function Description

copy(<string>,<integer1>,
<integer2>);

The function "copy" copies a num-
ber of characters (integer2) from
a string starting from the posi-
tion integer1. The first charac-
ter has the position 0.

incl(<string1>,
<string2>,<integer>);

The function "incl" inserts a
string2 into the string1 before
the position integer. The new
string is returned.

omit
(<string>,<integer1>,
<integer2>);

"omit" copies the string and de-
letes the substring within it
from starting position integer1
with number (integer2) charac-
ters. The new string will be re-
turned.

112 5 Programming with SimTalk

pos(<string1>,<string2>) "pos" shows the position within
string2, in which the string1 oc-
curs in for the first time. If
the string1 is not contained in
string2, 0 is returned, otherwise
the position as integer.

strlen(<string>) "strlen" returns the length of
the string passed.

Example 51: Functions for Manipulating Strings
The file extension of a filename is to be identified and re-turned. The dot will be
searched for first. Then, starting from a position after the dot all characters until
the end of the string will be copied. The result will be displayed in the console.

is
 filename, extension:string;
 length, posPoint:integer;
do
 filename:="samplefile.spp";
 -- search point
 posPoint:=pos(".",filename);
 -- find out the length of the text
 length:=strlen(filename);
 -- copy the substring
 extension:=copy(filename,posPoint+1,length-
posPoint);
 -- display in the console
 print extension;
end;

5.9.4.2 Mathematical Functions
Function Description

sqrt(x)

Square root. The argument x has to be greater
than or equal to 0.

abs(x) Absolute amount of x.

round(x) Rounds x to the nearest whole number (on or
off).

round(x,y) Rounds x on y digits.

floor(x) Nearest whole number less than or equal to x

ceil(x) Nearest whole number greater than or equal to x

5.9 Methods and Functions 113

min(x,y) Minimum

max(x,y) Maximum

pow(x,y) xy

…

5.9.5 Method Call
Methods are called by their names. During the simulation, methods have to be
called often in connection with certain events.

5.9.5.1 Sensors
Most objects have sensors that are triggered when an MU enters the object and ex-
its again. Length-oriented objects, such as the Line, have separate sensors for
moving forward or in reverse.

Example 56: Methodcalls by Sensors
Parts manufactured by a machine are to be counted using a global variable. Cre-
ate the following simple Frame:

“COUNT_PARTS” is a global variable of type integer. The method “count”
should look like this:

--
--| increases the global variable "COUNT_PARTS" with
--| each call by one
--
-
is
do
 COUNT_PARTS:= COUNT_PARTS +1;
end;

The method should now be called if a part is exiting the machine. Open the dialog
of the SingleProc and select the tab CONTROLS.

114 5 Programming with SimTalk

The main sensors are entrance and exit control. The setup control is triggered when
a setup process starts and ends. You can activate the sensor with the front or the rear.
The choice depends on the practical case. The rear exit control is triggered when the
part has already left the object. For counting, this is the right choice. If you would
trigger the control with the front, the MU will still be on the object. If the subsequent
object is faulty or is still occupied, the front sensor is triggered twice (once when try-
ing to transfer, the second time when transfer is done). If you select “front” in the
exit control, then you need to trigger the transfer by SimTalk, even if a connector
leads to the next object (e.g., @.move or @.move(successor)). If you press the F2
key in a field in which a method is registered, Plant Simulation will open the method
editor and will load the relevant method.

5.9.5.2 Other Events for Calling Methods
For calling methods, you can use other events. These events can be found in the
object dialogs under the command TOOLS – SELECT CONTROLS …

The failure control, for example, is called if a failure of the object begins and ends
(when the value of the property failure changes).

Example 57: Fail Control
You are to simulate the following part of a production. On a multilane, non-
accumulating line parts are transferred and transported by 3 meters. Processing
on each lane by a separate machine follows. If a machine fails, the entire line
must be stopped (all lanes have to be stopped).Create the following Frame:

5.9 Methods and Functions 115

Settings: Source1 to Source3: interval 1 second, not blocking, Conveyors: 12 m,
0.5 m/s, SingleProc: each 1 second processing time, Failures: 90% availability,
10 minutes MTTR, Drain: 0 seconds processing time.

One way to stop all lanes by one machine failure could be: The method “fail-
control” checks whether a machine is failed. If at least one machine is failed, the
speed of all three lines is set to 0. If no machine is failed, the speed is set to the
value that is stored in the global variable “v_speed”.

Method failcontrol:

is
do
 if SingleProc1.failed or
 SingleProc2.failed or
 SingleProc3.failed then
 Line1.speed:=0;
 Line2.speed:=0;
 Line3.speed:=0;
 else
 Line1.speed:=speed;
 Line2.speed:=speed;
 Line3.speed:=speed;
 end;
end;

Now the method “failcontrol” must be called whenever a failure occurs, or when
the failure ends. Click in the dialog of the SingleProc objects TOOLS – SELECT
CONTROLS: Enter the method “failcontrol” as the failure control.

Repeat this for all three machines. The result can very well be proven statistically.
The individual machines can in theory work 90% of the time. If the failures of the
other machines lead to no more parts being transported by the conveyor, then the
machines remain 20% of their processing time without parts in addition to their
own failures. That means the machines can on average operate only 70% of the
time. Run the simulation for a while (for at least 2 days). Then click the tab
STATISTICS in SingleProc1, 2, or 3.

5.9.5.3 Method Call After a Certain Timeout
You can call SimTalk methods after a certain timeout. This can be useful if you
need to trigger calls after an interval referred to an event.

116 5 Programming with SimTalk

Example 58: Ref-Call
In this simulation, the machine should send a status message (ready) 10 seconds
before completion of a part (e.g., to inform a loading device). The message should
be shown first as output in the console. Create the following simple frame:

Settings: Source interval 2 minutes, SingleProc 2 minutes processing time, inCon-
trol as entrance control SingleProc. The method callLoader writes a short mes-
sage into the console. Method callLoader:

is
do
 print time_to_str(eventController.simTime) +
 " called loader";
end;

The call of the method callLoader should now take place 10 seconds before com-
pletion of the part on the SingleProc. If you use the entrance control to start the
timer, the method should be started after the processing time of SingleProc minus
10 seconds. For calling a method after a certain time period, you may use the
method <ref>.MethCall(<time>,[<parameter>]) in Plant Simulation. You cannot
address the method with a path or directly with name, because the method is then
called directly. Instead, use the method ref (<path>). This returns a reference to
the method by which you get access to the method. In the example above, the
method InControl should look like this:

is
do
 ref(callLoader).methcall(
 SingleProc.procTime-10);
end;

S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 117 – 138, 2010.
© Springer Berlin Heidelberg 2010

6 Simtalk and Material Flow Objects

6.1 Attributes of the Material Flow Objects

All attributes that you can set in the dialogues of the material flow objects can also
be set by SimTalk. This can be used, for example, to load the basic settings of the
objects from a central location (e.g., a table). The Simtalk attributes are similar to
the labels on the dialogs.

Important SimTalk attributes are:

• ProcTime (processing time)
• RecoveryTime (recovery time)
• CycleTime
• Capacity (if defined)
• MTTR
• MTTR.stream
• Availability

From version 9, you can create for each object a series of failures. You get access
to the single failure on a failure listing (failures). The individual failures are ad-
dressed with her name. If your failure is, e.g., failure1, the failure is made accessi-
ble by failures.failure1. Each failure has the properties availability, MTTR, and
MTTR.stream.

Example 59: Basic Settings
The data (processing time, recovery time, and one failure) of three objects will be
read from a table when initializing the frame. Create the following frame:

From version 9, you must create for M1, M2, and M3 first a failure. Name the
failure in all three objects each “failure1”. Format the table according to the fol-
lowing sample (take notice of the data types) and enter the data (see chapter In-
formation flow objects – List Editor):

118 6 Simtalk and Material Flow Objects

M1, M2, and M3 must have from version 9 a failure “failure1”.

The init method should look as follows (see also chapter table):

is
 i:integer;
 machine:object;
do
 for i := 1 to table_data.yDim loop
 machine:=table_data["Machine",i];
 machine.procTime:=
 table_data["processing_time",i];
 machine.recoveryTime:=
 table_data["Recovery_time",i];
 /* version up to 8.2
 machine.availability:=
 table_data["Availability",i];
 machine.MTTR:=table_data["MTTR",i];
 machine.MTTR.stream:=table_data["Stream",i];
 */
 -- from version 9
 machine.failures.failure1.availability:=
 table_data["Availability",i];
 machine.failures.failure1.MTTR:=
 table_data["MTTR",i];
 machine.failures.failure1.MTTR.stream:=
 table_data["Stream",i];
 next;
end;

6.2 State of Material Flow Objects 119

6.2 State of Material Flow Objects
6.2.1 Operational, Failed, Pause
The method “operational” returns TRUE if the device is neither failed nor paused.
Otherwise, the result is FALSE. With failed, you can determine if the object is
currently in failure state or with pause, whether it is paused. Plant Simulation usu-
ally indicates the operating status of the objects with different colored LEDs. This
state animation can be activated and deactivated in Plant Simulation with VIEW –
ICON ANIMATION.

If you have to work with very small icons, then Plant Simulation shrinks the LEDs
until they are irrecognizable. The best option is to change the whole icon, if the
state of the object has changed. The following example gives a solution.

Example 60: Status Display of Material Flow Objects
To display the status of the material flow objects, we replace the icons of the ob-
jects. We realize the monitoring and controlling of the status display using an ob-
server. You have to first create in the class SingleProc in the class library a series
of icons for the various states. Make it in different colors. Use blue for pause
(symbol number 2) and red for failed (symbol number 3). Other observable state
are set up, unplanned and occupied (empty). Consider that the animation points of
all icons are in the same position. Create the following frame:

Settings:

Object Attribute Value
Source Interval 2 minutes
Machine1, Machine2 Processing time 1 minute
 Availability 50%
 MTTR 30 minutes
Buffer Capacity 100

120 6 Simtalk and Material Flow Objects

After changing the properties, failed or pause of Machine1 should be called the
method setIcon. This works best with an observer. Open the dialog of machine1
and select TOOLS – SELECT OBSERVERS.

Click Add and select as observed value FAILED as follows:

Analog you proceed for the attribute pause and Machine2. In the method CurrI-
conNo, now you must load the correct icon for the state of the machine.

• Neither failed nor paused: Icon 1
• Paused: Icon 2
• Failed: Icon 3

The calling machine you can request with „?”. In this example, the method should
look as follows:

(attribute: string; oldValue: any)
is
do
 if ?.pause then
 ?.CurrIconNo:=2;
 elseif ?.failed then
 ?.CurrIconNo:=3;
 else
 ?.CurrIconNo:=1;
 end;
end;

Example 61: Replacement Machine
Station_1 usually delivers parts to Station_2; If Station_2 is failed, Station_1
should deliver to replacement_machine.

Create the following Frame:

6.2 State of Material Flow Objects 121

Method replace_mach exit control front Station_1

is
do
 if Station_2.operational=false then
 @.move(replacement_machine);
 else
 @.move(Station_2);
 end;
end;

Activate failures during the simulation for Station_2. The parts are redirected to
the replacement machine.

6.2.2 Ready
The method returns TRUE if the object is occupied and an MU is ready to exit.
Syntax:

<Path>.ready;

Unfortunately, there is no observable attribute that could be used to trigger an ac-
tion, if the machine has finished processing and the part is ready for exit (e.g., to
request a transporter). If you need, therefore, an observable attribute, you could
use the following construction. Insert into the class of the object (e.g., SingleProc)
a user-defined attribute (processingReady, datatype boolean, value false). Your
user-defined attribute (data type boolean) is observable.

The attribute should be set at the entrance of a MU to false and then trigger the
exit sensor to true. The methods could look as follows.

122 6 Simtalk and Material Flow Objects

Entrance control:

is
do
 ?.processingReady:=false;
end;

Exit control:

do
 ?.processingReady:=true;
end;

You can monitor this attribute within a waituntil statement or by an observer.

6.2.3 Empty
The method “empty” returns TRUE if no MU (neither wholly nor partially) is lo-
cated on the relevant object. You can also query certain places, e.g., of the Paral-
lelProc (with x–y coordinates).

Syntax:

<path>.empty;
<path>[number1, number2].empty;

Example 62: Object State Empty
A buffer in the production is to be modeled. The buffer should be filled only if
“sales problems” exist. When the buffer is empty, the part will immediately be
transported from mach1 to mach2. When the buffer is not empty, the parts are re-
directed through the buffer to ensure the First in First Out principle.

Create the following Frame:

Settings: Capacity of the Buffer: 100, Source: interval 2 minutes, mach1: process-
ing time: 2 minutes, 100% availability, mach2: processing time: 10 seconds, 50%
availability, MTTR 10 minutes, mach1 exit control front: method Buffer_empty

6.2 State of Material Flow Objects 123

Method Buffer_empty:
is
do
 if mach2.empty and mach2.operational and

Buffer.empty then
 @.move(mach2);
 else
 @.move(Buffer);
 end;
end;

6.2.4 Occupied
The method “occupied” returns TRUE if the object contains at least one MU (ei-
ther wholly or partially), otherwise it returns FALSE.
Syntax (analogous to empty):

<path>.occupied;
<path>[x,y].occupied;

6.2.5 Full
The method “full” returns TRUE if the capacity of the object is exhausted. For a
place-oriented object, the method “full” returns TRUE if any of its places are oc-
cupied. If the object has several places, then each place can be queried individu-
ally (x–y coordinates).
Syntax:

<path>.full;
<path>[x, y].full;

Example 63: Method full
If the main warehouse is full, the part is to be stored in an alternative warehouse:
Method store (exit control object incoming).

Create the following Frame:

124 6 Simtalk and Material Flow Objects

Method incoming; exit control object stock_receipt:

is
do
 if mainStore.full then
 @.move(alterStore);
 else
 @.move(mainStore);
 end;
end;

Number of MUs

<path>.numMU

The method numMU returns the number of MUs booked on the object.

6.2.6 Capacity
<path>.capacity

The method “capacity” returns the number of places of an object. In addition, you
can query all states (paused, failed, blocked …) which an object can take.

Example 64: Machine with Parallel Processing Stations
We want to simulate parallel processing. Five parts will be mounted on a machine
and then processed together within 20 minutes. After processing, the five parts
exit the machine (almost) simultaneously. The machine receives one part every 4
minutes. The following approach would be possible: The parts will be collected in
a store until the required number of parts is reached. If the number of parts is
reached, the entrance of the store will be locked. If the machine is empty, then all
the parts are moved onto the machine by a loop. After machining of all parts, the
last part (exit control rear) removes the blockage of the entrance of the store.
Then, the cycle starts again.

Create the following Frame:

6.2 State of Material Flow Objects 125

Method parallel:

is
 i:integer;
do
 if ?=Store then
 -- eventhandling of the store
 if store.numMU = capacity_machine then
 waituntil ParallelProc.operational and
 ParallelProc.empty prio 1;
 -- move all parts
 for i:=1 to capacity_machine loop
 store.cont.move(ParallelProc);
 next;
 -- lock the entrance of the store
 Store.entranceLocked:=true;
 end;
 elseif ?=ParallelProc then
 if ParallelProc.empty then
 Store.entranceLocked:=false;
 end;
 end;
end;

Explanation:
The control is to be used for two objects. With „?” you can query which object
initiated the call. You can program the control with a respective conditional branch:

if ? = Store then
-- method is called from the store
elseif ? = ParallelProc then
-- method is called from the ParallelProc
end;

Method init:
Capacity_machine is defined as global variable, so that this object can be easily
adapted (especially the capacity). This global variable will be read by the init
method, and the capacity of the store and ParallelProc will be adjusted accord-
ingly. You have to also clear the entrance of the store in case the simulation
stopped during processing of the ParallelProc.

is
do
 deleteMovables;
 Store. entranceLocked:=false;
 -- check and possibly reset the value of
 -- the global variable

126 6 Simtalk and Material Flow Objects

 if capacity_machine <1 then
 capacity_machine := 1;
 end;
 --set the capacity of the ParallelProc
 ParallelProc.ydim:=1;
 ParallelProc.xdim:=capacity_machine;
 --capacity of the Store
 Store.ydim:=1;
 Store.xdim:= capacity_machine;
end;

6.3 Suspending Methods

In the present case, transferring the parts to the next machine must wait until the
machine is empty and the machine is neither failed nor paused (the transfer would
run, not succeed).

To solve this problem, there are at least two ways:

• The execution of the method is suspended until the condition is met, then
execution will continue.

• You can monitor the conditions for a transfer of parts, if all conditions are
right, transfer will be triggered (Observer).

In the example above, we realized the first variant. The execution of methods can be
interrupted for many reasons. One method calls another, for example, or it transfers
an MU to an object with an entrance control. The execution of the method is inter-
rupted as long as the new method is active, and will resume immediately after the
method has finished. Often you have to wait for certain events in the simulation, for
example, that a failure ends, processing is complete, a vehicle is available, etc. Until
the occurrence of the condition, the method has to be interrupted.

Syntax:

waituntil <boolean expression> prio <gZ>;

The statement consists of the keyword “waituntil”, a condition followed by the
keyword “prio”, and an expression to calculate the priority.

Condition: The expression specifies the conditions under which the execution of
the method will continue. If the condition is met, the interpreter continues the exe-
cution with the following statement. If the condition is not met, then the inter-
preter suspends the method and monitors the various elements of the expression. If
a part of the condition changes later, then the interpreter re-awakens the method so
that the condition can be evaluated again. The structure of the expression is lim-
ited, because the interpreter must decompose the expression into observable com-
ponents. Permissible are the basic arithmetic operations (+, –, *, /), comparisons

6.4 Observer 127

(<, <=, =,> =,>, / =), and parentheses. Not permitted are method calls, table re-
quests, and standard methods with arguments.

Priority: Several methods may have been suspended due to the same or to a simi-
lar condition and will therefore also be woken up together. The interpreter selects
the method with the highest priority, and wakes this method up first.

Observable values: The condition on which the continuation of a method depends
must be observable by Plant Simulation.

The following values are observable:

General: values of global variables and free attributes, which have “scalar” data
types (boolean, integer, real, string, object, time, money, length, weight, speed, date,
datetime).

6.4 Observer
Plant Simulation can watch observable values by themselves and invoke a method
when changing a value. The name of the property (as a string) and value (before
the change) will be passed. You can access the object itself with „?”.

Example 65: Observer
For comparison reasons, we want to simulate the sample “Machine with parallel
processing” with observers. Preliminaries: The conditions for transfer and lock-
ing of the entrance of the store are: The store is full, the ParallelProc is empty,
and the ParallelProc is operational (not failed and not paused). If all conditions
are met, all the parts are moved from the store to the ParallelProc; the entrance
of the store is locked to prevent that parts are moved to the “working” Parallel-
Proc. The method “parallel” should therefore look like this in the revised version:

(attrib:string;value:any)
is
 i:integer;
do
 if store.numMU = capacity_machine and
 ParallelProc.operational and
 ParallelProc.empty then
 -- move all parts
 for i:=1 to capacity_machine loop
 Store.cont.move(ParallelProc);
 next;
 --lock the entrance of the store
 Store.entranceLocked:=true;
 end;
end;

128 6 Simtalk and Material Flow Objects

Unlocking the entrance of the store must be carried out in a separate method (e.g.,
method Store_unlock):

is
do
 if parallelProc.empty then
 Store.entranceLocked:=false;
 end;

end;

Assign the method “Store_unlock” as the output control of the ParallelProc. Re-
move the method “parallel” as the input control of the store. The objects whose
properties you want to observe (once by the store, and twice by the ParallelProc)
call the method, “parallel”. Select TOOLS – SELECT OBSERVERS in the dialog of
the object Store.

Click Add. You can enter the observed value or select it from a list. You have to
watch the property numMU. The name of the method is “parallel”.

In the object ParallelProc, these are the attributes operational and empty.

Start the simulation and test the behavior.

6.5 Content of the Objects 129

6.5 Content of the Objects

The following methods relate to the content of an object.

deleteMovables

<path>. deleteMovables

The method deleteMovables destroys all MUs which are booked on the object.

Example 66: deleteMovables
If you want to destroy all MUs in the Frame, then the following method is suffi-
cient:

is
do
 deleteMovables;
end;

Cont (Buffer: MUPart)
Cont returns the MU, which is booked on the object. If there is no MU booked on
the object, then the return value is VOID.

Syntax: <path>.cont;

Example 67: Method cont
The occupation of a machine is to be displayed in the console.
Create the following Frame:

Assign the method MU_Name as the entrance control of the SingleProc.

Method MU_name:

is
do
 print SingleProc.cont;
end;

MU.name
MU.name returns the name of the MU.

130 6 Simtalk and Material Flow Objects

Example 68: Surface Treatment
A number of different parts run through a chemical process (30 minutes surface
treatment). After that, the parts are further processed on different machines. The
simulation flow must branch out after the surface treatment. The following simple
example will illustrate this.

Settings: Source: interval 1 minute, sequence cyclical (cycle_table); a cycle con-
sists of three parts red, two green, and two blue. Create three MUs in the path
models: red, green, and blue for the simulation. Color the icons according to the
designations.
cycle_table (after formatting):

surface_treatment: length 9 meters, processing time 30 minutes, M_red, M_green,
and M_blue processing time each 1 minute, 100% availability.
Method sort (exit control (front) of surface_treatment):

is
do
 inspect @.name
 when "red" then
 @.move(m_red);
 when "blue" then
 @.move(m_blue);
 when "green" then
 @.move(m_green);

6.5 Content of the Objects 131

 end;
end;

MU
Syntax:

<path>.MU(<integer>)

The method MU accesses all MUs whose booking points are located on the object.
If no argument is given, then the first MU is returned. If the argument is greater
than the number of booked MUs, then VOID is returned.

Note:
Use the method isVoid (value) to check whether a certain value is VOID (in the
case of MU: if an MU is located on the object).

Example 69: Method MU
A list of all MUs in the store is to be displayed. Create the following Frame:

Method stocklist:

is
 local
 i:integer;
do
 from i:=1 until i > Store.numMU loop
 print Store.MU(i);
 i:=i+1;
 end;
end;

Run the simulation for a while. Then call the method (right click – run).

numMU
Syntax:

<path>.numMU;

This method returns the number of MUs, which are booked on the object. The data
type of the return value is integer.

132 6 Simtalk and Material Flow Objects

6.6 Sensors

Lines and tracks can be very long. Therefore, it may be useful to trigger methods, if
the MU is located some way before from the end, or to set few breakpoints at which
methods should be executed. For this purpose, you can define user-defined sensors.
The sensors act like switches. When a MU crosses (forward or backward) the sen-
sor, the switch is activated and a method is called. In the method (control), you have
to determine what happens at this position. A small example illustrates this:

Example 70: Sensors, Color Sorting
Within a production facility, parts with different colors arrive. With the help of
cameras and sorting facilities, the parts will be distributed to different color-
homogenous lines. We do not want to simulate the sorting facility.

Frame: main_line: 35 meters, L_red, L_blue and so on: 5 meters. All lines are ac-
cumulating, speed 1 m/s, no acceleration. All L_-lines are connected to drains.
The drains have a processing time of 0 seconds. The source is connected to the
main_line.

6.6 Sensors 133

Duplicate six entities in the class library. Rename them to red, blue, green, yellow,
orange, and white. Type in an icon size of 11 x 11 pixels and color the icons with
the respective colors. The source should randomly produce these parts with a per-
centage of 16.7% each. Select the following settings in the source: interval 0.5
seconds, MU-Selection: random, table: allocation. Enter the following data into
the table distribution:

Note:
Drag the MUs from the class library to the table to enter the absolute paths of
your MUs. Depending on the position of the MUs in the class library you may
have other addresses in the table.

Insert three sensors on the main_Line (10 m, 20 m, and 30 m each rear). Assign
the method sort to all sensors. Proceed like this: Click the button SENSORS on tab
control in the dialog sensor of the main_Line. Then, click the button NEW.

Enter a position (e.g., 10 m). Decide whether the front or the rear (checkmark) of
the MU should trigger the sensor. Select the control “sort”.

134 6 Simtalk and Material Flow Objects

Complete the sensor list like this:

The method “sort” will check the name of the MU. If the MU “red” arrives at
sensor 1, then the MU is to be moved to the line L_red, etc.

(sensorID : integer)
is
do
 if sensorID=1 then -- first sensor
 -- red to L_red, blue zu L_blue
 if @.name="red" then
 @.move(L_red);
 elseif @.name="blue" then
 @.move(L_blue);
 end;
 elseif sensorID=2 then
 if @.name="green" then
 @.move(L_green);
 elseif @.name="yellow" then
 @.move(L_yellow);
 end;
 elseif sensorID=3 then
 if @.name="orange" then
 @.move(L_orange);
 elseif @.name="white" then
 @.move(L_white);
 end;
 end;
end;

The parts should now be color-sorted on the L_-lines.

6.7 User-Defined Attributes
You can always extend the functionality of the objects with user-defined attrib-
utes. This way, you can take aspects in the simulation into account, which are not
included in Plant Simulation. This will be illustrated with an example.

Production-Associated Costing
For many aspects it is interesting how much production cost a product already has
caused up to a certain production level. Production costs are the basis for calculat-

6.7 User-Defined Attributes 135

ing fixed capital within a production process (e.g., current assets, inventory). The
target of many improvement measures is to reduce fixed capital. For determining
manufacturing costs, different ways of calculation exist. A possible calculation is:

Manufacturing materials
+ Manufacturing wages
+ Special direct costs of production
= Minimum production costs
+ General expense for materials
+ General expense for production
+ General expense for administration
+ Interest on debt capital
= Highest production costs

The general expense is calculated like this: direct expenses * cost rate. The follow-
ing simple approach should be chosen for the simulation:

The basis for determining the production costs are the costs of materials and di-
rect manufacturing costs. Direct production costs are calculated using the time
multiplied with the hourly wage or the hourly machine rate. The individual parts
now must collect this information during processing (simulation). One way to re-
alize this is to use user-defined attributes.

Example 71: Production Costs and Working Assets
Create the following Frame:

Material costs of unfinished part: €24.95, average manufacturing wage €/h36.
First, the part is turned, then milled, and then drilled. Processing times: turning 1
minute, milling, drilling 1 minute. The relevant entity (Part) is to have the prop-
erty “production_cost” (data type real).

Procedure: Duplicate an entity. Rename it to “part”. Open the entity by double-
clicking it in the class library. Select USER-DEFINED ATTRIBUTES – NEW.

136 6 Simtalk and Material Flow Objects

Enter the following values in the dialog:

The value of the attribute is initialized with the value of the raw material (at the
beginning of processing). The machines need to have an attribute “wage”, into
which the hourly wage costs are entered.

The calculation of the production costs is relatively simple (e.g., exit control rear
of the machines, method production_cost):

is
do
 @.production_cost:=
 @.production_cost+((?.procTime/3600)*(?.wage));
 -- procTime in seconds!
end;

Note:
The anonymous identifier ? returns a reference to the object whose control was
triggered.

Even in assembly operations, the manufacturing costs of the parts can be com-
bined and transferred to the new part (if you destroy the individual parts).

6.7 User-Defined Attributes 137

Working Assets
To determine the working assets, you have to identify the existing entities and
their cost (ideally within an EndSim method).

Continue Example:

The value (costs) of the parts in the Frame are to be determined after the end of
the simulation. For this purpose, you query the individual objects whether they
are occupied or not. If they are occupied, then the costs of the parts are added to a
global variable (working_assets).

Method endSim:

is
 i:integer;
do
 if turning.occupied then
 working_assets:=
 working_assets+turning.cont.production_cost;
 end;
 if milling.occupied then
 working_assets:=
 working_assets+milling.cont.production_cost;
 end;
 if drilling.occupied then
 working_assets:=
 working_assets+drilling.cont.production_cost;
 end;
 --query each place individually
 if Buffer_turning.occupied then
 from i:=1; until i=Buffer_turning.capacity loop
 if Buffer_turning.pe(i).cont /= void then
 working_assets:=working_assets+
 Buffer_turning.pe(i).cont.production_cost;
 end;
 i:=i+1;
 end;
 end;
end;

For a large number of objects this approach is very involved. With the Frame ob-
ject, you can access all objects in the Frame. With Frame.numNodes you can deter-
mine the number of all objects in the Frame. The individual objects can be accessed
with Frame.node(index). With the method class, you can check the type of an object.
A universal method for calculating the working assets could look like this:

138 6 Simtalk and Material Flow Objects

is
 i:integer;
 k:integer;
do
 working_assets:=0;
 for i:=1 to current.numNodes loop
 if current.node(i).class.name="SingleProc" or
 current.node(i).class.name="PlaceBuffer"
-- and so on
 then
 for k:=1 to current.node(i).numMu loop
 working_assets:=working_assets+
 current.node(i).mu(k).production_cost;
 next;
 end;
 next;
end;

S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 139 – 181, 2010.
© Springer Berlin Heidelberg 2010

7 Mobile Units

MUs represent the materials that flow from object to object within the Frame. Af-
ter creating new MUs, they move through the model and remain at the end until
they are destroyed.

7.1 Standard Methods of Mobile Units

7.1.1 Create
Syntax:

<MU_path>.create(<object>[,length]);

The method creates an instance of MU on <object>; MU-path is the path to the
MU (e.g., class library). Optionally, you can specify a length on a length-oriented
object (e.g., track, line). If you do not specify a length, then the MU is generated at
the end of the object (ready to exit).

Example 72: Create MUs
At 200 m, 500 m, and 700 m, a transporter is to be created on a track which is
1000 m long.

Create the following Frame:

Note:
If you want to create track, which is a 1000 m long by dragging, then you first
have to change the scaling in the Frame window. The default setting is a grid of
20 x 20 pixels and a scale of 1 m per grid point. Therefore, you have to change
the scale so that it shows 50 m per grid point (Frame window, TOOLS – SCALING
FACTOR …). Another possibility is the following: On the tab CURVE (track) turn
off the option TRANSFER LENGTH.

Then you scale a length of 1000 m on the tab ATTRIBUTES. Then the track is
no longer shown to scale.

140 7 Mobile Units

The init method is to first delete all MUs and then to create the three transporters:

is
do
 deleteMovables;
 .MUs.Transporter.create(track,200);
 .MUs.Transporter.create(track,500);
 .MUs.Transporter.create(track,700);
 end;

After creating the MU on a place-oriented object, it can exit immediately. On a
buffer, MUs are created on the first free place, if no place has been specified. On a
length-oriented, object the MU is created as close as possible to the exit if no posi-
tion was specified. Creation will fail if the capacity of the object is exhausted and the
length-oriented object is shorter than the MU to be created (Return value: VOID).

7.1.2 MU-Related Attributes and Methods

Method Description

<MU-path>.delete; This method destroys the specified
MUs. It does delete MUs in the
class library.

<MU-path>.move;
< MU-path>.
move(<target>);
<MU-path>.move(<index>);

Move the front of the transferred
MU. If no argument is specified,
then it will be transferred to
each successor alternately. If
should be moved to a particular
successor, then you can use an in-
dex (index). The return value
(boolean) is TRUE when moving was
successful and FALSE if moving
failed (successor is occupied,
paused, failed). MUs cannot be
moved to a source.

<MU-path>.transfer;
<MU-path>.transfer
(<target>);
<MU-path>.transfer
(<index>);

Transfer moves a MU from one ob-
ject to another. It moves the en-
tire length to the next object
(not just the forefront like the
method Move).

<MU-path>.numMU; NumMu returns the number of MU,
which are booked on the MU (inte-
ger).

Within an entrance or exit control, you can access the triggering MU with the
anonymous identifier “@”.

7.2 Length, Width, and Booking Point 141

7.2 Length, Width, and Booking Point

All MUs have the properties length, width, and related booking points. The book-
ing point determines the position of the MU, from this it is booked on the next ob-
ject and can be accessed from there. The position of the booking point must be al-
ways less than or equal to the length or width. Otherwise, you get an error
message. In some cases it is necessary to dynamically adjust the length during the
simulation. This may be when the processing is changing the length or if you re-
peatedly change the direction of transport during the simulation.

Example 73: Change MU Length
We want to simulate a small part of a production. There are steel beams proc-
essed. The beams are initially transported lengthwise, then crosswise, then proc-
essed, and then transported again lengthwise. The cross conveyor serves as a
buffer. Create the following frame:

Create an entity (“beam”) in the class library. The beam is 4 meters long and 20
cm broad. Set the booking points for each length and width to 0.1 meters. Redes-
ign the icon of the beam: width 80 pixels, height 5 pixels. Delete the old icon and
fill the icon with a new color. Set the reference point to the position 40.3. Change
the icon “waiting” analogous. Make the following settings:

The source creates each 3 minutes one beam. The lines L1 and L3 are 12 me-
ters long and transport the beams with a speed of 0.05 meters per second. Un-
check the option Rotate MUs in the tab Curve in L2 so that the line L2 transports
the beams “cross”. The SingleProc has 2 minutes processing time, 75% availabil-
ity and 30 minutes MTTR. Start the simulation. If a failure occurs in SingleProc,
the beams at L2 do not jam as intended. In the original setting, L2 promotes the
cross transport, but the capacity is calculated on the length of conveyor line and
length of the beam. If the beam is 4 meters long and L2 also exactly one beam fits
on the line. To correct this, you have to temporarily reduce the length to the width
of the beam (from 4 meters to 20 centimeters). After leaving the cross conveyor,
you have to reset the length again to 4 meters. Therefore, insert two user-defined
attributes into the class beam (class library):

142 7 Mobile Units

The method setLength must be called twice, once at the entry of MUs in the line
L2 (reduce length) and once when MUs enter the SingleProc (set length back to
the original value). The method could look as follows:

is
do
 if ?=L2 then
 @.muLength:=@.width;
 elseif ?=SingleProc then
 @.muLength:=@.mu_length;
 end;
end;

The beams jam now at L2 if a failure occurs at the SingleProc.

7.3 The Entity

The entity does not have a basic behavior of its own. It is passed along from ob-
ject to object. The main attributes are length and width. Booking points determine
at which position the entity will be booked while being transported to the succeed-
ing object (mainly track and line).

The destination can be used to store the destination station during transport opera-
tions (especially during transportation by a worker).

7.4 The Container 143

7.4 The Container
The container can load and transport other MUs. It has no active basic behavior of
its own. The storage area is organized as a two-dimensional matrix. Each space can
hold one MU. The container is transported from object to object along the connec-
tors or by methods. With containers you can, for example, model boxes and palettes.

7.4.1 Attributes of the Container
The attributes of the container are mostly identical to those of the entity. In addi-
tion, the container has the following attributes:

The capacity of the container is calculated by multiplying the X-dimension with
the Y-dimension. The access to the MUs, which are transported by the container,
is analogous to the material flow objects.

Method Description

<MU-path>.cont The method "cont" returns a MU, which is
booked on the container (with the longest
length of stay).

<MU-
path>.pe(x,y)

With "pe" you get access to a place in the
container.

7.4.2 Loading Containers
The approach is somewhat complicated. A container cannot exist just by itself.
That is why you need another object, which can transport the container, e.g., to
load a box. In addition, transporters can easily transport containers. For loading
containers, you can use the assembly station (see chapter “AssemblyStation”) or
the transfer station. You can also load the container with SimTalk methods.

Example 74: Loading Containers
We want to develop a method that creates a palette that is loaded with 50 parts
and to pass these parts onto the simulation. Create the following Frame:

144 7 Mobile Units

The method createPallet must first create the palette on P and then create parts
on the palette until the palette is full. Create duplicates of container (Pallet, X-
dimension: 25, Y-Dimension: 2) and entity (part) in the folder MUs.

Method createPallet:

is
do
 --create palette
 .MUs.pallet.create(p);
 -- create parts
 while not p.cont.full loop
 .MUs.part.create(p.cont);
 end;
 -- pass the palette
 p.cont.move;
end;

Digression: Working with Arguments 1
You will also need the facts described above in the exercises below. Therefore, it
would be useful if the method could be applied to all similar cases. For this pur-
pose, you need to remove all direct references to this particular simulation from
the method (mark bold, italic).

is
do
 -- create palette
 .MUs.pallet.create(p);
 -- create parts
 while not p.cont.full loop
 .MUs.part.create(p.cont);
 end;
 -- pass the palette
 p.cont.move;
end;

The method only contains three specific references:

• Location of the palette (.MUs.pallet)
• Location of the part (.MUs.part)
• Target of creation (p)

These three items are declared as arguments.

(pallet,part,place:object)

Next, replace the specific details with the arguments (using find and replace in
larger methods).

7.4 The Container 145

(pallet,part,place:object)
is
do
 -- create palette
 pallet.create(place);
 -- create parts
 while not place.cont.full loop
 part.create(place.cont);
 end;
 -- pass the palette
 place.cont.move;
end;

The method call now just has to include the arguments. Create an init method. The
call of the method createPallet in the init method could look like this:

is
do
 createPallet(.MUs.pallet,.MUs.part,p);
end;

Start the init method. To check whether the method has really produced 50 parts,
check the statistics of the palette (double-click the filled palette) on the tab
STATISTICS.

7.4.3 Unloading Containers
You can easily simulate unloading processes using the dismantle station. For some
simulation tasks, this approach might prove to be too cumbersome, and the num-
ber of objects would be growing enormously. You can easily program unloading
the palettes with SimTalk. Accessing the palette and the parts on the palette takes
place by using the “underlying” object.

Example 75: Batch Production
You are to simulate batch production. Parts are delivered in containers and
placed close to the machines. The machine operators remove the parts from the
container and place the finished parts onto another container (finished parts).
Once the batch is processed, the container with the finished parts will be trans-
ported to the next workplace and the empty palette will be transferred. Create a
Frame with a single machine:

146 7 Mobile Units

Settings: Start, P1, P2 each one place, processing time 0 seconds, L1 4 meters
length, speed 1 m/s, Machine1 processing time one minute, no failures.

Digression: Reusing Source Code from Other Models
We want to use the same method (source code) as in the example “loading of con-
tainers” from the previous chapter. You can do this in two ways:

1. Save and import the method as an object file.
2. Export and import the methods as text.

Saving and importing the method as an object file:
You can store classes and Frames as objects at any time. The functionality is located
in the class library. Therefore, you first have to create a “class” out of the method in
the Frame. Hold down the Ctrl key and drag the method from the Frame to the class
library (if you do not hold down the Ctrl key, the method will be moved!). If needed,
rename the method in the class library. From here, you can save the method as an
object. Select the context menu (right mouse button) and select SAVE OBJECT AS.

Now you can load the method into another file as an object file. Click a folder
icon with the right mouse button. Select SAVE/LOAD-LOAD OBJECT INTO
FOLDER… from the context menu:

7.4 The Container 147

You can now select the file and insert the object into the class library. Caution:
When you import the objects, the compatibility of versions/licenses will be con-
sidered. You cannot use objects from newer versions of Plant Simulation in older
versions (or in eM-Plant).

Exporting and importing a method as text:

You can export and import the source code of the method as a text file. Open the
method createPallet. Select FILE – SAVE AS in the method editor:

Select a location and a name for the file. Insert a method in the new Frame
(without content, the contents will be completely replaced when you import a
text file). Select FILE – OPEN in the method editor: Select the text file with the
source code, and confirm. The text of the method is completely overwritten with
the contents of the file.

Continuation Example Batch Production
If not already available, create the palette container (capacity 50 parts), entity:
part. The init method should produce a full palette (50 parts) at the station P1 and
an empty palette at the station P2.

is
do
 deleteMovables;
 createPallet(.MUs.pallet,.MUs.part,start);
 .MUs.pallet.create(p2);
end;

The simulation model (without a dismantle station) could look as follows. The pal-
ette itself transfers the first part of the palette onto the machine (exit control of
P1). If a part on the machine is ready, it triggers the exit sensor of the machine. A

148 7 Mobile Units

method transports the part to the palette on the station P2, and a new part from
the palette on P1 to the machine. If the finished parts palette is full (p2), they will
be transported to F1, the empty palette is moved from P1 to P2, and a new palette
will be generated at the beginning.

Method load (exit control front P1, exit control front machine):

is
do
 if ? = P1 then
 -- load the first part onto machine1
 @.cont.move(machine1);
 elseif ?=machine1 then
 -- load the part onto the palette
 @.move(p2.cont);
 if p2.cont.full then
 p2.cont.move(L1);
 p1.cont.move(p2);
 -- create a new palette
 createPallet(.MUs.pallet,.MUs.part,start);
 else
 -- already parts on p1
 p1.cont.cont.move(machine1);
 end;
 end;
end;

You can access the part on the palette with

p1.cont.cont.

In our case p1.cont is a palette and p1.cont.cont is a part.

Digression: Working with Arguments 2 – User-Defined Attributes
Imagine that the simulation of the production contains 50 machines (each with two
buffer places). You need to extend the method “load” for each machine. There is
an easier option though, namely to separate event handling of the buffer and the
machine.

Method: loadFirstPart (exit control front P1):

is
do
 -- move the first part to the machine
 @.cont.move(machine1);
end;

Method load (without branching after objects):

7.4 The Container 149

is
do
 -- load the part onto the palette
 @.move(p2.cont);
 if p2.cont.full then
 p2.cont.move(L1);
 p1.cont.move(p2);
 -- create a new palette
 createPallet(.MUs.pallet,.MUs.part,start);
 else
 -- already parts on p1
 p1.cont.cont.move(machine1);
 end;
end;

First step: Which object in the method has a reference to a specific case?

• P1, P2
• L1
• Machine1
• createPallet (only machine1)

The anonymous identifier “?”can replace Machine1. P1 and P2 are buffers which
belong to the machine. If you are using many similar machines, it is worth your
while to define the respective attributes in the class SingleProc (in the class li-
brary). Name the attributes:

• bufferGreenParts (object)
• bufferReadyParts (object)
• successor (object)

Open Machine1 in the Frame. In the dialog of the object select:

It will open the class of the SingleProc in the class library: Click the tab USER-
DEFINED ATTRIBUTES, and define the two buffers and the successor:

150 7 Mobile Units

Save your changes by clicking OK. You can now assign the two buffers (buffer-
GreenParts P1, bufferReadyParts P2) to Machine1 and F1 as successor. To
do this, click the tab USER-DEFINED ATTRIBUTE in the object Machine1, double-
click the relevant line and select the buffer or L1.

This makes programming the method easier for many applications:

• machine1 will be replaced by ?
• p1 will be replaced by ?.bufferGreenParts
• p2 will be replaced by ?.bufferReadyParts
• L1 will be replaced by ?.successor

Specific instructions for a machine are written into an “if then else …” statement.

Method load:

is
do
 -- load the part into the palette
 @.move(?.bufferReadyParts.cont);
 if ?.bufferReadyParts.cont.full then
 ?.bufferReadyParts.cont.move(?.successor);
 ?.bufferGreenParts.cont.move(
 ?.bufferReadyParts);
 -- create a new palette
 if ? = machine1 then
 createPallet(.MUs.pallet,.MUs.part,start);
 end;
 else
 -- already parts on p1
 ?.bufferGreenParts.cont.cont.move(?);
 end;
end;

Likewise, you can convert the method loadFirstPart. Define an attribute “ma-
chine” in the class of the PlaceBuffer (type object). Set Machine1 as the value for
the attribute machine in the buffer P1. The method should look like this:

7.4 The Container 151

is
do
 -- move the first part to the machine
 @.cont.move(?.machine);
end;

Now you can easily extend the simulation without the need to write new meth-
ods. You have only to assign the methods to the sensors and set the attributes of
the objects.

Example 76: Saw
You are to simulate the following process. A block with an edge length of 40 cm is
to be sawed into 16 parts. Ten parts each will then be packed into a box. Ten
boxes are packed in a carton. Between the saw and the individual packing sta-
tions, lines with a length of 5 meters will be set up. Create the folder “Saw” below
models. Duplicate all required classes in this folder.

Create the following Frame:

Settings: L1, L2, L3, and L4 length 5 meters, speed 1 m/s; saw: processing time 10
seconds, packing_1 and packing_2 two seconds processing time, drain 0 sec.
processing time. Create two entities (block, part) and two containers (box, pal-
ette). Block: 0.4 meter length, part 0.1 meter length. Change the icon of the part to
a size of 7 x 7 pixels. Box: container, capacity 10 parts, palette: container, capac-
ity 16 boxes. Arrange your sources so that they produce the correct type of MU
(e.g., source_box).

152 7 Mobile Units

Interval palette: 1:40, interval block: 0:10

Method sawing (exit control front of SingleProc saw): The method must destroy the
block and create a certain number of parts. Creating the parts works best with a
buffer object. The processing time of the sawing can be considered as processing
time of the SingleProc. To make the simulation more flexible, define the number of
parts outside of the method (e.g., in a global variable in the example: num_parts).

Method sawing (exit control front saw):

is
 i:integer;
do
 -- destroy block
 @.delete;
 -- create num_parts
 for i:=1 to num_parts loop
 .Models.saw.part.create(buffer);
 next
end;

At the end of line L2, the parts are to be packed into boxes. If a box is placed on
the station Packing_1, the incoming part is transferred to the box. If the box is
full, it will be transferred to line L3.

Method packing_box (exit control L2):

is
 box:object;
do
 -- wait for a box
 waituntil packing_1.occupied prio 1;
 box:=packing_1.cont;
 -- pack parts into the box

7.4 The Container 153

 @.move(box);
 if box.full then
 box.move(L3);
 end;
end;

Similarly, you need to program the method packing_palette. To ensure a smooth
start of the simulation, destroy the MUs when resetting the simulation.

Note:
The task can also be solved with dismantle and assembly stations.

Example 77: Kanban Control
Simulations regarding the flow of materials have a fixed direction. The sources
produce parts according to a fixed schedule (e.g., batch). The parts move from
the source to the drain and trigger the production at the machines (push-
control). Many companies (especially in Japan) use the opposite control con-
cept. There, the succeeding stations trigger the production of the preceding sta-
tions. Trigger and main information carrier within this system is the Kanban
card. We will simulate a Kanban container system. Create the following Frame.
Also create the methods:

Settings: Machine1 and Machine2 processing time: 1 minute, 100% availability;
sale: DismantleStation, successor number 1: P0 (for containers), successor 2:
Drain 1 minute processing time. Create an entity .mus.part. The source produces
.mus.part, interval 1 minute. Select the following settings in the DismantleStation
sale:

154 7 Mobile Units

Enter the following information into the dismantle table:

The assembly station green_part_storage loads 20 parts produced by the source
onto a container that is transferred from F3. First, connect F3 with green_part_
storage, then to the source. Select the following settings in the station green_
part_storage:

Assembly table:

The production flow in this model should be like this: A container is located on the
station sale and is unloaded gradually. If the container is empty, it will be trans-
ferred to the station F1 (finished part place of Machine1). The arrival of the con-
tainer triggers the order of the unfinished parts. This takes place by transferring
an empty container from the place R1 (unfinished part place of Machine1) to the
place F2 (finished part place of Machine2). Machine2 sends a container from R2

7.4 The Container 155

to F3 and in this way triggers the delivery of the unfinished parts. The station
green_part_storage loads the container with parts and sends it back to R2. The
arrival of the container initiates the production at Machine2. If the finished part
container of Machine2 (F2) is full, it will be transferred to the unfinished part
place of Machine1 (R1). The finished parts of Machine1 will be transferred to the
station sale (P1). Trigger and main control tool of the production are the kanban
containers. They contain all information required for controlling the production.
In your simulation model you can accomplish this with user-defined attributes.
Create the container Kanban_container (capacity: 20 parts) in the class library.
Create the following user-defined attributes:

Step 1:
Create a filled container on P and empty containers on R1 and R2. Set the neces-
sary information in the kanban containers. A kanban system represents a system
of self-regulating control loops. For the present simulation, this means that a con-
tainer shuttles between two places. The container, which is located on the station
sale, shuttles between Machine1 and sale. Empty containers will be transported to
F1, full containers always to P. The unfinished parts container of Machine1
(place R1) shuttles between Machine1 and Machine2 (place F2). In other words, if
the container is full, it is transported to R1, if it is empty always to F2, etc. For
each container, this information has been stored in user-defined attributes. The
required init method should look like this:

is
 container:object;
do
 deleteMovables;
 -- initialisieren
 -- create a container at sale, load it
 -- target_empty: F1
 -- target_full: sale
 -- workplace: machine1
 container:=.MUs.kanban_container.create(p);
 container.target_empty:=F1;
 container.target_full:=P;
 container.workplace:=machine1;

156 7 Mobile Units

 while not container.full loop
 .MUs.part.create(container);
 end;
 -- create kanban_container at r1 and r2
 container:=.MUs.kanban_container.create(r1);
 container.target_empty:=F2;
 container.target_full:=R1;
 container.workplace:=machine2;
 container:=.MUs.kanban_container.create(r2);
 container.target_empty:=F3;
 container.target_full:=R2;
 container.workplace:=green_part_storage;
end;

Step 2:
If the container on the station sale is empty, it orders new parts from Machine1 by
sending the container to the station F1. Method request_sale, exit control front P0:

is
do
 -- empty container
 -- move to target_empty
 @.move(@.target_empty);
 -- request finished parts
end;

Step 3:
On arrival, a container on the finished part station, the machine has to send an
unfinished part container as a request to the preceding workplace. To enable
more convenient programming of this function, define two user-defined attributes
in the class of the SingleProc in the class library:

Type the machines into the respective buffers, for example Machine1:

Method order, exit control front F1 and F2:

is
 container:object;
do
 -- get a reference to the unfinished parts container

7.4 The Container 157

 container:=@.workplace.bufferGreenParts.cont;
 -- send unfinished parts container
 container.move(container.target_empty);
end;

Step 4:
After loading the container with unfinished parts, the container has to be trans-
ferred to the first unfinished part place (R2).Method deliver exit control front
green_part_storage

is
do
 @.move(@.target_full);
end;

Step 5:
After the arrival of the unfinished parts in the unfinished parts buffer, the first part
is transferred to the machine. Create the user-defined attribute machine in the
buffer class in the class library. Set the attribute machine of R2 to Machine2 and
of R1 to Machine1.

Method load exit control front R1 and R2:

is
do
 if @.occupied then
 @.cont.move(?.machine);
 end;
end;

Step 6:
After completing processing of the parts on the machine, the machine transfers the
part to the container, which is located on the finished part place. If the container
is full, then it will be transferred to the station target_full. If the container is not
yet full, a new part is loaded onto the machine. Method new_part exit control
front Machine1 and Machine2:

is
do
 -- load part into the finished part container
 @.move(?.bufferReadyParts.cont);
 if ?.bufferReadyParts.cont.full then
 -- move container
 ?.bufferReadyParts.cont.move(
 ?.bufferReadyParts.cont.target_full);

158 7 Mobile Units

 else
 -- load next part
 ?.bufferGreenParts.cont.cont.move(?);
 end;
end;

The simulation now works according to the just-in-time principle.

7.5 The Transporter

7.5.1 Basic Behavior
The Transporter moves on the track with a set speed forward or in reverse. Us-
ing the length of the track and the speed of the transporter, the time the Trans-
porter spends on the track is calculated. At the exit, the track transfers the trans-
porter to a successor. Transporter cannot pass each other on a track. If a faster
transporter moves up close to a slower one, then it automatically adjusts its
speed to the slower transporter. When the obstacle is no longer located in front
of the Transporter, the Transporter accelerates to its previous speed. Transport-
ers can have two types of load area:

• Matrix loading space
• Length-oriented loading space

7.5.2 Attributes of the Transporter
Create the object forklift (duplicate a transporter, speed 1 m/s) in the class library.
Open the object by double-click it.

7.5 The Transporter 159

Length: The length of the transporter must be smaller than the length of the track,
if you want to create a transporter on a track. The capacity of the tracks (setting
capacity = -1) is calculated as the length of the tracks divided by the length of the
transporter.

Speed: Enter the speed with which the transporter moves on the object track. The
speed is a positive value (data type real). If you set the speed to 0, the Transporter
stops. You can also simulate acceleration and deceleration of the transporter (op-
tion ACCELERATION).

Backwards: This option activates moving of the transporter in reverse on the
track (it also can be called by a method, for example, to drive back the transporter
after unloading).

Automatic routing (+destination): If you select this option, then Plant Simula-
tion searches along the connectors for the shortest route to the destination. All ob-
jects to the destination must be connected.

Example 78: Automatic Routing

Drag a transporter from the class library to the buffer. Open the dialog of the
transporter by double-clicking it. The destination of the transporter is track5.

160 7 Mobile Units

Start the simulation and reduce the simulation speed. The transporter finds the
shortest way.

Matrix load bay: If the option “matrix load bay” is selected, the xy coordinates
then indicate the position of MUs on the load bay. If the box is cleared, Plant
Simulation uses a length-oriented load bay.

Load bay length: Enter the length of the load bay. You can insert sensors and use
the length-oriented load bay like a track, e.g., for representing panel carts, auto-
mobile transporters, loaders, cranes, etc.

Capacity: Enter the number of MUs, which can be located on the transporter,
whole or in part, at any one time. -1 means that no limitations apply. This means
that the loading bay of the transporter is full if all MUs are touching each other.

7.5.3 Routing

If a track has various successors, four different types for routing are available:

• Automatic routing
• Drive control
• Exit control
• Basic behavior

7.5.3.1 Automatic Routing
To use automatic routing, you need to supply the transporter with destination in-
formation, and assign information to the track about which destinations are to be
reached on the track (target list). Plant Simulation searches the target lists of the
successors for the destination of the track. Then Plant Simulation transfers the
transporter to the first track whose target list contains the destination.

Example 79: Automatic Routing
A source randomly produces three parts. A transporter loads the part and trans-
ports it to the relevant machine. Then the transporter drives back to the source.
Each machine can only process one kind of part. A special track leads to each
machine. Create the following Frame:

7.5 The Transporter 161

Duplicate the entity three times. Name the parts Part1, Part2, and Part3. Color
the parts differently.

Go to the source. Enter an interval of 2 minutes. Select MU Selection random. En-
ter the table distribution into the text box Table.

Plant Simulation formats the table distribution. Open the table. Drag the parts
from the class library to the table (this will enter the absolute path into the table).
You can also enter the absolute path yourself. Next to the addresses of the parts,
type in the distribution of the parts in relation to the total amount.

The source now produces part1, part2, and part3 in a random sequence.
An assembly station then loads the transporter. First, connect track6 with the as-
sembly station, then with the source. Insert track6 so that the exit is located close
to the assembly station. Select the following settings in the assembly station.

162 7 Mobile Units

One part from the predecessor 2 is to be mounted.

The processing time of the assembly station is 10 seconds. The init-method inserts
the transporter close to the exit of track6.

Method init:

is
do
 deleteMovables;
 .MUs.Transporter.create(track6,15);
end;

Determine the destination of the transporter depending on the name of the part.
Set the value of the attribute destination of the transporter with a method. The out-
put sensor (rear) of the assembly station is to trigger the method.

The method destination sets the attribute depending on the MU names.

is
do
 -- @ denotes the transporter
 -- @.cont is the part on the transporter
 if @.cont.name="part1" then
 @.destination:=machine1;
 elseif @.cont.name="part2" then
 @.destination:=machine2;
 elseif @.cont.name="part3" then
 @.zielort:=machine3;
 end;
end;

Create and assign the destination list of the tracks. For creating the destination
lists, use objects of type CardFile.

The required data type is object. First, turn off inheritance (FORMAT – INHERIT
FORMAT).

7.5 The Transporter 163

Then click the list header (gray, string) with the right mouse button. Select
FORMAT. Select the data type object on the tab data type.

Now enter the objects, which can be reached via the track. You can also enter the
destinations by dragging the objects onto the list and dropping them onto the re-
spective line. This inserts the absolute path. Insert Machine1 into the destina-
tions_list1 and so on.

Enter the destination list on the tab Attributes of the track (forward destination list).

Move the parts at the end of the tracks.The parts are loaded onto the machines
at the end of the tracks 1, 2, 3. To accomplish this, we use the destination ad-
dresses of the transporters. Enter the method into the exit controls of the tracks
1, 2, and 3(rear).

Method unload:

is
do
 -- @ is the transporter
 @.cont.move(@.destination);
end;

At the end, the transporter drives by itself to Machine3 on track3 to Machine2 on
track2, etc., depending on which part is loaded.

164 7 Mobile Units

Note:
Plant Simulation transfers the transporter onto the first object in whose destina-
tion list the destination of the transporter is registered. If the following track is
failed, the transporter stops and waits until the failure is removed. While routing,
Plant Simulation does not take the status of the tracks into account.

7.5.3.2 Driving Control
At a junction, you can determine the destination of the transporter with SimTalk,
for example, depending on the availability and the load of the target station, and
transfer the transporter on the correct track.

Example 80: Driving Control
We want to simulate a manipulation robot (e.g., FlexPicker by ABB). The robot
can freely transport parts within a restricted area at high speed. You are to simu-
late the following problem. The robot takes parts from one place and distributes
them onto three lines. The lines have an availability of 98% and an MTTR of 25
minutes. The robot itself has an availability of 99% and an MTTR of 30 minutes.
The robot can reach an acceleration/deceleration of 100 m/s² and has a maximum
speed of 10 m/s. The cycle time is 1.05 seconds (source interval). The speed of the
lines is 0.1 m/s. The part has a length of 0.3 m. The robot has a work area with a
diameter of 1.2 meters. Set the scaling factor in the Frame to 0.005.

Create the following Frame:

Length of the tracks T0: 0.2 m, W1: 0.75 m, W2: 0.7 m, W3: 0.75 m, processing
time P1, P2, P3 3 seconds (to secure a distance between the parts), the capacity of
all buffers is one part. The length of the transporter is 0.1 meter (booking point 0).
The transporter must drive backwards after being inserted into the frame. There-
fore, select Backwards in the dialog of the transporter in the class library. Pro-
ceed as follows.

1. Program the Init method. It creates a transporter on the track T0. When creating,
a length is passed so that the transporter can trigger a backward exit sensor.

7.5 The Transporter 165

Method init:

is
do
 .MUs.Transporter.create(T0,0.1);
end;

2. Program the backward exit control drive_control: The transporter waits until a
part is located on P0 and loads it. The transporter drives forward until the end of
track T0. A single method is to be used for all controls. For that reason, the object
and possibly the direction of the transporter will be queried in the method.

Method drive_control:

is
do
 if ? = T0 and @.backwards then

 -- T0 exit backwards
 @.stopped:=true;
 waituntil P0.occupied prio 1;
 P0.cont.move(@);
 @.backwards:=false;
 @.stopped:=false;

 end;
end;

Assign the method drive_control to the track T0 as the exit control and the back-
ward exit control.

3. Program the Exit control T0: At the end of the track T0, you have to be deciding
to which place the transporter is to drive. The transporter waits until P1, P2, or
P3 is empty. Starting with the station P1, the method queries whether the place is
empty. The transporter will be transferred onto the track to the first empty place.
Method drive_control, a new branch in the query if ? = T0 and @.backwards then
…:

is
do
 if ? = T0 and @.backwards then

-- see above

 elseif ?=T0 and @.backwards= false then
 -- T0 exit
 @.stopped:=true;
 waituntil P1.empty or P2.empty or P3.empty prio 1;
 --drive to the empty place

166 7 Mobile Units

 if P1.empty then
 @.move(T1);
 elseif P2.empty then
 @.move(T2);
 elseif P3.empty then
 @.move(T3);
 end;
 @.stopped:=false;
 end;
end;

4. Program the Exit control of the tracks T1, T2, and T3: The transporter loads
the part into the buffer. After this, the transporter moves backwards to load a new
part. To simplify matters, define the attribute buffer (type object) in the class track
in the class library and assign the buffer P1 to the track T1, etc.

One control only is required for unloading. Therefore, you can program it as an
else-block in the query of the objects.

is
do
 if ? = T0 and @.backwards then

 -- T0 backwards exit
 -- see above

 elseif ?=T0 and @.backwards= false then
 -- T0 exit
 -- see above
 else
 --unload onto buffer

7.5 The Transporter 167

 @.stopped:=true;
 @.cont.move(?.buffer);
 @.backwards:=true;
 @.stopped:=false;
 end;
end;

7.5.4 Methods and Attributes of the Transporter

7.5.4.1 Creating a Transporter
You can use the method create for creating transporters.

Syntax:

<object>.create(target object) or
<object>.create(target object, length)

On length-oriented objects, you can determine the initial position at which the
transporter will be inserted on the target object.

7.5.4.2 Unloading a Transporter
Unloading of transporters is accomplished analogous to unloading containers, for
example, initiated by an exit control of the tracks.

Example 81: Unloading a Transporter
The content of the transporter will be transferred to the machine M2.

is
do
 @.cont.move(M2);
end;

Explanation: @ denotes the transporter in this case. You can access the part using
the method cont of the transporter (@.cont). The method cont returns a reference
to the part. You can then transfer the part to the machine M2 with …move(M2).

7.5.4.3 Driving Forward and Backward
Transporters often shuttle between objects. You need to change direction, so that
the transporter can move in the opposite direction of the connectors.

Syntax:

@.backwards:=true/false;

The attribute backwards returns true, if the direction of the transporter is back-
ward, and false, if the transporter is moving forward. You can set and get the value
of the attribute backwards.

168 7 Mobile Units

7.5.4.4 Stopping and Continuing
To stop and to continue after a certain time is the normal behavior of the trans-
porter. While the transporter waits, you can, e.g., load and unload the transporter
or recharge its battery. In SimTalk, you use the attribute stopped to stop the trans-
porter and make it continue on its way.
Syntax:

@.stopped:=true; --stop the transporter
@.stopped:=false; --the transporter drives again

Another possibility to stop the vehicle is to set the speed to 0. The vehicle then
slows down with the set acceleration and stops. You can start the vehicle again by
setting the speed to its original value. In this way, you can take into account accel-
eration and slow down in the simulation. To demonstrate these two options, you
can use the following example:

Example 82: Stopping Transporters
Create the following frame:

Make the following settings in the class transporter in the class library:

The source should produce only one transporter. This works with the following
setting:

7.5 The Transporter 169

The transporter should stop after 10 meters.

Variant 1: You insert a sensor in the holding position and trigger at this position
a method which stops the vehicle. The slow down is not taken into account. The
method stop should look as follows:

(SensorID : integer)
is
do
 @.stopped:=true;
end;

If you set the attribute stopped back to false, the transporter moves again.

Variant 2: The transporter slows down and stops at 10 meters. For this variant,
you need a second sensor (approx. 5.1 meters), on wich you start the slow down.
The method has in the second variant the following content:

(SensorID : integer)
is
do
 @.speed:=0;
end;

The transporter starts again, if you set the speed to a value greater than 0.

7.5.4.5 Drive after a Certain Time
Often the transporter stands for a while before it starts again, for example, for
loading and unloading. There are different ways for modeling the standing times
of the transporter. Basically, you need to start the transporter with the same man-
ner with which you have stopped it (either with the attribute stopped or speed).
Even if the transporter runs at the end of the track and stops by itself, you need to

170 7 Mobile Units

set the attribute stopped: = true to be able to start it later again (with change in di-
rection) without problems.

You can pause the transporter using the method <path>.startPause(<integer>).
After <integer> seconds ends the pause. If the transporter is paused, it stops and
drives again, if the pause ends.

Example: Transporter Starts after a Certain Time
The transporter from the example above should start again after 10 seconds. The
10 seconds should be taken into account with the method startPause.

Variant 1: transporter stopped with stopped:=true

(SensorID : integer)
is
do
 @.stopped:=true;
-- Start again after 10 seconds
 @.startPause(10);
 @.stopped:=false;
end;

Variant 2: transporter stopped with speed:=0
It is easiest to use a second sensor to start (and unloading) the transporter again
(e.g., SensorID 1 stop, SensorID 2 go). You should make sure that the vehicle, the
second sensor also triggers and not stops before. The method could look as follows:

(SensorID : integer)
is
do
 if sensorID = 1 then
 @.speed:=0;
 elseif sensorID=2 then
 --start after 10 seconds
 @.startPause(10);
 @.speed:=10;
 end;
end;

A second method to start the transporter after a certain time is to use the time of
the event controller in combination with a waituntil statement. Therefore, you take
at a certain time the simulation time of the event controller and add a certain
amount of time to it (e.g., 10 seconds). The simulation time (simTime) of the event
controller is observable. Then you can interrupt the processing of the method until
your set time is reached. An appropriate method could look as follows:

(SensorID : integer)
is

7.5 The Transporter 171

 simulTime:time;
do
 if sensorID = 1 then
 @.speed:=0;
 elseif sensorID=2 then
 simulTime:=
 eventController.simTime+num_to_time(10);
 --start again after 10 seconds
 waituntil eventController.simTime >=
 simulTime prio 1;
 @.speed:=10;
 end;
end;

Note: If no further event is there to process, the event controller stops the simula-
tion. You may have to make a small bypass, so the simulation continues running.
In the example above, for example, the following extension reaches (Source1 and
Drain).

Set the Source1 so that each second one part is produced. This will always gener-
ate new events and the simulation continues.

7.5.4.6 Start Delay Duration
A transporter stops automatically when it collides with a standing transporter on
the same track. Starts the first transporter again, then all collided transporters
automatically start again. To model this behavior more realistic, you can use the
attribute start delay duration (e.g., 0.5 seconds). The following transporter will
start with a lag of 0.5 seconds, after start of the transporter in front. You can set
the start delay duration on the dialog of the transporter (class library):

172 7 Mobile Units

Example 83: Start Delay Duration, Crossroads
You are to simulate a simple crossroads. The crossroads is regulated by traffic
lights. In this example, the transporter decides directly at the crossroads, if it
stops or goes on (without slow down). All transporters behind it drive against it.
Insert a traffic_light in the class library (duplicate a class SingleProc and rename
it). Create two icons in the class traffic_light (icon1: green, icon 2: red). Insert in
the class traffic_light a user-definded attribute “go” (data type boolean). Create a
new frame. Set the scaling factor to 0.25 (Frame window – Tools – Scaling fac-
tor). Set up the following frame:

In this example, we also show how the TwoLaneTrack works.

Settings: The sources S1, S2, and S3 create each transporter. The interval of the
creation should be randomly distributed. Make the following setting in the
source S1:

7.5 The Transporter 173

Make this setting also for S2, S3, and S4. Set the stream (first number in field in-
terval9 for each source to another value). The transporters move at a speed of 10
meters per second and accelerate with 10 m/s². To ensure that the transporter can
pass each other, set in the ways a track pitch of 4 meters.

Create at the crossroads sensors on the lanes. You can specify for each lane its
own sensors. You must uncheck for the other lane the checkboxes for the front and
rear. For every track, you need to specify two sensors. One sensor in lane A and
one sensor in lane B. All sensors will trigger the method transporter_control. In
case of road1, it could look as follows:

Initialize the simulation, so that two traffic lights show the icon 2 (red) (right
mouse button – next icon) and the attribute go is false; the other two traffic lights
show the green icon and the attribute go has the value true.

Traffic light control
For the traffic light control, we use in this example a method (traf-
fic_light_control) and a generator. The method switches the lights and the genera-
tor repeatedly calls the method with an interval of 1:30 minutes.
Method traffic_light_control:

174 7 Mobile Units

is
do
 --switchs the traffic light
 -- icon1 green, icon2 red
 if traffic_light1.go then
 traffic_light1.go:=false;
 traffic_light1.CurrIconNo:=2;
 traffic_light3.go:=false;
 traffic_light3.CurrIconNo:=2;

 traffic_light2.go:=true;
 traffic_light2.CurrIconNo:=1;
 traffic_light4.go:=true;
 traffic_light4.CurrIconNo:=1;
 else
 traffic_light1.go:=true;
 traffic_light1.CurrIconNo:=1;
 traffic_light3.go:=true;
 traffic_light3.CurrIconNo:=1;

 traffic_light2.go:=false;
 traffic_light2.CurrIconNo:=2;
 traffic_light4.go:=false;
 traffic_light4.CurrIconNo:=2;
 end;
end;

You can test the method by starting this repeatedly. The lights should “switch”.
The method is called by the generator. Open the generator by double-click and
make the following settings on the tab times:

Enter the method traffic_light_control in the field Interval on the tab Controls
(more in chapter information flow objects).

7.5 The Transporter 175

The transporter should stop when the relevant traffic light has the value go=false
and wait until go=true. Then the transporter should start again. If the lane A has
sensor number 1 and the lane B has sensor number 2, the method transporter_
control should look as follows:

(sensorID : integer)
is
do
 if ?=road1 and sensorID=1 then
 if traffic_light1.go=false then
 --traffic_light is red – stop
 @.stopped:=true;
 waituntil traffic_light1.go prio 1;
 @.stopped:=false;
 end;
 elseif ?=road1 and sensorID=2 then
 if traffic_light3.go=false then
 @.stopped:=true;
 waituntil traffic_light3.go prio 1;
 @.stopped:=false;
 end;
 elseif ?=road2 and sensorID=1 then
 if traffic_light2.go=false then
 @.stopped:=true;
 waituntil traffic_light2.go prio 1;
 @.stopped:=false;
 end;
 elseif ?=road2 and sensorID=2 then
 if traffic_light4.go=false then
 @.stopped:=true;
 waituntil traffic_light4.go prio 1;
 @.stopped:=false;
 end;
 end;
end;

Change the start delay duration in the class transporter (class library) to 0.5 sec-
onds and watch what happens.

176 7 Mobile Units

Note:
If the transporter does not stop exactly on the line of the sensor, then the reference
point of the vehicle is in the wrong position. The reference point is in the default
icon in the middle of the symbol. If the transporter is to stop exactly on the line,
then you need to set the reference point to the right edge of the icon.

7.5.4.7 Important Methods and Attributes of the Transporter

Method/attribute Description

<MU-path>.startPause;
<MU-path>.startPause
(<time>);

The method startPause immediately
pauses the Transporter and sets the
attribute pause to the value true.
When a parameter is passed (integer
greater than 0), it determines after
which time (in seconds) the trans-
porter changed back to the non-paused
state.

<MU-
path>.startPauseIn
(<time>)

Pauses the transporter after the pe-
riod defined in <time> has passed.

<MU-path>.collided; Collided returns true if the trans-
porter is collided with another
transporter.

<MU-path>.XDim;
<MU-path>.YDim;

Sets/gets the dimension of the matrix
load bay

<MU-path>.speed; Specifies the speed with which the
transporter moves on the track. The
speed must be equal to or greater
than 0. If you set the speed to 0,
then the transporter stops.

<MU-
path>.destination;

Sets/gets the destination of the
transporter

The Transporter also provides a number of methods and properties, which deal
with the battery operation and related problems.

Example 84: Portal Loader Parallel Processing
You are to simulate a portal loader which loads two machines. The machines si-
multaneously process the same kind of part. The loader picks up parts at a place
at the beginning of the track parts (capacity one part) and distributes them to the
machines. If both machines are loaded and working, the loader waits empty be-
tween the two machines. When the first machine has finished processing, the
loader drives to the machine and unloads it. A time of 5 seconds for the handling
by the loader is considered (the movement in the z-axis is not simulated). Create
the following Frame:

7.5 The Transporter 177

Settings: The source produces parts at an interval of 3:30 minutes. The processing
time of Machine1 is 7:50 minutes, of Machine2 7:40 minutes. Both machines have
an availability of 90% and an MTTR of 45 minutes. The track has a length of 25
meters; the transporter has a length of 1.5 meters, a speed of 1 m/s and a capacity
of one part. The capacity of the object in is one part. Insert the following sensors
into the track (as the drive_control):

The global variables machine1_finished and machine2_finished have the data
type boolean and the initial value false.

1. Insert the transporter: The init method creates the transporter. Prior to that, all
MUs will be destroyed.

Method init:

is
do
 deleteMovables;
 .MUs.Transporter.create(track,12);
 track.cont.destination:=in;
 track.cont.backwards:=true;
end;

2. Program the driving control: The transporter will be addressed for each trip.
For this, the attribute destination is used. Destinations are assigned to certain
sensor IDs. Once the transporter arrives at the destination (target sensor ID), the

178 7 Mobile Units

transporter stops. The method drive_control needs a parameter for the sensor_ID.
First, the transporter is to stop at the sensor_ID 1.

Method drive_control:

(sensorID : integer)
is
do
 if sensorID=1 and (@.destination=in
 or @.destination=out) then
 @.stopped:=true;
 end;
end;

3. Program the method for loading the unfinished part: The method load_blank
uses the transporter as the parameter and should have the following functionality:
The method waits until the place “in” is occupied. If Machine1 or Machine2 is
empty, the transporter loads the part and drives to the empty machine. If both ma-
chines are occupied, the transporter drives to the waiting position. The handling
time is taken into account by pausing the transporter.

Method load_blank:

(transporter:object)
is
do
 --search an empty and operational machine
 --wait for an unfinished part
 waituntil in.occupied prio 1;
 if machine1.empty and machine1.operational then
 in.cont.move(transporter);
 transporter.destination:=machine1;
 elseif machine2.empty and machine2.operational
 then
 in.cont.move(transporter);
 transporter.destination:=machine2;
 else
 transporter.destination:=waiting_position;

 end;
 --drive forward
 transporter.backwards:=false;
 -- 5 seconds handling time
 transporter.startPause(5);
 transporter.stopped:=false;
end;

7.5 The Transporter 179

Call within the method drive_control: If a loaded transporter arrives at sensor 1,
first the part is transferred to the drain “out”, then the method load_blank is called.

Method drive_control:

(sensorID : integer)
is
do
 if sensorID=1 and (@.destination=in or
 @.destination=out) then
 @.stopped:=true;
 if @.empty then
 load_blank(@);
 else
 -- move parts to the drain
 @.cont.move(out);
 --load new parts
 load_blank(@);
 end;
 end;
end;

4. Program the method load: The loaded transporter is to stop at the machine and
load the part onto the machine (if the machine is operational). Thereafter, the
transporter moves to the waiting position. If the transporter is empty, the trans-
porter unloads the machine and drives to the drain “out”. The method load re-
quires three parameters: machine, transporter, and the direction to the waiting
position (backwards true/false). The method load could look like this:

(transporter:object;machine:object;
directionWaitingPosition:boolean)
is
do
 transporter.stopped:=true;
 if transporter.occupied then
 -- transporter is loaded
 waituntil machine.operational prio 1;
 transporter.cont.move(machine);
 transporter.destination:=waiting_position;
 transporter.backwards:=
 directionWaitingPosition;
 else
 -- transporter is empty
 machine.cont.move(transporter);
 transporter.destination:=out;
 transporter.backwards:=true;
 end;

180 7 Mobile Units

 -- start after 5 seconds
 transporter.startPause(5);
 transporter.stopped:=false;
end;

5. Program the method call_transporter: If the machines are ready, they must send
a signal. The class SingleProc provides the method ready that returns true if the sta-
tion has finished processing parts. This value, however, is not observable. One solu-
tion would be the following: If the machine is ready, the processed part then triggers
a control that sets a global variable to true (e.g., machine1_finished). Global vari-
ables are observable and an appropriate action can be triggered. Within the frame,
the ready variables consist of the machine name and “_finished”. A universal
method for registering the finished machines could look like this:

Method call_transporter:

is
do
 -- ? object, that calls
 str_to_obj(?.name+"_finished"):=true;
end;

str_to_object converts a string (object name) to an object reference. Assign the
method call_transporter to the exit control (front) of Machine1 and Machine2.

6. Complete the method drive_control: Within the drive_control, the method load
must be called at the positions of Machine1 and Machine2. A control for the wait-
ing position is established at the position of the waiting position: If Machine1 or
Machine2 is operational and empty, the transporter drives into the station and de-
livers a new part. Otherwise, the transporter waits until Machine1 or Machine2 is
ready. The transporter might change its direction, set a new destination, and set
the finished variable of the machine to false. Finally, the transporter drives to the
machine. The completed method drive_control should look as follows:

(sensorID : integer)
is
do
 if sensorID=1 and (@.destination=in or
 @.destination=out)
 then
 @.stopped:=true;
 if @.empty then
 load_blank(@);
 else
 -- move parts to the drain
 @.cont.move(out);
 -- load new parts

7.5 The Transporter 181

 load_blank(@);
 end;
 elseif sensorID=2 and @.destination = machine1
 then
 load(@,machine1,false);
 elseif sensorID=4 and @.destination = machine2
 then
 load(@,machine2,true);
 elseif sensorID=3 and @.destination =
 waiting_position then
 stopped:=true;
 --new part if one machine is empty and
 --operational
 if (machine1.empty and machine1.operational) or
 (machine2.empty and machine2.operational)
 then
 @.destination:=in;
 @.backwards:=true;
 else
 -- wait until one machine has finished
 waituntil machine1_finished or
 machine2_finished
 prio 1;
 if machine1_finished then
 @.destination:=machine1;
 @.backwards:=true;
 machine1_finished:=false;
 elseif machine2_finished then
 @.destination:=machine2;
 @.backwards:=false;
 machine2_finished:=false;
 end;
 end;
 @.stopped:=false;
 end;
end;

S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 183 – 221, 2010.
© Springer Berlin Heidelberg 2010

8 Information Flow Objects

The information objects are used for managing information and data. In addition
to the global variable and the method, the following objects are information flow
objects:

• Lists and tables
• Trigger and Generator
• AttributeExplorer
• Objects for data exchange

8.1 The List Editor

Enter and select settings and entries in lists and tables in the list editor. Duplicate
the object TableFile in the class library, and open the duplicate by double-clicking
it. Each column has a data type; each cell has a unique address.

If you want to type data into a table or list in a frame, you have to turn off inheri-
tance: FORMAT – INHERIT FORMAT

184 8 Information Flow Objects

For setting the data types of each column, it is best to use the context menu (right
mouse button on the column header) FORMAT …

Select the data type of the column here. The format string restricts interactive in-
put (validity of entries). -9, for example, means that numbers with a maximum
nine digits can be entered, negative numbers are allowed.
Permissions: On the tab permissions you can endow cells with write protection.
Column/ Row Index: You can define your own column and row indices. This is
very helpful especially when you are working with tables. By default, the row and
column indices are hidden.
You can view the indices by selecting FORMAT – COLUMN INDEX – ACTIVE or
FORMAT – ROW INDEX – ACTIVE
Example Supply List:

The row and column index each have the index 0.

8.2 The CardFile
The CardFile is a one-dimensional list with random access to the content via an
index. You can use the CardFile like an array, so that you can store and read many
values under one name. This object can easily store data with the same data type.
When you insert entries, Plant Simulation moves the following entries back one
position. You can remove entries (with “[]”). However, you can also read entries
without removing the entry from the CardFile (with the command read).

Example 85: Materials List
Insert a CardFile with the name “material” into an empty frame. Turn off inheri-
tance. Enter the following values:

8.2 The CardFile 185

A method now is to read line 2 (define a method in the same frame). The following
commands are required to do so.

is
do
 print material.read(2);
end;

Run the method (run-run or F5). The console should display “stone”. “Gold”
should be inserted in line 3. For inserting entries the CardFile provides the
method insert (position, value). Change the method as follows:

is
do
 material.insert(3,"gold");
end;

Run the method with F5!

The most important attributes and methods of the CardFile are

Method/Attribute Description
<path>.insert(<integer>,
<value>);

Inserts the value <value> at the
position <integer>. Entries with
the same or a higher index will be
moved. In QueueFile and StackFile
you only pass the value; in the
QueueFile, insertion takes place
at the last position, and in the
StackFile at the first position

<path>.cutRow(<integer>); Removes the entry with the index
<integer>, all other entries move
up. The method returns the re-
moved entry. For QueueFile and
StackFile, you pass no index. In
the QueueFile, the method deletes
the first position, in the Stack-
File the last.

<path>.read(<integer>); Reads the entry with the index
<integer> without removing it.

<path>.append(<value>); Appends the passed value to the
end of the list

186 8 Information Flow Objects

<path>[<integer>] Returns the value at the position
<integer> and deletes the entry

<path>.dim Returns the number of entries

<path>.empty Returns true if the list contains
no entries

<path>.delete Deletes the whole list

Example 86: Handling by a Robot
You are to simulate a robot, which loads several machines. The robot takes the
parts from a buffer and loads them into two machines. The robot has a swivel
range (diameter) of 4 meters. The positions of the machines are located relative to
the robot at 90° and 135° clockwise. Create the following Frame:

Settings: Source interval 30 seconds, Buffer P processing time: 0 seconds, capacity
one part; M1 and M2 each 55 seconds processing time; L1, L2, and L3 each 1 m/s
speed.

Creating the Circular Track
For the robot to show the correct behavior, you must create the track as follows.
The easiest way is to insert the track from the toolbox. First, click the track button in
the toolbox. Then click in the frame. Press Ctrl + Shift. This activates curve mode.

1. Click, counter-
clockwise, upward
curve

2. Click, coun-
terclockwise

3. Click, coun-
terclockwise

4. Click, coun-ter-
clockwise, click
the right mouse
button to exit

8.2 The CardFile 187

You must insert a connector from the end of the track to the beginning of the track.
If you need a different radius, enter these settings into the dialog EDIT PARA-
METER OF CURVE:

If the option FIXED is not selected, you can set the radius of the arc segment by
dragging the mouse. Then, proceed like this:

Design the robot: The robot consists of two parts the robot propper, which
moves on the track (in reality Plant Simulation rotates the icon), and a gripper,
which moves on the robot (forward and backward). Both are transporters. Du-
plicate two transporters, and rename them to robot and gripper. Select the fol-
lowing settings in the transporter robot: The robot has a length-oriented load
bay with a length of 0.5m:

188 8 Information Flow Objects

Icon operational, pause, failed, waiting: You have to create an icon that can be
rotated by Plant Simulation. Therefore, you must set the reference point to the
edge of the icon (in this example at the bottom, middle). The track has the setting
CURVE ROTATE MUS on the tab curve.

If the transporter now drives on the track (the reference point is located on the
track), Plant Simulation rotates the icon to the position of the transporter on the
track. This only works if you insert the track counterclockwise (see above). You
must set the length of the transporter on a very small value (e.g., 1 mm), so that
the movement matches the position of the transporter on the circle otherwise,
e.g., the transporter triggers a control with the front and stops a few angular
degrees before the actual position. Try to follow these guidelines for creating an
icon for the robot (81 x 81 pixels). The robot is created at the end of the track.
The end of the track is located “below”, so the icon of the robot must also point
downward.

Draw mode Animation mode

The reference must be downward in
the middle!

The animation line must be drawn from
top to bottom. Set the number of anima-
tion events to 25 (Icon Editor – Icon –
Number of Animation Events).

To test your robot, you can insert it by dragging it onto the track. The position
should look as follows:

8.2 The CardFile 189

Correct: (track is drawn
counterclockwise), the
reference point is located
at the edge of the icon

Wrong: Path drawn
clockwise

Wrong: The reference
point is not located at the
edge of the icon

The gripper may be designed like this:

Draw mode Animation mode

The reference point is located at the lower end of the icon. There also is an anima-
tion point for the MU which is to be transported. The orientation and size must be
coordinated with the robot.

2. Create sensors on the track: The angles relative to the loading position are
known. The loading position in this example is located at 180° (0° is down). The
positions of the machines are 90° and 135° clockwise from the loading position.
Handling robots especially calculating the sensor positions can be very time-
consuming. The sensors are created by a method. The method will delete all old
sensors from the track and then create new sensors from a list and attach a prede-
termined method (drive_control).

Working with Sensors in SimTalk
There are two ways to access the sensors on a track, a conveyor or a transporter
via SimTalk:

<path>.sensorID(<integer>),

190 8 Information Flow Objects

 via the sensorID (if known) or

<path>.sensorNo(<integer>),

via an enumeration. You can query the number of sensors with the method

<path>.numSensors

You create new sensors using the method:

<path>.createSensor(<integer>,<string>,<object>,
<boolean1>, <boolean2>)

You must indicate the position of the sensor, the type of position (“length” or
“relative”), the method to be executed (so that the method is not called by its
name, use the method ref ()), and a boolean value for the front and rear control.
Sensors will be destroyed using the method

<path>.deleteSensor(<integer>)

You must pass the ID of the sensor to be deleted. The easiest way to delete all sen-
sors is to delete the first sensor repeatedly, until no sensor is left.

The sensor itself has the following attributes and methods:

Attribute/ method Description

<sensor>.position returns the position of the sensor,
if the position type is "relative"
the returned value is a percentage
value based on the length of the ob-
ject, if the position type is length,
the returned value is a length posi-
tion on the object

<sensor>.front sets and gets whether the front con-
trol is enabled

<sensor>.rear sets and gets whether the rear con-
trol is enabled

<sensor>.positionType gets and sets the position type, pos-
sible values are: length or relative

Example: The frame includes two global variables:

Enter the following values in the table positions (positions of the sensors from the
pick position):

8.2 The CardFile 191

The method create_sensors is to first delete all sensors, then create the pick posi-
tion as sensorID 1, then create all sensors from the list positions (at the relevant
positions).

Method create_sensors:

is
 i:integer;
 id_sens:integer;
 posi:real;
 posi_further:real;
 number:integer;
do
 -- delete all sensors on the track
 number:=track.numSensors;
 for i:=1 to number loop
 id_sens:=track.sensorNo(1).id;
 track.deleteSensor(id_sens);
 next;
 -- pick_position as first sensor
 posi:=track.length/360 * pick_position;
 --insert the sensor in the track
 id_sens:=track.createSensor(posi,"Length",
 ref(drive_control),true,false);
 for i:=1 to positions.dim loop
 if clockwise then
 -- track is counterclockwise, subtract positions
 -- less than 0 --> subtract the rest from the
 --end of the track
 posi_further:=posi-positions.read(i)*
 track.length/360;
 if posi_further<0 then
 posi_further:=track.length+posi_further;
 end;
 --create the sensor
 id_sens:=track.createSensor(posi_further,
 "Length", ref(drive_control),true,false);
 end;
 next;
end;

192 8 Information Flow Objects

3. Create sensors on a transporter, program the control of the gripper: The grip-
per should have (here simplified) two positions. One position is at the end of the
robot for loading and unloading and the other at the beginning of the robot at
which the movement of the robot (here its rotation) is triggered. The control of the
gripper can then be quite simple. The robot sets the destination of the gripper and
starts the forward movement of the gripper. At the end of the track, the gripper
loads the loaded part onto the destination object. If the gripper is empty, then the
part is loaded from the destination object. The robot controls the correct timing
and the technological sequence. When the gripper has finished its work, it moves
back and its rear triggers the movement of the robot as such.

Note:
We recommend to program the control for the gripper in the class library. The
method for the robot has to be addressed with its absolute path; otherwise, prob-
lems with the instantiation might arise.

Create the method gripper_control in the class library. Then open the transporter
robot (0.5 m long) and click the button Sensors:

Insert two sensors, and assign the method gripper_control to the sensors (impor-
tant, as an absolute path!):

In its most basic form, the method gripper_control could look like this:

(sensorID:integer)
is
 target:object;
do
 if sensorID=2 then
 -- first front
 @.stopped:=true;
 if @.numMU >0 then
 target:=@.destination;
 waituntil target.empty and target.operational
 prio 1;
 @.cont.move(target);
 @.backwards:=true;
 -- pause ?
 @.stopped:=false;

8.2 The CardFile 193

 else
 -- empty
 -- wait for parts
 target:=@.destination;
 waituntil target.occupied prio 1;
 target.cont.move(@);
 -- start gripper
 @.backwards:=true;
 @.stopped:=false;
 end;
 elseif sensorID = 1 then
 -- turn the robot
 @.stopped:=true;
 ?.stopped:=false;
 end;
end;

This gripper control also works very well for controlling grippers in machine portals.

4. Insert the robot and the gripper on the track: The control of the robot on the
track is to be triggered by SensorIDs. Add the user-defined attribute targetSen-
sorID (integer) to the robot in the class library, and set the start value to 1:

The robot first moves to the pick position and waits there until the first part ar-
rives. Robot and gripper are created in the Init method:

is
do
 deleteMovables;
 .MUs.robot.create(track);
 .MUs.gripper.create(track.cont,0.4);
 -- stop the gripper
 track.cont.cont.stopped:=true;
end;

If everything worked as intended, the robot should be located on its track and the
gripper on the robot:

194 8 Information Flow Objects

5. Program the method drive_control: When the robot arrives at its target sensor,
it stops. The robot waits at sensor 1 until the place p is occupied. Then the robot
sets the destination of the gripper to P and starts the gripper (forward). Thereaf-
ter, the robot sets the next targetSensorID and the correct value for the moving
backwards. The machine should be identified via the SensorID. This is most easily
accomplished with a Cardfile (sensor_list). Enter the following data into the sen-
sor_list (data type object):

Method drive_control:

(sensorID:integer)
is
 gripper:object;
 target:object;
do
 gripper:=?.cont.cont;
 if @.targetSensorID=sensorID then
 @.stopped:=true;
 gripper.destination:=sensor_list.read(sensorID);
 -- next target ??
 if gripper.destination= P then
 waituntil (M1.empty or M2.empty) and
 P.occupied prio 1;
 gripper.backwards:=false;-- drive gripper
 gripper.stopped:=false;
 -- to M1 or M2
 if M1.empty then
 @.targetSensorId:=2;
 elseif M2.empty then
 @.targetSensorId:=3;
 end;
 @.backwards:=true;
 else
 gripper.backwards:=false;
 gripper.stopped:=false;
 @.targetSensorID:=1;-- to pick position
 @.backwards:=false;
 end;
 end;
end;

The robot now loads the two machines.

8.3 StackFile and QueueFile 195

8.3 StackFile and QueueFile

The StackFile and QueueFile are one-dimensional lists which are accessed accord-
ing to the FIFO (First in first out, queue) or LIFO (Last in first out, stack) princi-
ple. New entries will be inserted into the StackFile at the top of the list; the last
element inserted is the first entry which will be removed. New entries will be
added to the QueueFile at the bottom of the list, the first element will be removed.
The main methods for working with stacks and queues are push (element) and
pop. With delete, the entire content of a list will be deleted.

Example 87: Queuing
A transporter unloads three machines. It waits in its waiting position (here, 12.5 m),
until a driving order arrives. The transporter then drives to the machine and
unloads the part. The transporter drives with the part to the end of the track and
unloads the part there.

Create the following Frame:

Sensors on the track (length 20 meters):

Settings: Source1, Source2, and Source3 non-blocking, interval 1 minute; M1,
M2, and M3 1 minute processing time, availability 50%, 2 minutes MTTR, select

196 8 Information Flow Objects

different random number streams for the different machines; transporter speed 1
m/s, capacity one part; drain 0 seconds processing time. The transporter has a
user-defined attribute targetSensorID (integer). The start value is 3.

1. The init-method creates the transporter on the track. The transporter is to stop
at the sensorID 3.

The method init looks as follows:
is
do
 .MUs.Transporter.create(track,1);
end;

The transporter should always stop when the SensorID of the track matches the
targetSensorID of the transporter.

Program the method drive_control:
(sensorID : integer)
is
do
 if sensorID = @.targetSensorID then
 @.stopped:=true;
 end;
end;

2. The machines call the transporter after having processed the parts. In this ex-
ample, the machine should enter its sensorID into a QueueFile. The assignment of
machines to the sensors is entered into a Cardfile (sensor_list). If a sensor is not
to be used, enter the object dummy instead (as a wildcard). You cannot leave
empty rows in a Cardfile. Also add a dummy object to the frame; otherwise, you
will receive an error message. In our example, the sensor list looks as follows:

8.3 StackFile and QueueFile 197

If a part is finished on a machine, it triggers the exit sensor. The machine then has
to search the SensorID in the sensor_list and enter the SensorID into the Queue-
File order.

Searching in Lists
Searching in lists in Plant Simulation works as follows. Plant Simulation uses an
internal cursor for searching. This cursor is set to a hit. With help of the cursor,
you can determine the position within the list. At the end of the search, the cursor
keeps its old position where it found the entry. Therefore, it is necessary to first set
the cursor to the position 1.

Syntax:

<path>.setCursor(1);

Then you can use the method <list>.find(value) for searching a value. The method
find returns true, if the value was found, and false, if the value was not found. If
the list includes the queried value, the cursor is set to the corresponding position.
In a third step, you need to read the cursor position:

position:= <list>.cursor.

Example: Program the method call_transporter as the exit control of the machines
M1, M2, and M3. Select the data type integer for the QueueFile (order). The
method call_transporter could look as follows:

is
 sensorID:integer;
do
 -- search sensorID
 -- set the position of the cursor to the beginning
 sensor_list.setCursor(1);
 -- search for the machine
 sensor_list.find(?);
 -- position the cursor
 sensorID:=sensor_list.cursor;
 -- insert into order
 order.push(sensorID);
end;

3. The transporter is waiting at the waiting position until an order arrives. Then it
drives to the machine. Using the attribute dim, you can determine the number of
entries in a list. This attribute is observable; it can be monitored with an observer
or a Waituntil statement. The direction can be determined using the sensor IDs. In
this case, this is easy because the sensors are not in a mixed order. If you insert a
new sensor afterwards (e.g., for a new machine), the sensor IDs get mixed up,
which means that a greater sensor IDs do not necessarily mean a greater amount
of length of the position.

198 8 Information Flow Objects

Sensor Position, Sensor ID, Direction
The direction of a transporter is to be identified. These arguments have to be
passed:

• track
• current sensorID
• target sensorID

The return value of the function is of type boolean. Create the method (getDirec-
tion) in the current example. Using <track>.SensorID(id) you can access all in-
formation that is associated with a sensor. The method SensorID returns an object
of type sensor. The attribute position returns the position of the sensor.

Example 88: Determining Sensor Positions
Program the method getDirection:

(track:object;sensorFrom:integer;sensorTo:integer)
:boolean
is
 posFrom:real;
 posTo:real;
 backwards:boolean;
do
 posFrom:=track.sensorID(sensorFrom).position;
 posTo:=track.sensorID(sensorTo).position;
 backwards:=(posFrom>posTo);
 return backwards;
end;

Extend the method drive_control as follows.

(sensorID : integer)
is
do
 if sensorID = @.targetSensorID then
 @.stopped:=true;
 if sensorID= 3 then
 waituntil order.dim > 0 prio 1;
 @.targetSensorID:=order.pop;
 @.backwards:= getDirection(?,3,
 @.targetSensorID);
 @.stopped:=false;
 end;
 end;
end;

8.3 StackFile and QueueFile 199

4. The Transporter gets an order, drives off, and stops in front of a machine. The
transporter has to load the part from the machine and drive forward to the sink.
The transporter does not yet know the machine; the method must read the machine
from the sensor list. This is accomplished with the method read (id).
Program the method drive_control; in addition to example above

(sensorID : integer)
is
do
 if sensorID = @.targetSensorID then
 @.stopped:=true;
 if sensorID= 3 then
 waituntil order.dim > 0 prio 1;
 @.targetSensorID:=order.pop;
 @.backwards:=getDirection(?,3,

 @.targetSensorID);
 @.stopped:=false;
 else
 sensor_list.read(sensorID).cont.move(@);
 @.backwards:=false;
 @.stopped:=false;
 end;
 end;
end;

5. Program the method unload for unloading the part onto the drain, and assign it
as the exit control of the track. The transporter must unload the part to the drain.
Then the transporter drives forward. If an order exists, it must be read and the
targetSensorID of the transporter must be set anew. If no order exists, then the
targetSensorID is 3.
Program the method unload (exit control track)

is
do
 @.stopped:=true;
 @.cont.move(drain);
 if order.dim > 0 then
 -- to machine
 @.targetSensorID:=order.pop;
 else
 -- to waiting position
 @.targetSensorID:=3;
 end;
 @.backwards:=true;
 @.stopped:=false;
end;

200 8 Information Flow Objects

8.4 The TableFile

8.4.1 Basic Behavior

The TableFile is a two-dimensional list, which allows random access to the entries
via their address. TableFiles have many fields of application in simulation projects,
e.g.:

• Storage of work plans and production orders
• Collection of statistical information
• Parameterization of models

Note:
For the following example: For the distribution of setup times, depending on the
actual part and the new part, you can define the setup time in a matrix.

Example 89: Lot Change
A milling center successively processes different production orders. The parts call
for different setup times. Prior to the part moving onto the machine, the setup is to
be set anew if necessary. The necessary information is to be centrally stored in a
TableFile.

Create the following Frame:

Settings: Source interval 1:30 minutes, blocking; create three entities p1,p2,p3.
The source creates the parts in a cycle. Use the TableFile creation_table for the
distribution of the parts:

8.4 The TableFile 201

Type in the following lot sizes into the TableFile creation_table:

PlaceBuffer: capacity 100 parts, no processing time; the TableFile setup_time
contains the following information:

The setup time consists of the dismantling time of the old part (already located on
the machine) and the setup time for the new part. Setting up from P1 to P2 might
take, for example, 5+13 minutes = 18 minutes. The setup time must be assigned to
the workstation before the machine starts to set up (automatically every time a
MU with a different name arrives). For this reason, we have to make the following
considerations: It has to be checked for which part (MU) the machine is equipped;
if the machine is set up for the same part, then no action is required; if the ma-
chine is set up for another part, the set-up time is set anew and the machine starts
setting-up after moving the part to the machine.

Attributes and methods for setting up a machine

Method Description

<path>.setUp determines whether a object is cur-
rently setting-up(true if the object
sets up).

<path>setUpFor(<mu>) triggers setting an object up for a
certain MU class. The time needed de-
pends on the value of the setup time
for the object.

<path>.isSetUpFor returns the name of the MU (string),
for which the object is set up. If the
object is not set up for a specific MU,
the method returns an empty string.

<path>.setupTime sets/gets the set up time of the object

202 8 Information Flow Objects

<path>.automaticSetUp sets/gets whether the set up process
is triggered automatically when an-
other MU class arrives at the object

Program the method set up (as the exit control front for the PlaceBuffer):

is
 former : string;
do
 -- read the set-up time from the table
 -- set the attribute setupTime
 former:=singleProc.isSetUpFor;
 if former="" then
 --the first part only set-up
 singleProc.setUpTime:=
 setup_times["setup_time",@.name];
 else
 -- former part dismantling_time
 -- recent part setup_time
 singleProc.setUpTime:=setup_times["setup_time",
 @.name] + setup_times["dismantling_time",former];
 end;
 @.move;
end;

8.4.2 Methods and Attributes of the TableFile
Delete
Syntax:

<path>.delete or <path>.delete(<range>)

This method deletes all entries or the specified range in the table/list. The follow-
ing notation applies to ranges in TableFiles:

• One cell: table[column,row]
• Range: {column1, row1}…{column2, row2}

The range specification consists of two direct specifications, which are separated
by two periods. The first specification defines the upper left corner, while the sec-
ond determines the lower right corner of the range. All entries in the rectangular
area will be evaluated. When you enter {*,*} as a second indication, the table
evaluates to the largest valid column and row index.

Samples:

{2,2}…{3,3}
{“front”,“door”}…{“rear”,“door”}
{3,1}…{*,*}

8.4 The TableFile 203

Notation Range

{1,2}…{3,5} from column 1 to column 3 and row 2 to row 5

{1,*}…{4,*} all rows in column 1 to column 4

{2,3}…{*,3} in row 3 all columns starting with column 2

{2,3}…{*,*} all the columns from column 2 and all rows from row 3

{*,*}…{3,5} all columns to column 3, and all lines to line 5

Additional Methods of the TableFile are

Method Description

<path>.copy
<path>.copy(<range>)

Copies the contents of the cells
to the clipboard

<path>.initialize
(<ranges>,<values>)

Preallocates the specified areas
with the passed values, existing
contents will be overwritten

<path>[<column>,<row>]
<path>[<column>,
<row>]:= <value>;

Read/write access; the TableFile
allows random access via column
and row indices. The index starts
and ends with a square bracket.
Within the brackets, you first
enter the column and then the
row of the cell you want to
access. If you assign a value,
the data type of the value must
match the data type of the cell.

<path>.yDim Returns the number of entries
(lines).

<path>.xDim Returns the number of columns
(which contain values)

<path>.dim returns the product of columns
and rows

<path>.find(<range>,
<value>)

Sets the cursor into the cell,
which contains the value. You can
determine the coordinates with
the cursor (table.cursorX and
table.cursorY). Before searching
make sure that the cursor is
located in the correct position.
For this you can use
<path>.setCursor(<column>, <row>).

204 8 Information Flow Objects

<path>.insertRow(<value>) Adds a new empty row at the
position <value>

<path>.writeRow(<position>,
<value1>,<value2> …)

Replaces all entries in the row
at the specified position by the
passed arguments

In addition, the TableFile provides methods for inserting and removing columns
and rows. You find more information about this in the help and under the heading
statistics.

8.4.3 Calculating within Tables

Example 90: Calculating Machine-Hour Rates
Basics: Calculating the machine-hour rate allows a more accurate allocation of
common costs and thus a more accurate calculation. The goal is the apportion-
ment of the machine-related indirect production costs to one hour of machine
running time. Calculating the machine-hour rate consists of the following com-
ponents (sample):

Machine-dependent indirect pro-
duction costs

Fixed amount per
month

Variable costs per
hour

1. Imputed depreciation3 4.500

2. Imputed interest4 900

3. Imputed rent5 500

4. Energy costs per hour 0.25

5. Tooling costs 10.00

6. Repair/Maintenance 10.00

7. Fuel costs 2.50

Indirect production cost per hour 5900/number of
hours machine
running time

22.75

Machine-hour rate 5900/number of hours per month + 22.75

3 Replacement value/asset depreciation range in months.
4 Cost value/2 * imputed rate/100.
5 Footprint of the machine in m² * imputed rent per month.

8.4 The TableFile 205

We calculate the machine-hour rate in a TableFile. First, create a sample of the
machine-hour rate calculation in the class library (the calculation scheme is the
same for all machines, only the values will change). Create the following table:

Calculations in Tables
You can enter values directly into the table cells. Alternatively, you can specify
formulas, which calculate the values in the table cells. Tables and lists therefore
have two modes: In formula mode, you can enter formulas; in input mode, you can
enter values and the values of the formulas are displayed. You can switch to the
formula mode with the formula button (to the left of Open):

Calculated fields are shown with a light blue background. A formula has the fol-
lowing basic structure:

PathTableFile[c,r] operator PathTableFile[c,r]

This is a bit cumbersome in relation to the same table, so in calculations within a
table you can use the anonymous identifier „?” as a substitute for the path.

Sample:
The imputed depreciation cost is calculated as follows:

Replacement value/asset depreciation range in months. As formula in the table in
the example above you would enter:

?[1,1]/?[1,2]

If your formula is wrong, Plant Simulation shows an error message.

206 8 Information Flow Objects

It is important to consider the data types in calculations. The result cell has a cer-
tain data type (determined by the data type of the column in the table). The result
must also have this data type; otherwise, Plant Simulation will show an error mes-
sage. A reasonable simplification is the calculation in a single data type (e.g., real)
and formatting of the output (e.g., money). The calculation of the machine-hour
rate results in the following table (and the associated formulas):

 0 1

1 Replacement value 2000000.00

2 Asset depreciation range in months 120.00

3 Imputed depreciation ?[1,1]/?[1,2]

4 Cost value 1500000.00

5 Imputed rate (%) 7.00

6 Imputed rent ?[1,4]*?[1,5]/200

7 Footprint of the machine in m² 20.00

8 Imputed rent per month and m² 13.00

9 Imputed rent per month ?[1,7]*?[1,8]

10 Total fixed costs per month ?[1,3]+?[1,6]+?[1,9]

11

12 Energy costs per hour 0.25

13 Tooling costs per hour 10.00

8.4 The TableFile 207

14 Repair/Maintenance per hour 10.00

15 Fuel costs per hour 2.50

16 Total indirect production costs per hour ?[1,12]+?[1,13]+?[1,14]+?[1,15]

17

18 Monthly machine running time in
hours 1.00

19

20 Machine-hour rate ?[1,10]/?[1,18]+?[1,16]

The cell [1,18] must be calculated in the simulation. The result of the simulation is
the actual occupancy of the machine and with the calculation in the table the ma-
chine-hour rate (taking account of breaks, occupancy, maintenance, and whatever
else you take into account in the simulation).

Create the following Frame:

At the end of the simulation, the method EndSim reads (set a month as the end of
the simulation in the event controller) the working time of the object turning from
the statistics data and writes it to the table machine-hour rate (cell [1,18]). Then,
the table calculates the machine-hour rate.

Program the method endSim:

is
do
 -- set the machine working time in the table
 machine_hour_rate[1,18]:=
 turning.statWorkingTime/3600;
end;

Note:
The values in the table retain their values between the simulation runs. At the be-
ginning of the simulation, you therefore need to initialize all required values (in
the example above, the cell [1,8]).

208 8 Information Flow Objects

8.5 The TimeSequence

8.5.1 Basic Behavior
You can use the TimeSequence for recording and managing temporary value pro-
gressions (stocks, machine output…). The TimeSequence has two columns: Point
in time (1st column) and value (2nd column). You can enter values into the Time-
Sequence with SimTalk, or the TimeSequence can record values by itself.

8.5.2 Settings
Tab Content
The tab Contents shows the recorded values. You can sort the values in ascending
order according to time. The button Set sets empty fields to a default value.

On this tab, you must specify the data types to be stored. This is analogous to the
tables:

1. Turn off inheritance (FORMAT – INHERIT FORMAT).
2. Then click the right mouse button on the column header of the second col-

umn, select Format from the menu.
3. Select the data type, and click OK.

Tab Start Values

8.5 The TimeSequence 209

Time reference: You can specify whether Plant Simulation shows time-related da-
ta in absolute format (datetime) or in relative format (time).

Reference time: Enter the start of the recording of the values (time, date). The time
values are shown relative to this reference value (which shifts the values of the time
axis).

Tab Record

Here, you can select the settings that are required for collecting the data.

Value: Enter the relative or absolute path to the value (method, variable, attrib-
ute), whose course over time the TimeSequence will record. You might, for ex-
ample, record the number of parts in the object buffer. The method is
buffer.numMU. You can select the value using the button next to the input field
methods, attributes, and variables.

Mode: Watch means that values are entered after each change in value. This may
possibly lead to a slowdown of your simulation. Sample means that values at cer-
tain time intervals are entered (e.g., every 30 minutes). In watch mode, only ob-
servable values will be recorded.

Active: Use this to activate or deactivate the TimeSequence.

Example 91: TimeSequence
A process is to be balanced. Three machines supply a fourth machine with parts.
The machines M1, M2, M3 have very low availabilities (time-consuming tool test-
ing and adjustments). We are looking for the maximum output of the line, the
processing time of M4 and the required buffer size.

Create the following Frame:

210 8 Information Flow Objects

Settings: Source interval 50 seconds, blocking; M1,M2,M3 processing time 1 min-
ute, 50% availability, 45 minutes MTTR; PlaceBuffer capacity 10,000 parts, 0 sec-
ond processing time; M4 40 seconds processing time, 75% availability, 25 minutes
MTTR.

The course of stock in the PlaceBuffer is to be recorded in the TimeSequence.

Follow these steps:

1. Turn off inheritance: Format – Inherit Format (remove the check mark).

2. Click the tab Record, and select the following settings:

8.5 The TimeSequence 211

3. Start the simulation. The current time of the EventController and the stock in
the PlaceBuffer will be entered into the TimeSequence every minute.

You can easily export the values of the TimeSequence (e.g., as a text file). First
select the format of the text file:

FILE – FORMAT …

Save the table with: FILE – SAVE AS TEXT …

Note:
The EventController does not reset the TimeSequence. You must delete the pre-
vious content of the TimeSequence inside a reset or init method.

Example of a reset method:

is
do
 timeSequence.delete;
end;

The methods and attributes of TimeSequence are those of the TableFile.

212 8 Information Flow Objects

8.6 The Trigger

8.6.1 Basic Behavior
The trigger can change values of attributes and global variables during the simulation
according to a defined pattern and perform method calls. In addition, the trigger can
control a source, so that this starts to produce MUs from a certain moment in time on.

Example 92: Trigger
A machining center produces parts in three shifts (24 h) with a processing time of
1 minute. The following assembly produces one shift with three parallel places,
and two shifts with one place. The assembly time is 1:40 minutes. The parts not yet
assembled are collected in a buffer. Create the following Frame:

Settings: Source 1 minute interval, blocking; machining_center 1 minute process-
ing time; buffer 0 second processing time, capacity 1000 parts.

After 8 h simulation time, the property assembly.XDim: = 1 (after another 16
hours according to 3 again) must be set. Select these settings in the object Trig-
ger_assembly.

Tab Period

8.6 The Trigger 213

Active: Select whether the trigger is active or not during the simulation run.

Time reference: You can select a relative start time (0:00) or an absolute time (date).

Start time: When should be the trigger for the first time active?

Active interval: After what period should be set the value back to the default val-
ue (defined in a time line, e.g., 8 hours)?

Repeat periodically: The trigger is active again after the expiration of the period
length.

Period length: Sets the duration of a trigger period (e.g., one day or 1:00:00:
00.0000).

Tab Actions

You can start methods or attributes.

Button Attributes: Type into the list which attributes you want to control. An er-
ror message appears in the console when Plant Simulation could not execute the

214 8 Information Flow Objects

action. Before you can type values into the table, you must turn off inheritance and
click Apply.

Tab Values

Enter the progress of the value, which the trigger controls, into a TimeSequence.

Button Values:

Before you can type in values, you first have to turn off inheritance in the value
table (as table).

Enter the following values in the table:

Set the default value (here 1) on the tab Start values.

8.7 The ShiftCalendar 215

You can check the distribution you set on the tab Representation:

If you run the simulation for a while, you get an error message. Plant simulation
cannot reduce the dimension of the parallel station, when parts are located on the
respective places. Prior to the reduction of the capacity, the object assembly needs
to be emptied. This can, for example, be achieved by temporarily locking the exit of
the buffer (e.g., 2 minutes before shift change). The following settings are needed in
the object Trigger_buffer: Actions: Attribute buffer.exitLocked, start time: 7:58:00,
active interval 2:00, period length one day, repeat periodically, data type Boolean,
values 7:58:00 true, default value false.

8.7 The ShiftCalendar

You can use triggers to set the attribute Pause at certain intervals to true or false to
model a shift system. It is easier to accomplish this with the object ShiftCalendar.
Every material flow object, which “deals with” entities has the following times:

• Planned (working within the shifts)
• Unplanned (times outside the shifts, e.g., weekend)
• Paused (pause within the shifts)

The ShiftCalendar sets these times using a TimeSequence. You can use one Shift-
Calendar for the entire simulation, or, in extreme cases, create its own ShiftCalen-
dar for each machine.

Example 93: ShiftCalendar
You are to simulate a continuous process (coating), which has a workplace to pre-
pare and a workplace for follow-up jobs. A coating process takes 8 hours (the facil-
ity is 75 m long), the preparing and follow-up job each take 2:30 min. The coating
facility works 24 hours a day, 7 days a week. The preparing and follow-up work-
places work according to the following shift system: Beginning of the first shift,

216 8 Information Flow Objects

Monday 6.00 clock, end of the last shift: Saturday 6:00 clock. Morning shift start at
6 clock, 14 clock end, break 9:00 to 9:15 clock, 12:00 to 12:30. Middle shift: start
14 clock, 22 clock end, Break 17.00 to 17.15 and 20:00 to 20:30, Night shift: Start
22.00 until 6 clock; breaks analogous to the middle shift. What is the maximum out-
put? Create the following Frame:

Settings: Length of the entities: 0.2 meters, P1, P2 processing time 0 seconds, ca-
pacity 10,000 parts each.

Insert a ShiftCalendar object into the frame. First switch off inheritance on the tab
shift times (click on the green icon on the right side + Apply). Then enter the shift
times into the table.

Assign the ShiftCalendar to the objects on the tab Controls – Shift calendar.

The tab Resources of the ShiftCalendar provides an overview over the stations,
which use the ShiftCalendar.

8.8 The Generator 217

8.8 The Generator
The generator starts a method at regular intervals or after a certain time has
passed. You can specify all times as a fixed time or as a statistical distribution.

Example 94: Generator, Outward Stock Movement
In the following frame, the produced parts will be not removed by a drain, they
will be placed into a store (capacity 10,000). So that the store does not overflow
after a short time, we need to simulate outward stock movement. The store will
have an average outward stock movement of 80 units per hour. For this purpose,
you need a method, which removes 80 parts per hour from the store.
Create the following Frame:

Settings: Source interval 1 minute blocking, M1 and M2 processing time 50 sec-
onds, availability 95%, MTTR 5 hours, P1 capacity 1000 parts, store capacity
10,000 parts. Create safety_stock and outward stock movement (consumption) as
global variables, of data type integer, in the frame
Program the method remove (called once per hour):

is
 i:integer;
do
 if store.numMU >= (consumption+safety_stock)
 then
 --remove MUs
 for i:=1 to consumption loop
 store.cont.move(buffer);
 next;
 end;
end;

In the example above, the method must be called every hour. With the generator
you must determine the time and the method, which should be called.

218 8 Information Flow Objects

Tab Times

Active: Activate the generator.

Start: Select when the interval control will be activated for the first time.

Stop: Select at which simulation time no interval control should be active.

Interval: What time should elapse between calls?

Tab Controls
Select your method on this tab:

8.9 The AttributeExplorer
You can manage a variety of attributes of different objects from a single central
location with the AttributeExplorer.

Example 95: AttributeExplorer
Create the following Frame:

8.9 The AttributeExplorer 219

Insert a comment with the text “Click here to set preferences!” (to open the At-
tributeExplorer). The processing times of Machine1 and Machine2 should be
changed in a single dialog box. Therefore, add an AttributeExplorer to the frame.
Open the AttributeExplorer by double-clicking it. Select the tab Objects and turn
off inheritance (+ Apply). Drag the items from the frame to the list of object paths.
Press Enter after each object to add a new line to the table.

Next, select the attributes that you want to view and modify. In the example above,
these are the attributes interval (source), procTime (Machine1 and Machine2),
and capacity (buffer). Enter these settings on the tab ATTRIBUTES. Use the column
alias to display a different name than the attribute name in the AttributeExplorer
(for instance processing time instead procTime). You can select the attribute with
the button Show attributes.

First, turn off inheritance and click Apply.

If you want to display the alias names, select the option Show attributes with alias
on the tab Data. You can also select to show the paths or the labels of the objects.

Click the button Show Explorer to open a window in which you can set all values
at once

220 8 Information Flow Objects

The AttributeExplorer itself should open when you click the comment (“Click here
…”). Open the comment. Select Tools – Select controls.

Select the following:

Program the method openExplorer:

is
do
 -- activate the AttributExplorer
 attributeExplorer.Active:=true;
end;

When you now click on the comment, the AttributeExplorer opens. An issue results
in this way in older versions of Plant Simulation. You then cannot open the dialog
of the comment by double-clicking (before release 9). You can open the dialog via
the structure of the frame. Click the right mouse button on the frame in the class
library. Select Show structure from the menu. You can then double-click the ob-
jects in the opening window and thus open their dialogs.

8.10 The EventController 221

8.10 The EventController

The EventController enables access to the system time. Furthermore, you can call
all buttons of the EventController in SimTalk.

Methods of the EventController:

Method Description

<path>.SimTime Returns the current simulation time
(data type time).

<path>.AbsSimTime Returns the current simulation time
(data type datetime).

<path>.start Starts the simulation

<path>.step

<path>.stop

<path>.reset

S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 223 – 252, 2010.
© Springer Berlin Heidelberg 2010

9 Statistics

9.1 Basics

Most questions in simulations deal with distributions of, for example, failures,
waiting times, etc. For the evaluation of simulation runs, you can rely on statistical
data, which the material flow objects collect.

9.1.1 Statistics Collection Period
The statistics collection period is the time interval between activating the collection
of statistical data and the query of statistics. Statistics data are recorded only if the
collection of statistics in the objects is active. If statistics is disabled, all statistical
data of an object will be deleted. You can reset statistics collection in the EventCon-
troller at a certain time. In this way, you can hide the ramp-up behavior of your
model, and statistics collection can start when the system reaches full output. You
can enter this setting in the EventController, on the tab Settings. Enter the time at
which the event controller will reset statistics into the field STATISTICS.

With the setting above, the EventController will reset statistics of the objects after
one day. When the simulation is finished after 11 days, the objects recorded statis-
tical data for 10 days. The following description illustrates the composition of the
statistics collection period (scheduled time only):

Statistics collection period

Resource not paused R. paused

Resource operational Resource not operational

Waiting
time

Set-up
time

Working time Blocked
time

Failed time

Working time: A resource works when at least one MU is being processed on the
object (setup times and recovery times are not included in the working time).

224 9 Statistics

Failed time: A resource is failed, if it is not paused and its attribute failed has the
value True.

Blocking time: A resource is blocked if it

• is full
• neither failed nor paused and
• all places do not work (e.g., the MU is processed and cannot be passed on).

Paused: A resource is paused when its paused attribute has the value True. In addi-
tion, more than 100 different values for statistical analysis are available.

9.1.2 Activating Statistics Collection
Open a material flow object (double-click) – click the tab Statistics. Enable Re-
source statistics, and click OK or Apply.

You can also enable or disable statistics collection of an object using the method

<path>.ResStatOn:=true; --or false

Note:
By default, statistics collection is turned on for all material objects. To increase
the performance of the simulation, it can help to deactivate statistics collection for
all objects for which you do not need statistical analysis.

9.2 Statistics – Methods and Attributes
You can read all statistics data with SimTalk.

Method Description
<path>.statistics Shows statistics of the object

on screen

<path>.statistics(<table>) Statistics will be written in
the specified Plant Simulation
table.

<path>.statistics(<string>) Statistics will be written in
the specified file.

<path>.statWaitingPortion Returns the percentage of the
waiting time relative to the to-
tal time (data type real).

9.2 Statistics – Methods and Attributes 225

<path>.statWorkingPortion
<path>.statBlockingPortion
<path>.statFailPortion
<path>.statSetupPortion
<path>.statPausingPortion
<path>.statUnplannedPortion
<path>.statEmptyPortion

see above

<path>.statNumIn
<path>.statNumOut

Returns the number of MUs that
entered (leaved) the object. The
returned data type is integer.

<path>.statMaxNumMU Returns the maximum number of
places occupied during the simu-
lation.

<path>.initStat The method initStat resets the
statistics of an object. This
can be useful if the statistics
recording should not start at
the beginning of the simulation,
the statistics collection will
contain only values from the
call of initStat.

Example 96: Statistics
You are to simulate a manufacturing cell. Four machines feed a chemical treat-
ment unit. The chemical treatment unit has a constant feed rate of 0.00333 m/s.
The part has a length of 0.4 m. The machines have a processing time of 4 minutes,
an availability of 50% and a MTTR of 3 hours. A buffer with capacity of 100 parts
is located in front of the chemical treatment unit, which is 30 meters long. The
source produces parts at an interval of 2 minutes. Create the following Frame:

226 9 Statistics

This example will show some typical statistical analysis.

1. The statistical data is to be written into a file at the end of the simulation. This
can be easily accomplished with a table. During or at the end of a simulation, you
write the statistics data into a table and then save the table as a file. For this the
TableFile provides the following methods:

Method Description
<path>.writeFile(<string>) This method writes the contents

of the table into a text file.
Pass the path as argument.
Existing files with the same
name will be overwritten.

<path>.writeExcelFile(
<string>,[<string>])

This method writes the contents
of the table into an Excel file.
Pass the filename (path). As a
second argument you can pass an
Excel table name. To be able to
use this method, MS Excel has to
be installed on your computer

To simplify statistical analysis, write a method, which writes the statistical data of
all material flow objects to a TableFile.

Add a TableFile “analysis” to the frame. Format the table according to the fol-
lowing example:

Preliminaries: With the help of the frame object, you can access all objects in the
frame by an index (method: <path>.node(<integer>)). The method <path>.num-
Nodes returns the number of objects within the frame. Finally, you can query the
class of the objects with <path>.class (e.g., MateriaFlow.SingleProc).

Add an endSim-method to the frame. The method iterates through all objects in
the frame. For objects of class SingleProc, the method inserts a row into the table
and writes its name and statistical values into it. Finally, the method exports the
contents of the TableFile to an Excel file: simulation_analysis.xls.

Method endSim:

-- writes statistical data for all SingleProc
-- objects
is
 i:integer;
 obj:object;

9.2 Statistics – Methods and Attributes 227

do
 analysis.delete;
 for i:=1 to current.numNodes loop
 obj:=current.node(i);
 if obj.class = .MaterialFlow.SingleProc then
 current.analysis.writeRow(0,
 current.analysis.YDim+1,
 obj.name,obj.statWorkingPortion,
 obj.statWaitingPortion,
 obj.statBlockingPortion,
 obj.statFailPortion,
 obj.statPausingPortion);
 end;
 next;
 -- write excel file
 current.analysis.writeExcelFile(
 "c:\simulation_analysis.xls");
end;

You can easily extend this method by adding other classes. Set a simulation end of
2 days, and let the simulation run up to this point. Search for the Excel file on
your “c:\” drive.

2. Determining Average Values

Often average values need to be calculated within a simulation. A typical example
is the calculation of average stock. For an average calculation, you need a series
of values and the number of the values (arithmetic mean). Within the simulation
you can choose another approach. A generator calls a method every hour that de-
termines the number of parts within the frame. The method calculates a new aver-
age based on the old average, the number of hours, and the new stock. You can
easily find out the number of MUs in the frame with <path>.NumMu. (Keep in
mind though that the method numMU also counts containers and transporters.)

Add the variable average_stock (real) to the frame. Insert a generator into the
frame and a method “new_stock”. The generator calls “new_stock” once per
hour starting after 1 hour.

228 9 Statistics

Program the method new_stock:

is
 hours:integer;
do
 hours:=time_to_num(eventController.simTime)/3600;
 average_stock:=
 (average_stock*(hours-1)+ current.numMu)/hours;
end;

3. Record Values

For the evaluation and optimization of the simulation, you often need the progres-
sion of values over time. You can accomplish this in two ways:

a) Record values with TimeSequence objects (a separate TimeSequence for
each value).

b) Record values with a table and analysis of the table.

Example: In the example above, you are to show the distribution of the failures of
the individual machines (hourly). If a failure has occurred, the value 1 should be
entered, if the object is not failed at the moment, the value 0 should be entered. In-
sert the table failure_machines into the frame and format it as follows:

9.2 Statistics – Methods and Attributes 229

Program the method record_failures:

is
 i:integer; -- next entry
do
 i:=failure_machines.YDim+1;
 -- call once per hour
 failure_machines[1,i]:=eventController.simTime;
 -- set values depending of attribute failed
 if M1.failed then
 failure_machines["M1_failure",i]:=1;
 else
 failure_machines["M1_failure",i]:=0;
 end;
 if M2.failed then
 failure_machines["M2_failure",i]:=1;
 else
 failure_machines["M2_failure",i]:=0;
 end;
 -- and so on
end;

4. Data Collected by the Drain

The drain collects detailed statistics about the destroyed parts. Open the drain,
and select the tab: Type Statistics.

Click the button Detailed Statistics Table to receive further information.

230 9 Statistics

The drain provides a number of methods for accessing statistics; here is a small se-
lection:

Method Description

<path>.typeStatistics(<table>) Copies the type statistics
table in the specified table

<path>.typeStatisticsCumulated
(<table>)

Analogous

<path>.statThroughputPerHour Returns the throughput per
hour (real)

<path>.ThroughputPerDay Returns the throughput per
day

<path>.statAvgLifeSpan Returns the average through-
put time

Most statistical data can be understood more easily if they are presented graphi-
cally. For this purpose, Plant Simulation provides user interface objects.

9.3 User Interface Objects

9.3.1 Chart

The object Chart represents data in Plant Simulation graphically. In watch mode,
the graphic is automatically updated after each modification of a displayed value.
(The value must be observable.) This way you can visualize the dynamic behavior
of certain values during the simulation.

9.3.1.1 Plotter
In the following example, the development of stock in a buffer is to be presented
graphically.

Example 97: Plotter
Create the following Frame:

9.3 User Interface Objects 231

Settings: SingleProc1, SingleProc2 processing time 1 minute each, availability
SingleProc1 and SingleProc2 95% MTTR 3 hours, use different random streams,
PlaceBuffer capacity 100, accumulating, 30 seconds processing time.

There are two ways to present data in charts: From input channels or from Table-
Files.

Input Channel
The Chart object itself records and displays the data. You can access the recorded
values using SimTalk.

Example: You are to display the stock in the PlaceBuffer.

1. Click the tab Data in the Chart and select the DATA SOURCE – INPUT CHANNELS.

Clicking the button opens a table into which you can enter the name of the object,
the path of the displayed value and comments. First, turn off inheritance of the table
(+ Apply). Then click the button TABLE FILE. Enter the path and the attribute,
which is to be displayed (PlaceBuffer.numMU in our example.)

You still need to select at which interval Plant Simulation is to update the chart on
the tab Data. Watch mode updates after every change of the observable value,
sample mode updates within the set interval, and plot mode updates the graph after
each simulation event.

Example: The chart will be updated every minute, the setting for this is as follows:

232 9 Statistics

2. Select the category plotter and Chart type line on the tab Display.

If you select the option Display in frame, Plant Simulation shows the diagram
(with its values) instead of the object's icon in the frame.

3. You then have to select some settings on the tab AXES. Enter the number of dis-
played values (e.g., 10,000). The scroll bar option is mostly useful for presenta-
tions using a plotter. In addition, you have to enter the size of the displayed time
range in the plotter window in the box RANGE X, enter 1:00:00:00 (one day).

4. Add labels to the plotter on the tab LABELS. Here you can also specify whether
a legend is displayed and how it is displayed in the chart window.

You can select additional format settings on the tabs FONT AND COLOR. Clicking
the button SHOW CHART opens the window of the plotter:

9.3 User Interface Objects 233

You can access the data, which the plotter records, and write them into a TableFile.

Example: Add a TableFile (analysis) and a method (saveData) to the frame. You
can read the data of the chart object with the method:

<path>.putValuesIntoTable(<table>)

First, turn off inheritance for the TableFile.

Program the method saveData:

is
do
 -- delete previous values
 analysis.delete;
 -- write the chart data into the table analysis
 chart.putValuesIntoTable(analysis);
end;

Plant Simulation formats the table and inserts the data of the plotter.

9.3.1.2 Chart Types
Plant Simulation provides a large number of different chart types to display values.

234 9 Statistics

Example 98: Chart from a TableFile
Continuing the example above:

You are to show the composition of the statistics collection period of the objects
SingleProc1 and SingleProc2. You want to write the values into a TableFile. You
want to show the values of the table in a chart. The following values will be dis-
played:

Value SimTalk Attribute

Waiting time <path>.statWaitingPortion

Working time <path>.statWorkingPortion

Blocked time <path>.statBlockingPortion

Failed time <path>.statFailPortion

Paused time <path>.statPausingPortion

Insert a TableFile with the following formatting (chart_values) into the Frame:

At the end of the simulation run, a method (endSim) will write the statistics values
of the two SingleProc into the TableFile chart_values.
Program the method endSim:

is
do
 -- values of SingleProc1
 chart_values.writeRow(1,1,
 SingleProc1.statWaitingPortion,
 SingleProc1.statWorkingPortion,
 SingleProc1.statBlockingPortion,
 SingleProc1.statFailPortion,
 SingleProc1.statPausingPortion);
 -- values of SingleProc2, next row
 chart_values.writeRow(1,2,
 SingleProc2.statWaitingPortion,
 SingleProc2.statWorkingPortion,
 SingleProc2.statBlockingPortion,
 SingleProc2.statFailPortion,
 SingleProc2.statPausingPortion);
end;

9.3 User Interface Objects 235

Creating Charts

1. Insert a Chart object into the frame. Open the chart and select the Data source
– TableFile on the tab DATA. Enter the name of our table, chart_values, into the
field TABLE:

2. Select CATEGORY > CHART on the tab DISPLAY. The chart-type stacked bars
(100%) is suited for displaying the portions of the statistics collection period. You
need to set DATA – IN COLUMN (structures of the table chart_values – the data are
spread across several columns).

3. Label your chart. Show the legend on tab LABELS. To avoid misunderstandings,
you must customize the colors in the chart so that they match the colors of the sta-
tus LEDs (in any case, failures should be shown red, pauses blue, and blockages
orange). You can set the order of colors on the tab COLOR. Double-click a color to
change it, and then select a new color. The order of colors in the example above
must be yellow, green, orange, red, and blue.

236 9 Statistics

The chart will be shown by clicking the button Show chart. You can also show it
by using the context menu of the chart object icon.

Chart type-Stacked bars:

9.3.1.3 Statistics Wizard
If you want to analyze the statistics collection period of all objects of a certain
class, you can use the statistics wizard. For that, add a chart object to the frame.
Click the right mouse button on the chart icon in the frame. Select STATISTICS
WIZARD from the context menu.

9.3 User Interface Objects 237

Select the objects whose statistics you want to show in the dialog of the statistics
wizard. Leave SingleProc and Production checked.

9.3.1.4 Histograms
Histograms show the frequency of certain values in relation to the simulation time.

Example 99: Histogram
We continue with the example above: You are to display the distribution of the oc-
cupancy of the PlaceBuffer (attribute numMU).

1. Add a new chart to the frame. Select DATA – INPUT CHANNELS and enter Place-
Buffer.numMU in the table.

2. Select CATEGORY – HISTOGRAM and the CHART TYPE – COLUMNS on the tab
DISPLAY.

238 9 Statistics

3. Clicking SHOW CHART displays the histogram.

Note:
You can copy charts in the dialog box of the chart object to the clipboard and then
paste them into other programs (e.g., PowerPoint). Select Tools – Copy to Clip-
board in the dialog of the Chart.

9.3.2 The Sankey Diagram
The Sankey diagram is used for visualizing the distribution of the material flow.
For this, Plant Simulation uses lines with different widths. The Sankey diagram is
located in the folder Tools, or on the toolbar Tools.

Example 100: Sankey Diagram
The following frame shows how the Sankey diagram works:

9.3 User Interface Objects 239

Settings:

Machine Processing time Availability MTTR

M1 1:00.0000 95% 2:00:00.0000

M2 1:00.0000 85% 2:00:00.0000

M3 1:00.0000 70% 2:00:00.0000

M4 1:00.0000 50% 2:00:00.0000

M5 1:00.0000 95% 2:00:00.0000

M6 1:00.0000 85% 2:00:00.0000

M7 50.0000 95% 2:00:00.0000

The source produces parts with an interval of 1 minute (blocking), the exit strat-
egy is cyclic blocking. Add a SankeyDiagram to the frame. Open the SankeyDia-
gram by double-clicking it. Click the button Open (MUs to be watched).

Enter the MU class, which is to be observed, into the following table. Drag the
class Entity from the class library into the table.

You can select some formatting options, such as color settings and the maximum
width of the streams:

Graphics in layer determines the z-position of the Sankey display. The smaller the
number, the closer to the foreground a graphic is located. Finish your settings by
clicking OK. Now, run the simulation for a while (50 days). Then click the right
mouse button on the object SankeyDiagram in your frame. Select DISPLAY
SANKEY DIAGRAM. DELETE SANKEY DIAGRAM deletes the Sankey streams.

240 9 Statistics

The thicker the Sankey streams between two stations, the more MUs have been
transported on the connectors or methods between these stations. The exit strategy
cycle of the source leads to the stations M1 to M4 receiving the same number of
parts. If a machine fails, the source waits with the transfer process until the ma-
chine is operational again. M1 to M4 receive the same number of parts (Sankey
lines have the same width). Output after 50 days is 21,230 parts.

You are to simulate a second variant. Click the right mouse button on the Frame
in the class library, and select Duplicate. Close the frame window, and open the
duplicate. Change this frame as follows:

Program the method and assign it as the exit control (front) to the source. The
source is to transfer the parts to the first available and operational machine.

9.3 User Interface Objects 241

Method:

is
do
 waituntil (m1.operational and m1.empty) or
 (m2.operational and m2.empty) or
 (m3.operational and m3.empty) or
 (m4.operational and m4.empty) prio 1;
 if (m1.operational and m1.empty) then
 @.move(m1);
 elseif (m2.operational and m2.empty) then
 @.move(m2);
 elseif (m3.operational and m3.empty) then
 @.move(m3);
 elseif (m4.operational and m4.empty) then
 @.move(m4);
 end;
end;

Run this simulation for 50 days. The output is about 72,000 parts. The Sankey dia-
gram now reflects the availability of the machines (the lower the availability, the
fewer parts run across the machines).

9.3.3 The Bottleneck Analyzer
The Bottleneck analyzer visualizes the default statistics for all selected objects. It
is quite simple to use. First, make sure that sufficient space is available above the
top object. Open the object BottleneckAnalyzer and click the tab Configure. Select
object types for which you want to display statistics.

242 9 Statistics

Click the button Analyze on the tab Analyze to create the statistics evaluation.

The statistical data is displayed graphically in the frame. You can also output the
data after the analysis as a table. Click RANKING TABLE – OPEN. Once you have
chosen a sorting option, the table is displayed.

9.3.4 The Display

9.3.4.1 Behavior
You can use the display object to show dynamic values (attributes, variables) dur-
ing a simulation run. The values can be represented as a number or bar. The acti-

9.3 User Interface Objects 243

vated object periodically checks the value and updates the display (Sample mode)
or after a corresponding change (Watch mode). As a bar or pie, the display shows
numeric values in relation to the specified interval (between min and max).

Example 101: Display
Create the following Frame:

Settings: Source interval: 2:10, M1 processing time: 2:00 availability: 90% 1 hour
MTTR, M2 1 minute processing time 50% availability, 2 hours MTTR, Buffer capac-
ity 1,000 no processing time. The display should show the stock of the buffer.

9.3.4.2 Attributes of the Display
Tab Data

Path: Enter the path to the observed value (relative or absolute). You can enter
global variables, attributes, and methods (invalid paths are marked).

Comment: Enter a detailed description of the Display that is displayed under the
object.

Mode: Select Watch or Sample mode (with interval).

Tab Display
The value of the display can be displayed as a bar (numeric values) or pie, or as
text.

244 9 Statistics

Display as text:

You can only adjust the color and font size and set a transparent background for
the display.

Display as a bar/pie

The bar/pie shows the ratio of the actual value and a given maximum value.

Display:

Bar Pie

9.3 User Interface Objects 245

9.3.5 The Comment
The comment has no active behavior during the simulation run and can be used for
explanations and labeling.

Tab Display

Text: The text, which you enter here, will be shown in the frame. You can assign
the text dynamically using the method <path>.text:= <string>.

Font size, font color, background color: Select formatting options for the text of
the comment. If Transparent is selected, the comment is shown within a box with
the background color shining through.

Tab Comment

In the big text box on the tab Comment, you can save more text which only is visi-
ble after opening the comment object. This text can be created in Rich Text For-
mat (e.g., you create the text in Word and paste it into the comment via the clip-
board). You can find formatting options in the context menu of the input field.
You can access the contents of the comment with <path>.cont.

246 9 Statistics

9.3.6 The Report
A report can present a very large number of data. The report consists of header
data and the report data, which you can arrange hierarchically.

9.3.6.1 Automatic Resource Report (Statistics Report)
You can automatically create reports in Plant Simulation. Select the objects for
which you want to create a report by holding down the Shift key. Then press the
F6 key.

9.3.6.2 Report Header
Example 102: Report
Use the example statistics for creating of the report. Insert a report into the frame,
and open the report by double-clicking it. Type in general information about the
simulation on the tab General.

9.3 User Interface Objects 247

These data are shown later in the report header.

9.3.6.3 Report Data
Define the structure of the report and the displayed information on the tab Struc-
ture. In the left pane, you can add using the context menu each (fold) object new
pages. You must first turn off inheritance. Click the right mouse button on Report
and select NEW from the context menu:

Rename the first sheet of the report to General. Click the entry with the right
mouse button. Select RENAME from the context menu. Then you can overtype the
name of the page. The data of each page will be structured using headings. Each
page is separated into three columns. Each column can either contain an icon, text,
or an object call.

Example: The first page is to include a brief description of the simulation and a
screenshot of the frame. Type “General” in the box Headline, then double-click in
the box next to it (column 1). You can place text, icons, or method calls in the re-
port. Select the format text for the first field.

Type the following text into the box Show object: “It was to simulate a chemi-
cal treatment, which is supplied by four machines. Through a complex work proc-
ess, the machines have an availability of only 50%.”

The next line is to remain free. You can insert HTML tags as text; the HTML com-
mand for a blank line is
. The report consists of HTML pages. Embedded
HTML instructions accordingly modify the appearance of the report. Type the fol-
lowing into the second row, first column:

248 9 Statistics

Below is to be shown a screenshot of the frame. Pressing Enter in the last row,
last column of the table on the tab structure creates a new row. Enter the follow-
ing into the first column of the third row:

Enter the address of your frame in the class library. Set width and height both to
zero. Plant Simulation then determines the width and height of the image. The
structure of the report page should look as follows:

You can view the report by clicking the button Show Report.

9.3 User Interface Objects 249

9.3.6.4 Texts in Reports
You can enter text directly into the report (see above) or use the comment object
for inputting text and output the contents of the comment block in the report.

Example: Insert a comment object into the frame, and type the following into the
tab Comment:

Disable the option in the comment object:

Add a page to the report: evaluations. Then click the right mouse button on the
new page and add another page with New (General).

The title of the page should be “Evaluations”. Enter the following into the first
column of the first row:

The content of the comment is shown with the included HTML formatting in the
report.

250 9 Statistics

You can use the following HTML commands for formatting your text (selection).

HTML-tag Description

<H1> Headline 1 </H1> Headline outline levels 1 to 6

<BIG>Text </BIG> Rel. enlarged text

<SMALL>Text </SMALL> Smaller text

Text Font size (1 very small to 7 very
large)

Text

Font color as color or hexadecimal

<FONT FACE="Arial, Taho-
ma"> Text

Font face as list separated by
commas

Text Bold

<I>Text</I> Italic

<U>Text</U> Underlined text

<S>Text</S> Strike through

_{Text} Subscript

^{Text} Superscript

Combination: <I><U> bold, italic, underlined </U></I>

9.3.6.5 Show Objects in Reports
You can access attribute values in reports and display objects. When you display
objects in reports, Plant Simulation creates an image of the object (e.g., graph,
Frame), or displays values of default attributes. You can type in a complete Sim-
Talk call into the field SHOW OBJECT.

Example: Insert the page “Statistics” into the report. Here you are to display the
main statistics of the machines. The headline is the name of the machine. The first
column should display the names of the values in the second column and in the
third column the units of the values. At the end of the page, a chart with the statis-
tical data is to be displayed. To display the value of statWorkingPortion in the
second column, you need to enter the following settings:

Show object: round(M1.statWorkingPortion*100,2)

Show as Object

Note:
The default setting in the report is Show as Object. If you want to display text,
you must switch to Show Object as Text, otherwise you get an error when calling
the report.

9.3 User Interface Objects 251

The settings for displaying statistical data for machine M1 look as follows:

Report:

Charts and tables are inserted into the report via a simple object call. When in-
serting a chart you must specify a size for displaying it. Example: The chart object
has the name “utilization”, the necessary setting in the report looks as follows:

To display methods, we have to use a little trick. You can access the text of the
method as follows:

ref(<path>).program

The attribute program returns the entire text of the method, including the control
characters. The control characters are normally ignored in the HTML display, so
there will be a presentation without line breaks and tabs. With the HTML state-
ment <pre>text</pre>, you can force the Report to display line breaks and control

252 9 Statistics

characters. If you want to display a method in the report, use the following setting
(display as object):

9.3.6.6 Show Images in Reports
You can also display images in reports. The images must be created as icons of the
report (Context menu – EDIT ICONS – ICON – NEW – FILE – OPEN …). You must
specify the icon number when inserting it into the report, for example, the image is
saved as an icon in the object Report (icon No. 16):

S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 253 – 272, 2010.
© Springer Berlin Heidelberg 2010

10 User Interface Objects

10.1 General

You can use the object dialog to create your own dialog boxes. You can create
dialogs for your own objects for the user of the simulation model to facilitate the
operation of your objects. The dialog can be used to select the settings in complex
frames and subframes. It serves as an interface between the simulation and the
user. In this way, you can create simulations, which can be operated by users who
have no knowledge of Plant Simulation.

10.2 Elements of the Dialog

Each dialog object manages a single dialog box. A dialog may consist of the fol-
lowing basic elements:

• Comments/labels
• Text fields
• Buttons, menus
• List-Boxes
• Radio buttons and checkboxes
• Tabs
• Images
• Tables

Example 103: Dialog
The processing time and the failures of two machines are to be set Via a dialog
object.

Create the following Frame:

254 10 User Interface Objects

The dialog is to control the following settings:

Object Attribute

Machine1 ProcTime failed

Machine2 ProcTime failed

Buffer Capacity

Initially set the processing time of the machines to 1 minute. Insert a dialog object
into the frame.

10.2.1 The Dialog Object

Double clicking or selecting Open on the context menu opens the dialog object.

Clicking the button SHOW DIALOG allows you to view the dialog. Clicking EDIT
DIALOG opens a dialog editor. You can arrange the individual elements of the dia-
log on the tab ELEMENTS. You can determine the position of the dialog box when
it is called on the tab POSITION.

10.2.2 Insert Elements

Static text boxes explain the dialog. Use static text boxes as labels of the input text
boxes and for general operating instructions. Select the item you want to insert on
the context menu on the tab Elements.

10.2 Elements of the Dialog 255

Example: To enter the processing time of Machine1, you need a static text box (as
identifier) and an edit text box (to enter text).

1. Click the right mouse button on the tab Elements, and select New Static Text Box.

Name: This name is the address of the text box.

Caption: This text is displayed on the dialog box.

X/Y: X and Y are the positions of the element in the dialog (column, row). The po-
sitions start at X = 0, Y = 0 (top left). You can set this quite easily afterwards by
clicking the button Edit Dialog. Then, drag the fields to the correct position.

2. Click again with the right mouse button on the tab Elements. Select New Edit
Text box on the context menu: Enter the following data:

Callback argument: Using the callback argument allows you to access the field.

Data type: The setting in the Data type field restricts the possibilities of user input.

Enable: If you clear the checkmark, the item is disabled and no user input is ac-
cepted.

Password: Entries are masked.

256 10 User Interface Objects

You can double-click each element in the tab elements to open and edit it.

Click the button Show Dialog:

10.2.3 Callback Function
When you click OK, Cancel, or Apply, the dialog calls a method and passes a val-
ue (the callback argument), which makes it possible to recognize which button the
user has clicked. The method is defined in the tab Method (default: self.callback).
You can open the method by pressing F2.

There are predefined three arguments:

• Open
• Close
• Apply

OK calls the callback function twice: Apply and Close call it once each.

Within the callback function you need to program what is to happen when the user
clicks on the respective buttons.

Example: When the user clicks the buttons in the dialog, the console should dis-
play a relevant message (to demonstrate). The callback function should have the
following form:

(action : string)
is
do
 inspect action
 when "Open" then
 print "Dialog open";

10.2 Elements of the Dialog 257

 when "Apply" then
 print "Apply clicked";
 when "Close" then
 print "OK or Cancel clicked";
 end;
end;

10.2.4 The Static Text Box

Static text boxes are needed to display text in the dialog. You can modify the con-
tents of the static text box at runtime. Use the method <path>.setCaption
(<string1>, <string2>). The method setCaption sets the caption of the dialog
element <string1> to the text <string2>.

Example (Method callback):

When you click Apply, the text of the static text box is to change.

(action : string)
is
do
 inspect action
 when "Open" then
 when "Apply" then
 dialog.setCaption("label_procTime_machine1",
 "Hello !");
 when "Close" then
 dialog.setCaption("label_procTime_machine1",
 "Processing time machine1");
 end;
end;

When you click Apply, the caption of the static text box is to change:

10.2.5 The Edit Text Box

The user can enter text into edit text boxes.

258 10 User Interface Objects

Important methods are

Method Description

<path>.setCaption(<string1
>, <string2>)

Set the contents of the text box
<string1> to the new contents
<string2>

<path>.getValue(<string1>) Returns the contents of the text
box <string1> (data type text).

<path>.setSensitive(
<string1>,<Boolean>)

Activates /deactivates the ele-
ment <string1>

Example: When opening the dialog, the edit text box should show the current
processing time of the Machine1. Clicking Apply should set the processing time of
Machine1 anew. For the next step, you need conversion functions: str_to_time
(<string>) to convert text to the data type time, and to_str(<any>) to output any
data type as text.

Callback function:

(action : string)
is
do
 inspect action
 when "Open" then
 --enter the processing time of Machine1
 --into the text box
 dialog.setCaption("procTime_machine1",
 to_str(machine1.procTime));
 when "Apply" then --new procTime machine1
 machine1.procTime:=
str_to_time(dialog.getValue("procTime_machine1"));
 when "Close" then
 end;
end;

10.2.6 Images in Dialogs
You can display images in the dialog, which you have previously defined in the
icon editor as an icon of the dialog (Context menu – EDIT ICONS …).

Example: Insert a new icon in the report in the icon editor. Use an icon from the
icon library (TOOLS – LOAD ICON).

10.2 Elements of the Dialog 259

Select New Image from the context menu on the tab Elements. Enter the icon with
the number from the icon editor (3 in our example).

The image is displayed in the second row (Y=1) in the first column (X=0).

Methods:

Method Description

<path>.setIcon(<string1>,
<string2>)

Sets the image id of the image
<string1> to <string2>.

<path>.getIcon(<string1>) Returns the image id of the image
<string1> as string.

260 10 User Interface Objects

10.2.7 Buttons
If the option SHOW DEFAULT BUTTONS on the tab ELEMENTS is selected, the dia-
log is displayed with three standard buttons.

You can also create a dialog with your own buttons.

Example 104: Error Dialog
Suppose you want to design your own message window. It will contain an error
message and a symbol, furthermore an OK button which closes the window. Create
a dialog (Error_Message), and insert an image (error_image) and a static text box
(message).

Clear the checkbox SHOW DEFAULT BUTTONS. Then add a button on the tab Ele-
ments. Enter the following settings:

You have to program in the callback function the closing of the window. It could
look as follows:

(action : string)
is
do
 inspect action
 when "ok_button" then
 error_Message.close(false);
 end;
end;

10.2 Elements of the Dialog 261

Some methods of the button:

Method Description

<path>.setCaption(<string1>,
<string2>)

Sets the caption of the button
with the name <string1> on
<string2>.

<path>.setSensitive(
<string1>,<Boolean>)

Activates /deactivates the
button <string1>

10.2.8 Radio Buttons
Radio buttons can only represent two values (true and false). Multiple option
fields allow selection from a given set of options. A new selection deselects the
previous selection. The assignment of the radio buttons to each other is set with a
GroupID (integer). All fields with the same GroupID belong together.

Example: For Machine1, different states should be offered: operational, paused,
and failed. The radio buttons have their own label (caption). Expand the dialog of
the example of three radio buttons:

Settings of the radio buttons are: GroupID=0, callback arguments: ma-
chine1_operational, machine1_failed, Machine1_paused.

Labels:

You must set up an area in the branch. Apply the callback function for each radio
button in which you specify what is to happen if the option is selected. If you set
the callback arguments up directly as a query (e.g., when “machine1_failed” then
…) in the callback function, the change will take place without the user having
clicked Apply or OK (clicking the radio buttons call the callback function). The
method <path>.getCheckBox(<string>) returns which radio button was selected:

<path>.getCheckBox(<string>)

The return value has the data type boolean.

262 10 User Interface Objects

Method self.callback:

(action : string)
is
do
 inspect action
 when "Open" then
 when "Apply" then --new procTime machine1
 --get state of radio buttons and set state
 --of machine1
 machine1.failed:=
 dialog.getCheckBox("machine1_failed");
 machine1.pause:=
 dialog.getCheckBox("machine1_paused");
 when "Close" then
 end;
end;

When opening it, the dialog is to display the state of machine1. Set the value of the
radio box with the method

<path>.setCheckBox(<string>,<boolean>);

Example: In the callback function above, you have to expand the branch for Open
as follows:

when "Open" then
 dialog.setCheckBox("machine1_failed",machine1.failed);
 dialog.setCheckBox("machine1_paused",
 machine1.pause);
 if not machine1.failed and not
 machine1.pause then
 dialog.setCheckBox("machine1_operational",
 true);
 end;
when "Apply" then

The radio button provides the following methods:

Method Caption

<path>.setCaption(<s
tring1>, <string2>)

Sets the caption of the radio button
with the name <string1> on <string2>.

<path>.setSensitive(
<string1>,<Boolean>)

Activates/deactivates the radio button
<string1>

10.2 Elements of the Dialog 263

<path>.setCheckBox(<
string>, <boolean>);

Sets the status <boolean> of element
<string>.

<path>.getCheckBox(<
string>)

Returns the status of the element
<string>

10.2.9 Checkbox
The Checkbox can be either selected or cleared. The Checkbox represents two states
(e.g., paused, not paused). The Checkbox provides the same methods as the radio
button.

10.2.10 Drop-Down List Box and List Box
If you want to provide a great number of choices, then radio buttons require too
much room in the dialog. For such cases, you can use (there are always some
items visible in a list) drop-down list boxes (also list boxes, but there is only one
entry visible; only for a selection, the list will be expanded).

Example 105: Statistics Dialog
A dialog is to display statistical data of different objects. Add a dialog to the
Frame and name it statistics_dialog. Add the following elements to the dialog.

Captions:

You can easily enter the values of the drop-down list into a table (click the button
ITEMS in the properties dialog):

264 10 User Interface Objects

You can identify the selected entry with the method <path>.getValue
(<string>) (pass the name of the drop-down list box). To access the corre-
sponding objects (e.g., machine), you have to convert the string into an object
(str_to_obj(<string>)).

Additional methods of the drop-down list box are

Method Description

<dialog>.setIndex
(<string1>, <integer>)

Selects the entry with the index
<integer> in the dialog element with
the name <string1>.

<dialog>.getIndex(
<string>)

Determines the index of the selected
list entry

An evaluation (e.g., after clicking the Apply button, or selecting another entry in
the drop-down list) might look as follows:

(action : string)
is
 mach:object;
do
 inspect action
 when "Open" then
 when "Apply","maschine" then
 --get entry and read statistical data
 mach:=str_to_obj(statistics_dialog.getValue(
 "machine_selection"));
 --set captions of static text boxes
 statistics_dialog.setCaption("text_working",
 "Portion working:"+
 to_str(round(mach.statWorkingPortion*100,2))+
 " %");
 statistics_dialog.setCaption("text_failed",
 "Portion failed: " +
 to_str(round(mach.statFailPortion*100))+ " %");
 statistics_dialog.setCaption("text_waiting",
 "Portion waiting: " +
 to_str(round(mach.statWaitingPortion*100))+
 " %");
 when "Close" then
 end;
end;

10.2 Elements of the Dialog 265

10.2.11 List View
The list view displays the contents of a table in a dialog. The user can select a row
from the table (the ListView returns the number of the selected row).

Example 106: Dialog Product Mix with Listview
A company manufactures three parts in a product mix. You are to simulate various
mixes. You are to test a selection of mixes (a certain amount of part1, part2, and
part3 each).

The proportion of part1, part2, and part3 is 1:3:5. First, create three entities
(part1, part2, part3) in the class library. Create a table “mix” in the Frame with
the following content:

Dialog (mix_choice): Insert a static text box (as title) and a list view (mixtable).

Setting ListView:

266 10 User Interface Objects

Dialog:

Methods of the ListView

Method Description

<path>.setTable(<string>,
<object>)

Sets the table of the element
<string> to <object>

<path>.setSensitive(
<string1>,<Boolean>)

Activates/deactivates the radio
button <string1>

<path>.setTableRow(<string>,
<integer>)

Sets the selected row in the
ListView

<path>.getTable(<string>) Returns the table name of the
element <string>

<path>.getTableRow(<string>) Returns the index of selected
row (starting from 1)

Example: You need a production table (production) for the source (MU-selection:
sequence cyclical).

When the user clicks Apply or OK, the number of parts from the selected mix in
the rows of the table production will be transferred. After that, the source pro-
duces the new mix.

Callback function:

(action : string)
is
 row:integer;
do

10.2 Elements of the Dialog 267

 inspect action
 when "Open" then
 when "Apply" then
 -- TODO: add code for the "Apply" action here
 -- read index of selected row
 row:=mix_choice.getTableRow("mixtable");
 -- write selected product mix
 production[2,1]:=mix[1,row];
 production[2,2]:=mix[2,row];
 production[2,3]:=mix[3,row];
 when "Close" then
 end;
end;

10.2.12 Tab Control

If you have to arrange a number of elements on your dialog, presenting them on
several tabs is helpful. All elements, which belong to a topic, are grouped on one
tab. You first have to create a tab control and then add tabs to this element. New
items are always created on the tab on which they are to be shown (context menu
of the tab). The dialog structure is shown as a tree.

10.2.13 Group Box
The group box graphically groups elements. Create the elements within the group
box using the context menu of the group box. The group box has a separate ad-
dress (elements in the group start again at field position x = 0, y = 0). Elements of
the group are displayed in the tree below the group box.

10.2.14 Menu and Menu Item
Menu items work just like buttons. When the user clicks a menu item, Plant Simu-
lation passes the callback argument to the callback function. Within it you can
evaluate the callback argument and initiate the necessary action.

268 10 User Interface Objects

Example 107: Dialog Menu
You are to control the simulation with a dialog. It is to be a menu in the dialog
with the menu items: Start, Stop, Restart (stop, reset, init, start). Name the call-
back arguments same as the menu items. First, insert the menu Simulation. Then
create the menu items using the context menu of the menu.

Dialog:

Callback method:

(action : string)
is
do
 inspect action
 when "Start" then
 eventController.start;
 when "Stop" then
 eventController.stop;
 when "Restart" then
 eventController.stop;
 eventController.reset;
 eventController.init;
 eventController.start;
 end;
end;

Methods of the menu:

Method Description

<path>.setCaption(<string1>,
<string2>)

Sets the caption of the
menu/menu item with the name
<string1> on <string2>.

<path>.setSensitive
(<string1>,<Boolean>)

Activates/deactivates the
menu/menu item <string1>

10.3 Accessing Dialogs

Important methods to access the dialogs are

10.4 Protection of Methods and Objects 269

Method Description

<path>.open Shows the dialog

<path>.openDialog Opens the dialog of the dialog

<path>.close Hides the dialog

<path>.closeDialog Closes the dialog window

When you open the Frame, the dialog is to be shown automatically. The method
must first show the Frame and then the dialog window.

is
do
 .models.frame.openDialog;
 dialog.open;
end;

The method will be allocated in the Frame with: TOOLS > SELECT CONTROLS …
Here you can define different actions and how they are triggered. The method is to
be executed once the Frame is opened (Open).

10.4 Protection of Methods and Objects

You can quite easily hide the source code of methods from prying eyes. SELECT
TOOLS > ENCRYPT in the method editor.

You will be prompted to enter a password. From then on you must enter this
password before being able to edit the source code. To do so, select Tools > De-
crypt. You can use this function, even for custom objects (e.g., Frames), whose
content should not be seen and modified by everyone. It is easy to assign a method
to the action Open the Frame, which opens the Frame dialog, e.g., only after enter-
ing a password (essentially you should encrypt the method in such a case).

Example 108: Protection of Frames
A Frame (frame1) is to be opened only after entering the password “Password”.
A method in the Frame controls the query of the password and opening of the dia-
log of the Frame.

Create a Frame protectFrame and insert a method (TOOLS > SELECT CONTROLS >
OPEN).

is
 input:string;
 pass:string;

270 10 User Interface Objects

do
 pass:="xyz";
 input:=prompt("Password");
 if input = pass then
 .models.protectedFrame.openDialog;
 end;
end;

10.5 Validation User Input

If you use dialogs for user input it is important to validate the permissibility of the
user input for the respective purpose (to avoid a runtime error). The validation has to
take place prior to an assignment of the value to a property of an object (data type!).

10.5.1 Type Validation and Plausibility Check
You should first use all possibilities of the Edit Text box in the dialog (definition
of the required data type). Plant Simulation then prevents the input of illegal char-
acters. One way of validation is the following: Str_to_num returns the entered
number; if text is entered, the return value is 0. You can use the return value 0 for
a query.

Example 109: Type Validation
The user has to enter the size of a buffer into your dialog. If the user enters 0 or text,
an error message will be displayed. The section of the call back method (Apply)
might look as follows:

if str_to_num(dialog.getValue("capacity_buffer"))=0
then
 messagebox("Insert only values greater then 0!",
 1, 11);
else
 buffer.capacity:=str_to_num
 (dialog.getValue("capacity_buffer"));
end;

10.5 Validation User Input 271

10.5.2 Message Box
You can display a message box using:

Messagebox("Message", integer buttons, integer i-
con);

Use the following values for buttons in Microsoft© Windows©.

Value Description

1 OK

3 OK, Cancel

10 Repeat, Cancel

48 Yes, No

50 Yes, No, Cancel

For the icon, you can pass the following values.

Value Description Icon

0 no icon

1 Error

2 question mark

3 exclamation mark

4 information

If the user clicks one of the buttons, the method messagebox returns one of the fol-
lowing values:

• OK 1
• Cancel 2
• Yes 16
• No 32

272 10 User Interface Objects

Note:

You can insert carriage returns and tabs into the text using the function Chr(ascii
code). Enter Chr(9) for tabs and Chr(13) for carriage returns.
Sample: “text1”+Chr(13)+“text2”

10.6 HTML-Help

Plant Simulation provides a function to open a browser window and show a file in
it. Syntax:

OpenHTMLWindow(<string location>, <string title>,
<integer x-Pos>, <integer y-Pos>, <integer width>,
<integer height>);

Example:

is
do
 OpenHTMLWindow("file:///c:/help.html", "Help",
 200,200,300,200);
end;

This opens a browser window (e.g., Internet Explorer). The HTML file will be
loaded in this window.

The HTML window can be closed with the command:

CloseHTMLWindow(string title);

Example:

is
do
 closeHTMLWindow("Help");
end;

S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 273 – 287, 2010.
© Springer Berlin Heidelberg 2010

11 Data Exchange

11.1 DDE with Plant Simulation

Dynamic data exchange (DDE) allows accessing another program. A Windows
program that makes DDE functionality available connects to the system under a
server name and provides various topics. You can establish a connection to this
program by providing the specified server name and a valid theme. You may use
the established channel for certain transactions related to data (Items) that are sup-
ported by the server. All DDE transactions are realized by SimTalk calls in Plant
Simulation. You can call any method in Plant Simulation with DDE, including the
methods, which you have defined.

Important: All participating programs must be started!

11.1.1 Read Plant Simulation Data in Microsoft Excel

Example 110: Data Exchange DDE Excel
The following examples are programmed in VBA, in principle this works with Ex-
cel, Project, Word, and Access. Insert a variable (name: variable, data type: inte-
ger, value: 247985) into a Frame (.Models.Frame). This value is to be read in Ex-
cel. Start Excel. Open the Visual Basic Editor. Insert a new module (Insert –
Module) and a new procedure (sampleDDE) in the module:

Public Sub sampleDDE()
Dim channel As Long
Dim value As Variant
'establish channel
channel = DDEInitiate("eM-Plant", "Data")
read the value
value = DDERequest(channel, _
".Models.Frame.Variable")
'write the value into the table
Tabelle1.Range("A2").value = value(1)
'close channel
DDETerminate (channel)
End Sub

To work with DDE, you need the following commands:

274 11 Data Exchange

VBA/ Simtalk -Method Description

DDEInitiate(<string1>,
<string2>)

Opens a channel. You have to pass
the name of the application
(<string1>, (in Plant Simulation 9
this still is eM-Plant) and a topic
(<string2>). Plant Simulation sup-
ports the following topics:
System (You can request information
about Plant Simulation, you can
call SimTalk methods)
Data (Values of global variables
you can read and write)
Info (Version of Plant Simulation,
name of the current frame, states
of the frame you can read)

DDERequest(<integer>,
<string>)

Requests information from an appli-
cation. You need to pass the chan-
nel number (<integer>) and an item
(<string>). The passed element
(item) will be queried. (Note: It
must be addressed absolutely.)

DDETerminate(<integer>) Closes the channel (<integer>).

DDEPoke(<integer>,
<string1>, <variant>)

Writes data (variant>) into the
connected application (channel <in-
teger>, element <string>).

DDEExecute(<integer>,
<string>)

Sends a command (<string>) to the
connected application (<integer>
channel.

11.1.2 Excel Data Import in Plant Simulation
Plant Simulation can also read data from DDE-enabled programs. Regarding Ex-
cel, a few requirements must be met:

• The Excel file must be opened.
• You have to specify the worksheet in Excel when opening the connection.
• All data will be transferred as a string.

Example 111: Data Exchange, Importing a Working Plan from Excel
You are to import a work plan from Excel into Plant Simulation. The work plan
should have, for example, the following form (insert a table „work plan“ into the
Frame in Plant Simulation).

11.1 DDE with Plant Simulation 275

Then, create a table in Excel, and enter the following data:

You are to transfer the data from Excel to Plant Simulation. The following example
loads all data in the Excel-Table2 into a Plant Simulation table (working_plan).

Method: load_workingplan

is
 value, adress:string;
 channel, row, column:integer;
 colNext, rowNext:boolean;
do
 --establish connection
 channel:=DDEConnect("Excel","Table2");
 --column by column, until no more values available
 row:=1;
 column:=1;
 rowNext:=true;
 while(rowNext) loop
 --start from address 1,1 column by column
 column:=1;
 colNext:=true;
 --no value, stop both loops
 adress:="R"+to_str(row)+"C"+to_str(column);
 value:=ddeRequest(channel,adress);
 --returns additional a line break
 if value = chr(13)+chr(10) then
 rowNext:=false;
 colNext:=false;
 else
 while (colNext) loop
 adress:="R"+to_str(row)+"C"+to_str(column);

276 11 Data Exchange

 value:=ddeRequest(channel,adress);
 if value = chr(13)+chr(10) then
 colNext:=false;
 else
 working_plan[column,row]:=
 omit(value,strlen(value)-1,2);
 column:=column+1;
 end;
 end;
 row:=row+1;
 end;
 end;
 ddedisconnect(channel);
end;

Note:
Check to see what Excel returns, if you read the value of an empty cell. In our ex-
ample, Excel 2007 returns a carriage return (ASCII 10 and 13) at the end of each
value. You have to remove this carriage return before you write the value into the
Plant Simulation table. Within the method load_workingPlan we used the method
omit (<string>, <integer>, <integer>).

11.1.3 Plant Simulation Remote Control
You can call Plant Simulation commands with the function DDEExecute (channel,
command) in Excel.

Example 112: DDE Remote Control
Suppose you want to control the Frame .Models.Frame from an Excel file. The
simulation is to start and stop with buttons in Excel. Add two buttons (ActivX con-
trols) to an Excel spreadsheet.

Double-clicking opens a module sheet (VBA). Event handling for starting the
simulation might look as follows.

Private Sub CommandButton1_Click()
Dim channel As Long

11.1 DDE with Plant Simulation 277

'Establish connection
channel = DDEInitiate("eM-Plant", "System")
'Execute command
DDEExecute channel,
".models.frame.eventController.start"
'close connection
DDETerminate (kanal) 'kanal wird geschlossen
End Sub

The buttons are activated after terminating design mode. Click the Development

tools toolbar in Excel on the icon .

11.1.4 DDE Hotlinks

A simple way of exchanging data is using links. The values of the links are auto-
matically updated. Within DDE these links are called hotlinks. To make it work,
you must first enable the corresponding global variable for the hotlink.

Example 113: DDE Hotlinks
Insert a global variable named variable into a Frame. The variable is to indicate
the number of completed parts. You need a method (e.g., entrance control drain).
The method might look as follows:

is
do
 variable:=drain.statNumIn;
end;

You have to enable the variable for DDE Hotlinks. Select the option Support DDE
Hotlinks in the dialog of the variable on the tab Communication.

In Excel, you can now set a hotlink to the variable in a table cell:

278 11 Data Exchange

Once the value of the variable changes, this will update the value of the cell auto-
matically.

11.2 The File Interface

Using the file interface, you can access text files to read, delete, and overwrite
their contents.

Example 114: File Interface
For the example you need an object of type Comment, one file interface, and two
Method objects.

Type some text into the comment of the Comment object. This text is to be written
into a file. In the Comment object disable the option:

Create a file fileinterface.txt in the same folder as the Plant Simulation file. You
first have to set up the file interface. Open the object FileInterface, and select or
enter the following settings:

Method writeFile:

is
do
 fileInterface.open;
 fileInterface.writeln(comment.cont);
 fileInterface.close;
end;

11.3 The ODBC Interface 279

The content of the Comment object will be written to the file.

The contents of the file are now to be displayed in the console.

Method: readFile

is
 i:integer;
do
 --writes content of the textfile in the console
 fileInterface.open;
 i:=1;
 fileInterface.gotoline(i);
 while not fileInterface.eof loop
 print fileInterface.readln;
 i:=i+1;
 fileInterface.gotoline(i);
 end;
 fileInterface.close;
end;

Attributes and methods of the FileInterface:

Method/Attribute Description

<path>.fileName Sets/writes the filename of the
FileInterface.

<path>.remove Deletes the specified file.

<path>.goToLine(<integer) Sets the pointer of the file on
the specified line. In this way,
you can write and read line by
line.

<path>.eof Returns true, if the end of file
is reached.

<path>.writeLn (<string>) Overwrites the line at the current
line position with the given con-
tent.

<path>.readLn Returns the content of the actual
line as string.

11.3 The ODBC Interface

The ODBC interface allows to access ODBC data sources. You can, for example,
use the ODBC interface for reading data from a database, for modifying data in
databases, and for entering data from Plant Simulation into a database. You must

280 11 Data Exchange

first add the object ODBC to the Class Library (for this you need the Plant Simu-
lation interface package). From the Plant Simulation menu bar select: FILE –
MANAGE CLASS LIBRARY

Look for the ODBC interface in the branch INFORMATIONFLOW:

Select ODBC and confirm your selection with OK.

11.3.1 Setup an ODBC Data Source
Before you can use the ODBC Interface, you must create a database and set the
database up as an ODBC data source.

Example 115: ODBC
You are to simulate two machines and one buffer. Create the following Frame:

The Source produces one part (blocking) every minute. You are to save the set-
tings and the results of the simulation into a database. Insert a database into Ac-
cess and save the database under productiondatabase (.mdb). The database will
initially contain two tables:

11.3 The ODBC Interface 281

Table Elements:

Field name Data type Commit

ID Auto value Primary key

Name Text Maximum 50 characters

Processing_time Number Long integer (seconds)

Availability Number Double

MTTR Number Long integer (seconds)

Capacity Number Long integer (default 1)

Table simulation_runs:

Throughput, average exit interval (cycle time), and output as a function of buffer
size are to be recorded.

Field name Data type Commit

ID Auto value Primary key

Buffer_capacity Number Long integer

Throughput Text

Exit_interval Text

Output Number Long Integer

Type the following data in the table elements:

You have to set up the database as ODBC data source. Under MS Windows XP,
you select Start – Control Panel – Administrative Tools – Data sources (ODBC).
Click the tab System DSN, and then click Add. Select the ACCESS- database driv-
er and click Finish. In the next window, type in a name for the Data source (pro-
duction_database) and select the database. The database is accessed on the data
source name (DSN).

282 11 Data Exchange

11.3.2 Read Data from a Database
Open the ODBC object. Enter the name of the ODBC data source into the field da-
tabase.

Confirm your changes. No other settings are required in this window.

Example: You are to read all data from the database table elements into the table
data.

Method getData:

is
 sql:string;
do
 --login
 ODBC.login("production_database","","");
 --form sql-command
 sql:="SELECT * FROM Elements";
 -- send sql command,
 --Plant Simulation writes the result
 --into the table data
 ODBC.sql(data,sql);
 -- logout
 ODBC.logout;
end;

Execute the method. Plant Simulation saves the query results in the table data.
You can read the data from there.

The setting of the data using the table values may now look like this:

11.3 The ODBC Interface 283

Method getData:

is
 sql:string;
do
 --login
 ODBC.login("production_database","","");
 --form sql-command
 sql:="SELECT * FROM Elements";
 -- send sql command, Plant Simulation writes
 -- the result
 --into the table data
 ODBC.sql(data,sql);
 -- logout
 ODBC.logout;
 -- set values
 for i:=1 to data.Ydim loop
 element:=str_to_obj(data[2,i]);
 element.procTime:=data[3,i];
 element.failures.failure.availability:=
 data[4,i];
 element.failures.failure.mttr:=data[5,i];
 element.capacity:=data[6,i];
 next;
end;

Note:
Before executing the method, you must insert a failure to all objects (without any
settings). The default name of the failure is “failure”. Then the method works
without error messages.

11.3.3 Write Data in a Database
Writing data in a database is analogous to reading data. You will establish a con-
nection to the database, send an SQL statement, and close the connection after
completing working with the database. For entering new records, you use the SQL
command INSERT; for modifying existing records UPDATE.

Example 116: ODBC – Write Simulation Results into a Database

Suppose you want to automatically execute a series of simulation runs. The aim is
to increase the size of the buffer by the value startvalue_buffer up to a value end-
value_buffer to a size change_buffer. Each variant will be simulated (setting in the
EventController). After completing a run (endSim), the values are to be entered
into a new row in the table simulation_runs.

284 11 Data Exchange

Insert the global variables into the Frame, and enter the following initial values:

For entering the data into the table, you will use the SQL command INSERT. The
syntax of this command is:

INSERT INTO table (field1, field2, field3 …) VALUES
(value1, value2, value3 …).

Strings must be specified in the SQL statement in single quotation marks.

The Method init might look as follows:

is
 sql:string;
do
 --daten auslesen
 sql:="INSERT into simulation_runs "+
 "(Buffer_capacity,"+
 "Throughput,Exit_interval,Output) Values ("+
 to_str(buffer.capacity)+","+
 "'"+to_str(drain.statavgLifeSpan)+"',"+
 "'"+to_str(drain.statavgExitInterval)+"',"+
 to_str(drain.statnumOut)+")";
 ODBC.login("production_database","","");
 ODBC.sql(sql);
 ODBC.logout;
 --if buffer capacity not endvalue_buffer increase
 -- and restart the simulation
 if buffer.capacity < endvalue_buffer then
 buffer.capacity:=buffer.capacity+change_buffer;
 eventController.reset;
 eventController.start;
 end;
end;

11.3.4 Delete Data in a Database Table
You can delete values from database tables with the SQL command DELETE. If
you do not restrict deletion by a WHERE clause, all data in the table will be deleted.

Example 117: ODBC – Delete Data
You want to delete all data in the table simulation_runs with a SimTalk method.
The SQL command is

11.3 The ODBC Interface 285

DELETE FROM simulation_runs.

The method deleteAllRuns might look as follows:

is
 sql:string;
do
 sql:="DELETE FROM simulation_runs";
 ODBC.login("production_database","","");
 ODBC.sql(sql);
 ODBC.logout;
 --buffer capacity reset
 buffer.capacity:=startvalue_buffer;
end;

11.3.5 SQL Commands
The database interprets all text information except the commands in SQL, which
you define, as a table or column name. You must set all text values within a SQL
statement within single quotation marks. The databases support different ranges of
SQL statements; the selection below is the lowest common denominator. A good
documentation about the entire range of SQL in its current version can be found
on this Web site:

http://dev.mysql.com/doc/refman/6.0/en/sql-syntax.html

Access only supports a small fraction of the currently valid SQL syntax.

11.3.5.1 SELECT
SELECT [DISTINCT | ALL]
Select_columns,…
 [FROM table
 [WHERE where_definition]
 [ORDER BY { column number | col. name | formula }
 [ASC / DESC]

A general query has the following form:

SELECT column FROM tableName WHERE column="value"

To show all columns:

SELECT * FROM tableName WHERE column="value"

To show all columns and all records:

SELECT * FROM tableName

286 11 Data Exchange

If you want to sort the results of a query, you can insert an ORDER BY clause.
You can specify the column position (starting with 1), column names, or an arith-
metic expression for calculating the column position. The default sort order is as-
cending (ASC), if you want to sort in descending order, you must use DESC.

Example: You want display all records from the table elements order by name.
The SQL command must look as follows:

SELECT * FROM Elements ORDER BY Name

Often it is expected that a word will be found, even if it is contained within an-
other word or string. Sample: If you search for “Machine”, both machines should
be found. In SQL, the LIKE expression is used for this purpose. LIKE compares
two strings. If they match, the record is included in the search results. Instead of
using complete strings to compare, you can also use the so-called wild cards:

• _ one character
• % for an indefinite number of characters

Example:

SELECT * FROM Elements WHERE Name LIKE ‘Machine%’
ORDER BY Name

11.3.5.2 INSERT (Insert New Records)
INSERT [INTO] table [(column names,…)]
 VALUES (value1,…)

The simplest form is

INSERT INTO tableName VALUES
(value1,’value2’,value_n)

The values in parentheses must form a complete data set (number and data types),
otherwise, an error occurs!

11.3.5.3 UPDATE (Change Data)
UPDATE Table_name
 SET column_name1=value1, [column_name2=value2, …]
 [WHERE where_definition]

UPDATE updates columns in table rows with new values. The SET clause deter-
mines which columns are to be changed and which value they receive. The
WHERE clause, if present, determines which rows will be changed. If it is miss-
ing, all rows will be changed.

Example: You want to change the processing time of Machine1 to 100 seconds.

11.3 The ODBC Interface 287

SQL expression:

UPDATE Elements SET Processing_time=100 WHERE
Name=’Machine1’

11.3.5.4 DELETE
DELETE FROM tbl_name
 [WHERE where_definition]

DELETE deletes rows from the table tbl_name, which meet the condition in the
where_definition and returns the number of deleted rows. If you use the DELETE
statement without a WHERE clause, all rows in the table will be deleted.
Example: You want to delete the Buffer in the table Elements:

DELETE FROM Elements WHERE Name=’Buffer’

S. Bangsow: Manufacturing Simulation with Plant Simulation, Simtalk, pp. 289 – 291, 2010.
© Springer Berlin Heidelberg 2010

12 Plant Simulation 3D

12.1 Sample Project
Plant Simulation supports modeling and simulating models in virtual space. The
2D model is assigned a 3D model, which is controlled by the 2D model (corre-
sponding models). All changes in 2D/3D model have an impact on the corre-
sponding model in the other part of the program.

Example 118: Plant Simulation 3D
You are to simulate two machines which are connected with a conveyor belt. The
conveyor belt is divided into three segments of 1 meter each. The conveyor speed
is 0.5 m/min, the processing time of the machines is 1 minute, and the source gen-
erates one part every minute. Create the following Frame:

Now start Plant Simulation 3D: 3D – Start 3D viewer.

Now you have two corresponding models. The preliminary result is a 3D model
with standard symbols.

290 12 Plant Simulation 3D

12.2 Views and Move in Plant Simulation 3D

Corresponding to the size of the corresponding 2D simulation, Plant Simulation
generates a base plate in the 3D model. As a 2D reference level (Z = 0), the base
plate facilitates the orientation and navigation within 3D space. The base plate has a
grid on which you can align your objects. You can display or hide the grid button:

Click Modes – Motion for moving the actual scene. Plant Simulation offers the
following ways to move the scene:

You can use the icons with the red dot to manipulate individual objects.

If you are lost, and your Frame is no longer shown on the screen, you can use the
command View > View All.

12.3 Control the Simulation in Plant Simulation 3D

You can start the EventController with . In addition, you can find buttons to
reset, start, and stop the simulation on the toolbar.

12.3 Control the Simulation in Plant Simulation 3D 291

Symbol Function

Starts and stops the Simulation

Stop + Reset

Starts without MU-animation

Deletes all MUs

Index

? 92
@ 92

A

Abs 112
Absolute path 93
AbsSimTime 221
Active material flow object 17
AND 99, 100
AngularConverter 17, 20, 44, 45
Animation line 80
Animation mode 80, 188, 189
Animation point 80
Append 43, 44, 185
AssemblyStation 17, 32, 33, 35, 36, 143
AttributeExplorer 183, 218, 219, 220
Automatic routing 159, 160
AutomaticSetUp 202
Availability 4, 21, 23, 53, 117, 118, 119,

239, 281

B

Backwards 42, 71, 159, 164, 167
Basis 92
Blocking 20, 25, 60, 224
Booking point 141, 142
Bool_to_num 101
Bottleneck analyzer 241
Branch 102, 103
Broker 61, 62, 63
Buffer 34, 35
Button 213, 214, 260

C

Calculating within tables 204
Callback argument 255
Callback function 256, 258, 266
Capacity 20, 119, 124f.
CardFile 162, 184, 185

Carry Part Away 65, 66
Case differentiation 104
Ceil 112
Chart 230ff.
Checkbox 263
Class 9, 13, 137, 280
Class Library 9, 280
Close 269
CloseDialog 269
CloseHTMLWindow 272
Collided 176
Comment 94, 243, 245, 249, 278, 279
Comments 94, 253
Connector 10, 68
Console 9, 91
Cont 143
Cont 129
Container 32, 37, 143
Context-Sensitive-Help 8
Copy 76, 80, 87, 111, 238
Create 141, 167
CreateSensor 190
Current 8, 92
CurrIconNo 120, 174
Cursor 197
CutRow 185
Cycle 19, 38, 39
Cycle Time 19
CycleTime 117

D

DDE 273, 274, 276, 277
DDE hotlinks 277
DDEExecute 274, 276, 277
DDEInitiate 273, 274, 277
DDEPoke 274
DDERequest 273, 274
DDETerminate 273, 274, 277
Delete 140
Delete 71, 76, 79, 98

294 Index

Delete 141
Delete 186
Delete 202
Delete 202
Delete 239
Delete 284
Delete 284
DELETE 284, 285, 287
DeleteMovables 129
Destination 176
Dialog 253, 254, 255, 256, 260, 263,

265, 266, 268
Dim 186, 203, 273, 276
DismantleStation 17, 35, 36, 37, 38, 153
Display 17, 87, 119, 232, 235, 237, 239,

242, 243, 244, 245
Downto 108
Drain 11, 29, 31, 41, 53, 115, 153, 171,

229
Drop-down list box 263

E

Elseif 103
Empty 122, 155, 186
Endless loops 105
Entity 26, 32, 37, 142, 239
Entrance gates 19
Eof 279
EventController 69, 70, 211, 221, 223,

283, 290

F

Failed 20, 21, 41, 119, 120, 223, 224,
234

Failure 21, 22, 64
Failure Importer 64
File interface 278
FileName 279
Find 203
Floor 112
FlowControl 17, 55, 57, 59
Footer controlled loops 106
FoothPath 61
For-loop 107
Frame 67
From-loop 107
Front 190

Full 123
Function 99, 108, 110, 111, 112, 256,

291

G

Generator 183, 217
GetCheckBox 261
GetIcon 259
GetIndex 264
GetTable 266
GetTableRow 266
GetValue 258
Global variable 95, 98, 180
GoToLine 279
Group box 267

H

Header controlled loops 105
Histogram 237

I
Icon 75, 76, 77, 79, 81, 87, 119, 120,

188, 252, 258, 271
If 102
Incl 111
Initialize 173, 203
InitStat 225
Insert 184
INSERT 283, 284, 286
InsertRow 204
Interface 71, 74, 230, 253, 278, 279, 280
IsSetUpFor 201
isVoid 131

L

Length 141
Line 39ff.
List boxes 263
List editor 183
List view 265
Loading container 143
Local variable 95
Login 282
Logout 282
Loop 105, 106, 107, 108

Index 295

M

Machine-hour rate 204, 207
Material Flow Objects 17, 117, 119
Mathematical operators 99
Max 74, 113
Mean Time To Repair 21
Menu 267, 268
Menu item 267
Messagebox 271
MethCall 116
Method 85
Min 113
Mobile Units 17, 139
Move 87, 140, 163, 290
Move 140
MTTR 21, 23, 24, 53, 60, 115, 117, 118,

119, 122, 141, 164, 177, 195, 210,
217, 225, 231, 239, 243, 281

MTTR.stream 117, 118
MU 131
MuLength 142

N

Name 129
Node 137
NOT 99
Num_to_bool 101
NumMU 124, 131
NumNodes 226
NumSensors 190

O

Observer 126, 127
Occupied 123
ODBC interface 279, 280
Omit 111
Open 269
OpenDialog 269
OpenHTMLWindow 272
Operational 119
OR 99

P

ParallelProc 17, 29, 30, 31, 65, 122, 125,
126, 127, 128

Passing arguments 108

Passive material flow object 17
Pause 21, 119, 215
Pe 143
PickAndPlace 46, 47, 48, 49
PlaceBuffer 34, 65, 81, 138, 150, 201,

202, 210, 211, 231, 237
Plant Simulation 3D 289, 290
Plotter 230
Pos 112, 272
Position 74, 190, 198, 254
PositionType 190
Pow 113
Print 9
Prio 126
Processing Time 19, 31, 32
ProcTime 117, 254
Production costs 134
Program 251
Prompt 109
PutValuesIntoTable 233

Q

QueueFile 185, 195, 196, 197

R

Radio button 253, 261
Range specification 202
Read 185, 203, 273, 282
ReadLn 279
Ready 121
Rear 190
Recovery Time 19
RecoveryTime 117
Ref 78, 79, 96, 116, 209
Reference point 79
Relative path 93
Remove 41, 128, 279
Repeat 106, 115, 213, 271
Report 246, 247, 248, 251, 252
Reset 70, 91, 98, 221, 291
Resource objects 60
ResStatOn 224
Result 2, 5, 10, 99, 110
Return 101, 110, 140
Root 91
Round 112

296 Index

S

Sankey diagram 238, 241
Searching in Lists 197
SELECT 282, 283, 285, 286
Self 92
SensorID 169, 170, 189, 194, 196, 197,

198
SensorNo 190
Sensors 113, 132, 133, 189, 190, 192,

195
Series of failures 24
SetCaption 257
SetCheckBox 262
SetCursor 197
SetIcon 259
SetIndex 264
SetSensitive 258, 266
SetTable 266
SetTableRow 266
SetUp 201
Setup Time 19
SetUpFor 201
SetupTime 201
ShiftCalendar 215, 216
SimTime 170, 221
SingleProc 29
Sorter 17, 51, 52, 54, 65, 81
Source 25f.
Speed 40, 63, 159, 168
Sql 282
Sqrt 112
StackFile 185, 195
Start 221
Start delay duration 171
StartPause 176
StatAvgLifeSpan 230
StatBlockingPortion 225
StatEmptyPortion 225
StatFailPortion 225
Static text box 254, 257
Statistics 224, 225
Statistics collection period 223
Statistics report 246
Statistics wizard 236
StatMaxNumMU 225
StatNumIn 225
StatNumOut 225

StatPausingPortion 225
StatSetupPortion 225
StatThroughputPerHour 230
StatUnplannedPortion 225
StatWaitingPortion 224
StatWorkingPortion 225
Step 7, 70, 71, 155, 156, 157, 221
Step by Step Help 7
Stop 12, 18, 22, 70, 218, 221, 268, 291
Stopped 168
Store 17, 39, 86, 87, 89, 125, 126, 127,

128, 131
Str_to_bool 101
Str_to_date 101
Str_to_datetime 101
Str_to_length 101
Str_to_num 101, 270
Str_to_obj 101
Str_to_speed 102
Str_to_time 102
Str_to_weight 102
Strlen 112
Suspending methods 126

T

Tab control 267
TableFile 55, 183, 200, 201, 202, 203,

204, 205, 211, 226, 233, 234, 235
ThroughputPerDay 230
TimeSequence 208, 209, 210, 211, 214,

215, 228
to_str 102, 105, 106, 107, 108, 116, 258,

264, 275, 284
Toolbox 8, 9
Track 17, 20, 50, 81, 186
Transfer 140
Transfer 4, 50, 139
Transfer 140
Transporter 50, 140, 158, 159, 162, 165,

167, 176, 177, 196, 199
Trigger 153, 155, 183, 212, 215
Turntable 20, 44, 45, 46
TwoLaneTrack 172
Type conversion 101
TypeStatistics 230
TypeStatisticsCumulated 230

Index 297

U

Unloading a transporter 167
Unloading container 145
Until 31, 106, 126
UPDATE 283, 286, 287
User interface 253
User-defined attributes 135

V

Variable 95, 98, 100, 204, 273

W

Waituntil 126, 197
While 29, 105, 164, 168

Width 141
Worker 4, 61, 63, 65
WorkerPool 61, 62
Workplace 61, 64
WriteExcelFile 226
WriteFile 226
WriteLn 279
WriteRow 204

X

XDim 176, 203, 212

Y

YDim 176, 203, 227, 229

	3642050735
	Manufacturing Simulationwith Plant Simulationand SimTalk
	Preface
	Table of Contents
	1 Introducing Factory Simulation
	Uses
	Definitions
	Procedure of Simulation
	Formulation of Problems
	Test of the Simulation-Worthiness
	Formulation of Targets
	Data Collection
	Modeling
	Executing Simulation Runs
	Result Analysis and Result Interpretation
	Documentation

	2 Plant Simulation
	First Steps
	Online Tutorial
	Examples
	Help
	Website

	Introductory Example
	The Program
	First Simulation Example

	Modeling
	Object-Related Modeling
	Object-Oriented Modeling

	3 Standard Classes in PLANT SIMULATION
	Overview
	Material Flow Objects
	General Behavior of the Material Flow Objects
	The Source
	The Drain
	The SingleProc
	The ParallelProc
	The AssemblyStation
	The Buffer
	The DismantleStation
	The Store
	The Line
	AngularConverter and Turntable
	The PickAndPlace Robot
	The Track
	The Sorter
	The FlowControl

	Resource Objects
	Usage and Example
	The Worker-WorkerPool-Workplace-FootPath Concept
	The Broker
	The WorkerPool
	The Worker
	The Footpath
	The Workplace
	Worker Transporting Parts

	General Objects
	The Frame
	The Connector
	The EventController
	The Interface

	4 Icons
	Basics
	The Icon Editor
	Drawing Icons
	Inserting Images
	Insert Images from the Clipboard
	Inserting Images from a File

	Changing the Background Color of the Frame
	Animation Structures and Reference Points
	Basics
	Set Reference Points
	Animation Structures

	Animating Frames

	5 Programming with SimTalk
	The Object Method
	Introductory Example

	The Method Editor
	Line Numbers, Entering Text
	Bookmarks
	Code Completion
	Information About Attributes and Methods
	Templates
	The Debugger

	SimTalk
	Names
	Anonymous Identifiers
	Paths
	Comments

	Variables and Data Types
	Variables

	Operators
	Mathematical Operators
	Logical (Relational) Operators
	Assignments

	Branching
	Case Differentiation
	Loops
	Conditional Loops
	For-Loop

	Methods and Functions
	Passing Arguments
	Passing Several Arguments at the Same Time
	Result of a Function
	Predefined SimTalk Functions
	Method Call

	6 Simtalk and Material Flow Objects
	Attributes of the Material Flow Objects
	State of Material Flow Objects
	Operational, Failed, Pause
	Ready
	Empty
	Occupied
	Full
	Capacity

	Suspending Methods
	Observer
	Content of the Objects
	Sensors
	User-Defined Attributes

	7 Mobile Units
	Standard Methods of Mobile Units
	Create
	MU-Related Attributes and Methods

	Length, Width, and Booking Point
	The Entity
	The Container
	Attributes of the Container
	Loading Containers
	Unloading Containers

	The Transporter
	Basic Behavior
	Attributes of the Transporter
	Routing
	Methods and Attributes of the Transporter

	8 Information Flow Objects
	The List Editor
	The CardFile
	StackFile and QueueFile
	The TableFile
	Basic Behavior
	Methods and Attributes of the TableFile
	Calculating within Tables

	The TimeSequence
	Basic Behavior
	Settings

	The Trigger
	Basic Behavior

	The ShiftCalendar
	The Generator
	The AttributeExplorer
	The EventController

	9 Statistics
	Basics
	Statistics Collection Period
	Activating Statistics Collection

	Statistics – Methods and Attributes
	User Interface Objects
	Chart
	The Sankey Diagram
	The Bottleneck Analyzer
	The Display
	The Comment
	The Report

	10 User Interface Objects
	General
	Elements of the Dialog
	The Dialog Object
	Insert Elements
	Callback Function
	The Static Text Box
	Images in Dialogs
	Buttons
	Radio Buttons
	Checkbox
	Drop-Down List Box and List Box
	List View
	Tab Control
	Group Box
	Menu and Menu Item

	Accessing Dialogs
	Protection of Methods and Objects
	Validation User Input
	Type Validation and Plausibility Check
	Message Box

	HTML-Help

	11 Data Exchange
	DDE with Plant Simulation
	Read Plant Simulation Data in Microsoft Excel
	Plant Simulation Remote Control
	DDE Hotlinks

	The File Interface
	The ODBC Interface
	Setup an ODBC Data Source
	Read Data from a Database
	Write Data in a Database
	Delete Data in a Database Table
	SQL Commands

	12 Plant Simulation 3D
	Sample Project
	Views and Move in Plant Simulation 3D
	Control the Simulation in Plant Simulation 3D

	Index

